Upload struct_data_operators.py with huggingface_hub
Browse files- struct_data_operators.py +364 -0
struct_data_operators.py
ADDED
|
@@ -0,0 +1,364 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""This section describes unitxt operators for tabular data.
|
| 2 |
+
|
| 3 |
+
These operators are specialized in handling tabular data.
|
| 4 |
+
Input table format is assumed as:
|
| 5 |
+
{
|
| 6 |
+
"header": ["col1", "col2"],
|
| 7 |
+
"rows": [["row11", "row12"], ["row21", "row22"], ["row31", "row32"]]
|
| 8 |
+
}
|
| 9 |
+
|
| 10 |
+
------------------------
|
| 11 |
+
"""
|
| 12 |
+
import random
|
| 13 |
+
from abc import ABC, abstractmethod
|
| 14 |
+
from copy import deepcopy
|
| 15 |
+
from typing import (
|
| 16 |
+
Any,
|
| 17 |
+
Dict,
|
| 18 |
+
List,
|
| 19 |
+
Optional,
|
| 20 |
+
)
|
| 21 |
+
|
| 22 |
+
from .dict_utils import dict_get
|
| 23 |
+
from .operators import FieldOperator, StreamInstanceOperator
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
class SerializeTable(ABC, FieldOperator):
|
| 27 |
+
"""TableSerializer converts a given table into a flat sequence with special symbols.
|
| 28 |
+
|
| 29 |
+
Output format varies depending on the chosen serializer. This abstract class defines structure of a typical table serializer that any concrete implementation should follow.
|
| 30 |
+
"""
|
| 31 |
+
|
| 32 |
+
# main method to serialize a table
|
| 33 |
+
@abstractmethod
|
| 34 |
+
def serialize_table(self, table_content: Dict) -> str:
|
| 35 |
+
pass
|
| 36 |
+
|
| 37 |
+
# method to process table header
|
| 38 |
+
@abstractmethod
|
| 39 |
+
def process_header(self, header: List):
|
| 40 |
+
pass
|
| 41 |
+
|
| 42 |
+
# method to process a table row
|
| 43 |
+
@abstractmethod
|
| 44 |
+
def process_row(self, row: List, row_index: int):
|
| 45 |
+
pass
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
# Concrete classes implementing table serializers
|
| 49 |
+
class SerializeTableAsIndexedRowMajor(SerializeTable):
|
| 50 |
+
"""Indexed Row Major Table Serializer.
|
| 51 |
+
|
| 52 |
+
Commonly used row major serialization format.
|
| 53 |
+
Format: col : col1 | col2 | col 3 row 1 : val1 | val2 | val3 | val4 row 2 : val1 | ...
|
| 54 |
+
"""
|
| 55 |
+
|
| 56 |
+
def process_value(self, table: Any) -> Any:
|
| 57 |
+
table_input = deepcopy(table)
|
| 58 |
+
return self.serialize_table(table_content=table_input)
|
| 59 |
+
|
| 60 |
+
# main method that processes a table
|
| 61 |
+
# table_content must be in the presribed input format
|
| 62 |
+
def serialize_table(self, table_content: Dict) -> str:
|
| 63 |
+
# Extract headers and rows from the dictionary
|
| 64 |
+
header = table_content.get("header", [])
|
| 65 |
+
rows = table_content.get("rows", [])
|
| 66 |
+
|
| 67 |
+
assert header and rows, "Incorrect input table format"
|
| 68 |
+
|
| 69 |
+
# Process table header first
|
| 70 |
+
serialized_tbl_str = self.process_header(header) + " "
|
| 71 |
+
|
| 72 |
+
# Process rows sequentially starting from row 1
|
| 73 |
+
for i, row in enumerate(rows, start=1):
|
| 74 |
+
serialized_tbl_str += self.process_row(row, row_index=i) + " "
|
| 75 |
+
|
| 76 |
+
# return serialized table as a string
|
| 77 |
+
return serialized_tbl_str.strip()
|
| 78 |
+
|
| 79 |
+
# serialize header into a string containing the list of column names separated by '|' symbol
|
| 80 |
+
def process_header(self, header: List):
|
| 81 |
+
return "col : " + " | ".join(header)
|
| 82 |
+
|
| 83 |
+
# serialize a table row into a string containing the list of cell values separated by '|'
|
| 84 |
+
def process_row(self, row: List, row_index: int):
|
| 85 |
+
serialized_row_str = ""
|
| 86 |
+
row_cell_values = [
|
| 87 |
+
str(value) if isinstance(value, (int, float)) else value for value in row
|
| 88 |
+
]
|
| 89 |
+
|
| 90 |
+
serialized_row_str += " | ".join(row_cell_values)
|
| 91 |
+
|
| 92 |
+
return f"row {row_index} : {serialized_row_str}"
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
class SerializeTableAsMarkdown(SerializeTable):
|
| 96 |
+
"""Markdown Table Serializer.
|
| 97 |
+
|
| 98 |
+
Markdown table format is used in GitHub code primarily.
|
| 99 |
+
Format:
|
| 100 |
+
|col1|col2|col3|
|
| 101 |
+
|---|---|---|
|
| 102 |
+
|A|4|1|
|
| 103 |
+
|I|2|1|
|
| 104 |
+
...
|
| 105 |
+
"""
|
| 106 |
+
|
| 107 |
+
def process_value(self, table: Any) -> Any:
|
| 108 |
+
table_input = deepcopy(table)
|
| 109 |
+
return self.serialize_table(table_content=table_input)
|
| 110 |
+
|
| 111 |
+
# main method that serializes a table.
|
| 112 |
+
# table_content must be in the presribed input format.
|
| 113 |
+
def serialize_table(self, table_content: Dict) -> str:
|
| 114 |
+
# Extract headers and rows from the dictionary
|
| 115 |
+
header = table_content.get("header", [])
|
| 116 |
+
rows = table_content.get("rows", [])
|
| 117 |
+
|
| 118 |
+
assert header and rows, "Incorrect input table format"
|
| 119 |
+
|
| 120 |
+
# Process table header first
|
| 121 |
+
serialized_tbl_str = self.process_header(header)
|
| 122 |
+
|
| 123 |
+
# Process rows sequentially starting from row 1
|
| 124 |
+
for i, row in enumerate(rows, start=1):
|
| 125 |
+
serialized_tbl_str += self.process_row(row, row_index=i)
|
| 126 |
+
|
| 127 |
+
# return serialized table as a string
|
| 128 |
+
return serialized_tbl_str.strip()
|
| 129 |
+
|
| 130 |
+
# serialize header into a string containing the list of column names
|
| 131 |
+
def process_header(self, header: List):
|
| 132 |
+
header_str = "|{}|\n".format("|".join(header))
|
| 133 |
+
header_str += "|{}|\n".format("|".join(["---"] * len(header)))
|
| 134 |
+
return header_str
|
| 135 |
+
|
| 136 |
+
# serialize a table row into a string containing the list of cell values
|
| 137 |
+
def process_row(self, row: List, row_index: int):
|
| 138 |
+
row_str = ""
|
| 139 |
+
row_str += "|{}|\n".format("|".join(str(cell) for cell in row))
|
| 140 |
+
return row_str
|
| 141 |
+
|
| 142 |
+
|
| 143 |
+
# truncate cell value to maximum allowed length
|
| 144 |
+
def truncate_cell(cell_value, max_len):
|
| 145 |
+
if cell_value is None:
|
| 146 |
+
return None
|
| 147 |
+
|
| 148 |
+
if isinstance(cell_value, int) or isinstance(cell_value, float):
|
| 149 |
+
return None
|
| 150 |
+
|
| 151 |
+
if cell_value.strip() == "":
|
| 152 |
+
return None
|
| 153 |
+
|
| 154 |
+
if len(cell_value) > max_len:
|
| 155 |
+
return cell_value[:max_len]
|
| 156 |
+
|
| 157 |
+
return None
|
| 158 |
+
|
| 159 |
+
|
| 160 |
+
class TruncateTableCells(StreamInstanceOperator):
|
| 161 |
+
"""Limit the maximum length of cell values in a table to reduce the overall length.
|
| 162 |
+
|
| 163 |
+
Args:
|
| 164 |
+
max_length (int) - maximum allowed length of cell values
|
| 165 |
+
For tasks that produce a cell value as answer, truncating a cell value should be replicated
|
| 166 |
+
with truncating the corresponding answer as well. This has been addressed in the implementation.
|
| 167 |
+
|
| 168 |
+
"""
|
| 169 |
+
|
| 170 |
+
max_length: int = 15
|
| 171 |
+
table: str = None
|
| 172 |
+
text_output: Optional[str] = None
|
| 173 |
+
use_query: bool = False
|
| 174 |
+
|
| 175 |
+
def process(
|
| 176 |
+
self, instance: Dict[str, Any], stream_name: Optional[str] = None
|
| 177 |
+
) -> Dict[str, Any]:
|
| 178 |
+
table = dict_get(instance, self.table, use_dpath=self.use_query)
|
| 179 |
+
|
| 180 |
+
answers = []
|
| 181 |
+
if self.text_output is not None:
|
| 182 |
+
answers = dict_get(instance, self.text_output, use_dpath=self.use_query)
|
| 183 |
+
|
| 184 |
+
self.truncate_table(table_content=table, answers=answers)
|
| 185 |
+
|
| 186 |
+
return instance
|
| 187 |
+
|
| 188 |
+
# truncate table cells
|
| 189 |
+
def truncate_table(self, table_content: Dict, answers: Optional[List]):
|
| 190 |
+
cell_mapping = {}
|
| 191 |
+
|
| 192 |
+
# One row at a time
|
| 193 |
+
for row in table_content.get("rows", []):
|
| 194 |
+
for i, cell in enumerate(row):
|
| 195 |
+
truncated_cell = truncate_cell(cell, self.max_length)
|
| 196 |
+
if truncated_cell is not None:
|
| 197 |
+
cell_mapping[cell] = truncated_cell
|
| 198 |
+
row[i] = truncated_cell
|
| 199 |
+
|
| 200 |
+
# Update values in answer list to truncated values
|
| 201 |
+
if answers is not None:
|
| 202 |
+
for i, case in enumerate(answers):
|
| 203 |
+
answers[i] = cell_mapping.get(case, case)
|
| 204 |
+
|
| 205 |
+
|
| 206 |
+
class TruncateTableRows(FieldOperator):
|
| 207 |
+
"""Limits table rows to specified limit by removing excess rows via random selection.
|
| 208 |
+
|
| 209 |
+
Args:
|
| 210 |
+
rows_to_keep (int) - number of rows to keep.
|
| 211 |
+
"""
|
| 212 |
+
|
| 213 |
+
rows_to_keep: int = 10
|
| 214 |
+
|
| 215 |
+
def process_value(self, table: Any) -> Any:
|
| 216 |
+
return self.truncate_table_rows(table_content=table)
|
| 217 |
+
|
| 218 |
+
def truncate_table_rows(self, table_content: Dict):
|
| 219 |
+
# Get rows from table
|
| 220 |
+
rows = table_content.get("rows", [])
|
| 221 |
+
|
| 222 |
+
num_rows = len(rows)
|
| 223 |
+
|
| 224 |
+
# if number of rows are anyway lesser, return.
|
| 225 |
+
if num_rows <= self.rows_to_keep:
|
| 226 |
+
return table_content
|
| 227 |
+
|
| 228 |
+
# calculate number of rows to delete, delete them
|
| 229 |
+
rows_to_delete = num_rows - self.rows_to_keep
|
| 230 |
+
|
| 231 |
+
# Randomly select rows to be deleted
|
| 232 |
+
deleted_rows_indices = random.sample(range(len(rows)), rows_to_delete)
|
| 233 |
+
|
| 234 |
+
remaining_rows = [
|
| 235 |
+
row for i, row in enumerate(rows) if i not in deleted_rows_indices
|
| 236 |
+
]
|
| 237 |
+
table_content["rows"] = remaining_rows
|
| 238 |
+
|
| 239 |
+
return table_content
|
| 240 |
+
|
| 241 |
+
|
| 242 |
+
class SerializeTableRowAsText(StreamInstanceOperator):
|
| 243 |
+
"""Serializes a table row as text.
|
| 244 |
+
|
| 245 |
+
Args:
|
| 246 |
+
fields (str) - list of fields to be included in serialization.
|
| 247 |
+
to_field (str) - serialized text field name.
|
| 248 |
+
max_cell_length (int) - limits cell length to be considered, optional.
|
| 249 |
+
"""
|
| 250 |
+
|
| 251 |
+
fields: str
|
| 252 |
+
to_field: str
|
| 253 |
+
max_cell_length: Optional[int] = None
|
| 254 |
+
|
| 255 |
+
def process(
|
| 256 |
+
self, instance: Dict[str, Any], stream_name: Optional[str] = None
|
| 257 |
+
) -> Dict[str, Any]:
|
| 258 |
+
linearized_str = ""
|
| 259 |
+
for field in self.fields:
|
| 260 |
+
value = dict_get(instance, field, use_dpath=False)
|
| 261 |
+
if self.max_cell_length is not None:
|
| 262 |
+
truncated_value = truncate_cell(value, self.max_cell_length)
|
| 263 |
+
if truncated_value is not None:
|
| 264 |
+
value = truncated_value
|
| 265 |
+
|
| 266 |
+
linearized_str = linearized_str + field + " is " + str(value) + ", "
|
| 267 |
+
|
| 268 |
+
instance[self.to_field] = linearized_str
|
| 269 |
+
return instance
|
| 270 |
+
|
| 271 |
+
|
| 272 |
+
class SerializeTableRowAsList(StreamInstanceOperator):
|
| 273 |
+
"""Serializes a table row as list.
|
| 274 |
+
|
| 275 |
+
Args:
|
| 276 |
+
fields (str) - list of fields to be included in serialization.
|
| 277 |
+
to_field (str) - serialized text field name.
|
| 278 |
+
max_cell_length (int) - limits cell length to be considered, optional.
|
| 279 |
+
"""
|
| 280 |
+
|
| 281 |
+
fields: str
|
| 282 |
+
to_field: str
|
| 283 |
+
max_cell_length: Optional[int] = None
|
| 284 |
+
|
| 285 |
+
def process(
|
| 286 |
+
self, instance: Dict[str, Any], stream_name: Optional[str] = None
|
| 287 |
+
) -> Dict[str, Any]:
|
| 288 |
+
linearized_str = ""
|
| 289 |
+
for field in self.fields:
|
| 290 |
+
value = dict_get(instance, field, use_dpath=False)
|
| 291 |
+
if self.max_cell_length is not None:
|
| 292 |
+
truncated_value = truncate_cell(value, self.max_cell_length)
|
| 293 |
+
if truncated_value is not None:
|
| 294 |
+
value = truncated_value
|
| 295 |
+
|
| 296 |
+
linearized_str = linearized_str + field + ": " + str(value) + ", "
|
| 297 |
+
|
| 298 |
+
instance[self.to_field] = linearized_str
|
| 299 |
+
return instance
|
| 300 |
+
|
| 301 |
+
|
| 302 |
+
class SerializeTriples(FieldOperator):
|
| 303 |
+
"""Serializes triples into a flat sequence.
|
| 304 |
+
|
| 305 |
+
Sample input in expected format:
|
| 306 |
+
[[ "First Clearing", "LOCATION", "On NYS 52 1 Mi. Youngsville" ], [ "On NYS 52 1 Mi. Youngsville", "CITY_OR_TOWN", "Callicoon, New York"]]
|
| 307 |
+
|
| 308 |
+
Sample output:
|
| 309 |
+
First Clearing : LOCATION : On NYS 52 1 Mi. Youngsville | On NYS 52 1 Mi. Youngsville : CITY_OR_TOWN : Callicoon, New York
|
| 310 |
+
|
| 311 |
+
"""
|
| 312 |
+
|
| 313 |
+
def process_value(self, tripleset: Any) -> Any:
|
| 314 |
+
return self.serialize_triples(tripleset)
|
| 315 |
+
|
| 316 |
+
def serialize_triples(self, tripleset) -> str:
|
| 317 |
+
return " | ".join(
|
| 318 |
+
f"{subj} : {rel.lower()} : {obj}" for subj, rel, obj in tripleset
|
| 319 |
+
)
|
| 320 |
+
|
| 321 |
+
|
| 322 |
+
class SerializeKeyValPairs(FieldOperator):
|
| 323 |
+
"""Serializes key, value pairs into a flat sequence.
|
| 324 |
+
|
| 325 |
+
Sample input in expected format: {"name": "Alex", "age": 31, "sex": "M"}
|
| 326 |
+
Sample output: name is Alex, age is 31, sex is M
|
| 327 |
+
"""
|
| 328 |
+
|
| 329 |
+
def process_value(self, kvpairs: Any) -> Any:
|
| 330 |
+
return self.serialize_kvpairs(kvpairs)
|
| 331 |
+
|
| 332 |
+
def serialize_kvpairs(self, kvpairs) -> str:
|
| 333 |
+
serialized_str = ""
|
| 334 |
+
for key, value in kvpairs.items():
|
| 335 |
+
serialized_str += f"{key} is {value}, "
|
| 336 |
+
|
| 337 |
+
# Remove the trailing comma and space then return
|
| 338 |
+
return serialized_str[:-2]
|
| 339 |
+
|
| 340 |
+
|
| 341 |
+
class ListToKeyValPairs(StreamInstanceOperator):
|
| 342 |
+
"""Maps list of keys and values into key:value pairs.
|
| 343 |
+
|
| 344 |
+
Sample input in expected format: {"keys": ["name", "age", "sex"], "values": ["Alex", 31, "M"]}
|
| 345 |
+
Sample output: {"name": "Alex", "age": 31, "sex": "M"}
|
| 346 |
+
"""
|
| 347 |
+
|
| 348 |
+
fields: List[str]
|
| 349 |
+
to_field: str
|
| 350 |
+
use_query: bool = False
|
| 351 |
+
|
| 352 |
+
def process(
|
| 353 |
+
self, instance: Dict[str, Any], stream_name: Optional[str] = None
|
| 354 |
+
) -> Dict[str, Any]:
|
| 355 |
+
keylist = dict_get(instance, self.fields[0], use_dpath=self.use_query)
|
| 356 |
+
valuelist = dict_get(instance, self.fields[1], use_dpath=self.use_query)
|
| 357 |
+
|
| 358 |
+
output_dict = {}
|
| 359 |
+
for key, value in zip(keylist, valuelist):
|
| 360 |
+
output_dict[key] = value
|
| 361 |
+
|
| 362 |
+
instance[self.to_field] = output_dict
|
| 363 |
+
|
| 364 |
+
return instance
|