Upload metrics.py with huggingface_hub
Browse files- metrics.py +594 -133
metrics.py
CHANGED
|
@@ -1,14 +1,18 @@
|
|
|
|
|
| 1 |
import re
|
| 2 |
import string
|
| 3 |
import uuid
|
| 4 |
-
from abc import
|
| 5 |
from collections import Counter
|
| 6 |
from dataclasses import field
|
| 7 |
from typing import Any, Dict, Generator, List, Optional, Tuple
|
| 8 |
|
| 9 |
import evaluate
|
| 10 |
import numpy
|
|
|
|
|
|
|
| 11 |
|
|
|
|
| 12 |
from .dataclass import InternalField, OptionalField
|
| 13 |
from .operator import (
|
| 14 |
MultiStreamOperator,
|
|
@@ -17,8 +21,14 @@ from .operator import (
|
|
| 17 |
StreamInstanceOperator,
|
| 18 |
)
|
| 19 |
from .operators import CopyFields
|
|
|
|
| 20 |
from .stream import MultiStream, Stream
|
| 21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
def abstract_factory():
|
| 24 |
return {}
|
|
@@ -31,23 +41,166 @@ def abstract_field():
|
|
| 31 |
class UpdateStream(StreamInstanceOperator):
|
| 32 |
update: dict
|
| 33 |
|
| 34 |
-
def process(
|
|
|
|
|
|
|
| 35 |
instance.update(self.update)
|
| 36 |
return instance
|
| 37 |
|
| 38 |
|
| 39 |
# TODO: currently we have two classes with this name. metric.Metric and matrics.Metric...
|
| 40 |
-
class Metric(
|
| 41 |
@property
|
| 42 |
@abstractmethod
|
| 43 |
def main_score(self):
|
| 44 |
pass
|
| 45 |
|
| 46 |
|
| 47 |
-
class
|
| 48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
references = []
|
| 50 |
predictions = []
|
|
|
|
| 51 |
global_score = {}
|
| 52 |
|
| 53 |
instances = []
|
|
@@ -58,58 +211,100 @@ class GlobalMetric(SingleStreamOperator, Metric):
|
|
| 58 |
else:
|
| 59 |
global_score = instance["score"]["global"]
|
| 60 |
|
| 61 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
try:
|
| 64 |
-
instance_score = self._compute(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
except:
|
| 66 |
instance_score = {"score": None, "score_name": self.main_score}
|
| 67 |
|
| 68 |
-
if isinstance(self.main_score, str)
|
| 69 |
instance_score[self.main_score] = None
|
| 70 |
|
| 71 |
instance["score"]["instance"].update(instance_score)
|
| 72 |
|
| 73 |
-
|
| 74 |
-
predictions.append(pred)
|
| 75 |
-
instances.append(instance)
|
| 76 |
-
|
| 77 |
-
result = self._compute(references, predictions)
|
| 78 |
|
| 79 |
global_score.update(result)
|
| 80 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
for instance in instances:
|
| 82 |
instance["score"]["global"] = global_score
|
| 83 |
yield instance
|
| 84 |
|
| 85 |
-
def _compute(
|
| 86 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
result["score"] = result[self.main_score]
|
| 88 |
result["score_name"] = self.main_score
|
| 89 |
return result
|
| 90 |
|
| 91 |
@abstractmethod
|
| 92 |
-
def compute(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
pass
|
| 94 |
|
| 95 |
|
| 96 |
-
class BulkInstanceMetric(SingleStreamOperator,
|
|
|
|
| 97 |
main_score: str
|
| 98 |
reduction_map: Dict[str, List[str]]
|
| 99 |
|
| 100 |
implemented_reductions: List[str] = field(default_factory=lambda: ["mean"])
|
| 101 |
|
| 102 |
-
def process(self, stream: Stream, stream_name: str = None) -> Generator:
|
| 103 |
global_score = {}
|
| 104 |
instances = []
|
| 105 |
|
| 106 |
# consume the stream
|
| 107 |
references, predictions = map(
|
| 108 |
-
list,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 109 |
)
|
| 110 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 111 |
# compute the metric over all refs and preds
|
| 112 |
-
instance_scores = self.compute(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 113 |
|
| 114 |
# add the score and score_name fields
|
| 115 |
for instance_score in instance_scores:
|
|
@@ -134,21 +329,38 @@ class BulkInstanceMetric(SingleStreamOperator, Metric):
|
|
| 134 |
if reduction == "mean":
|
| 135 |
from statistics import mean
|
| 136 |
|
| 137 |
-
for
|
| 138 |
-
global_score[
|
| 139 |
-
|
| 140 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 141 |
global_score["score_name"] = self.main_score
|
| 142 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 143 |
for instance in instances:
|
| 144 |
yield instance
|
| 145 |
|
| 146 |
@abstractmethod
|
| 147 |
-
def compute(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 148 |
pass
|
| 149 |
|
| 150 |
|
| 151 |
-
class InstanceMetric(SingleStreamOperator,
|
|
|
|
|
|
|
| 152 |
implemented_reductions: List[str] = field(default_factory=lambda: ["mean"])
|
| 153 |
|
| 154 |
@property
|
|
@@ -156,15 +368,21 @@ class InstanceMetric(SingleStreamOperator, Metric):
|
|
| 156 |
def reduction_map(self) -> dict:
|
| 157 |
pass
|
| 158 |
|
| 159 |
-
def process(self, stream: Stream, stream_name: str = None) -> Generator:
|
| 160 |
global_score = {}
|
| 161 |
instances = []
|
| 162 |
|
| 163 |
for instance in stream:
|
| 164 |
refs, pred = instance["references"], instance["prediction"]
|
|
|
|
|
|
|
|
|
|
| 165 |
|
| 166 |
-
instance_score = self.
|
| 167 |
-
|
|
|
|
|
|
|
|
|
|
| 168 |
if "score" not in instance:
|
| 169 |
instance["score"] = {"global": global_score, "instance": {}}
|
| 170 |
else:
|
|
@@ -182,23 +400,28 @@ class InstanceMetric(SingleStreamOperator, Metric):
|
|
| 182 |
if reduction == "mean":
|
| 183 |
from statistics import mean
|
| 184 |
|
| 185 |
-
for
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 189 |
global_score["score_name"] = self.main_score
|
| 190 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 191 |
for instance in instances:
|
| 192 |
yield instance
|
| 193 |
|
| 194 |
-
def _compute(self, references: List[str], prediction: str) -> dict:
|
| 195 |
-
result = self.compute(references=references, prediction=prediction)
|
| 196 |
-
result["score"] = result[self.main_score]
|
| 197 |
-
result["score_name"] = self.main_score
|
| 198 |
-
return result
|
| 199 |
-
|
| 200 |
@abstractmethod
|
| 201 |
-
def compute(
|
|
|
|
|
|
|
| 202 |
pass
|
| 203 |
|
| 204 |
|
|
@@ -208,46 +431,54 @@ class Squad(GlobalMetric):
|
|
| 208 |
metric = "squad"
|
| 209 |
|
| 210 |
def prepare(self):
|
| 211 |
-
super(
|
| 212 |
self._metric = evaluate.load(self.metric)
|
| 213 |
|
| 214 |
-
def compute(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 215 |
ids = [str(uuid.uuid4()).replace("-", "") for _ in range(len(predictions))]
|
| 216 |
formatted_predictions = [
|
| 217 |
-
{"prediction_text": prediction, "id": ids[i]}
|
|
|
|
| 218 |
]
|
| 219 |
formatted_references = [
|
| 220 |
{"answers": {"answer_start": [-1], "text": reference}, "id": ids[i]}
|
| 221 |
for i, reference in enumerate(references)
|
| 222 |
]
|
| 223 |
|
| 224 |
-
return self._metric.compute(
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
def _compute(self, references: List[str], prediction: str) -> dict:
|
| 229 |
-
result = self.compute(references[0], prediction)
|
| 230 |
-
result["score"] = result[self.main_score]
|
| 231 |
-
result["score_name"] = self.main_score
|
| 232 |
-
return result
|
| 233 |
-
|
| 234 |
-
@abstractmethod
|
| 235 |
-
def compute(self, reference, prediction: str) -> dict:
|
| 236 |
-
pass
|
| 237 |
|
| 238 |
|
| 239 |
-
class Accuracy(
|
| 240 |
reduction_map = {"mean": ["accuracy"]}
|
| 241 |
main_score = "accuracy"
|
| 242 |
|
| 243 |
-
def compute(
|
| 244 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 245 |
|
| 246 |
|
| 247 |
class MetricPipeline(MultiStreamOperator, Metric):
|
| 248 |
main_score: str = None
|
| 249 |
preprocess_steps: Optional[List[StreamingOperator]] = field(default_factory=list)
|
| 250 |
-
postpreprocess_steps: Optional[List[StreamingOperator]] = field(
|
|
|
|
|
|
|
| 251 |
metric: Metric = None
|
| 252 |
|
| 253 |
def verify(self):
|
|
@@ -269,14 +500,15 @@ class MetricPipeline(MultiStreamOperator, Metric):
|
|
| 269 |
multi_stream = self.metric(multi_stream)
|
| 270 |
for step in self.postpreprocess_steps:
|
| 271 |
multi_stream = step(multi_stream)
|
| 272 |
-
|
| 273 |
-
return multi_stream
|
| 274 |
|
| 275 |
|
| 276 |
class HuggingfaceMetric(GlobalMetric):
|
| 277 |
hf_metric_name: str = None
|
| 278 |
main_score: str = None # The main score returned from the metric
|
| 279 |
-
hf_main_score: str =
|
|
|
|
|
|
|
| 280 |
|
| 281 |
scale: float = 1.0 # optional scaling of main results
|
| 282 |
scaled_fields: list = None
|
|
@@ -285,24 +517,39 @@ class HuggingfaceMetric(GlobalMetric):
|
|
| 285 |
|
| 286 |
def prepare(self):
|
| 287 |
super().prepare()
|
| 288 |
-
self.metric = evaluate.load(
|
|
|
|
|
|
|
| 289 |
|
| 290 |
-
def compute(
|
| 291 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 292 |
if self.hf_main_score:
|
| 293 |
result[self.main_score] = result[self.hf_main_score]
|
| 294 |
del result[self.hf_main_score]
|
| 295 |
if self.scale != 1.0:
|
| 296 |
-
assert
|
|
|
|
|
|
|
| 297 |
for key in self.scaled_fields:
|
| 298 |
-
assert
|
|
|
|
|
|
|
| 299 |
if isinstance(result[key], list):
|
| 300 |
assert all(
|
| 301 |
isinstance(v, float) for v in result[key]
|
| 302 |
), "Not all scaled field '{key}' values are floats: {result[key]}"
|
| 303 |
result[key] = [v / self.scale for v in result[key]]
|
| 304 |
else:
|
| 305 |
-
assert isinstance(
|
|
|
|
|
|
|
| 306 |
result[key] /= self.scale
|
| 307 |
return result
|
| 308 |
|
|
@@ -317,8 +564,15 @@ class HuggingfaceBulkMetric(BulkInstanceMetric):
|
|
| 317 |
super().prepare()
|
| 318 |
self.metric = evaluate.load(self.hf_metric_name)
|
| 319 |
|
| 320 |
-
def compute(
|
| 321 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 322 |
|
| 323 |
# convert dict of lists to a list of dicts
|
| 324 |
results = [{} for _ in range(len(scores[self.hf_metric_fields[0]]))]
|
|
@@ -337,7 +591,7 @@ class F1(GlobalMetric):
|
|
| 337 |
metric = "f1"
|
| 338 |
|
| 339 |
def prepare(self):
|
| 340 |
-
super(
|
| 341 |
self._metric = evaluate.load(self.metric)
|
| 342 |
|
| 343 |
def get_str_id(self, str):
|
|
@@ -347,18 +601,30 @@ class F1(GlobalMetric):
|
|
| 347 |
self.id_to_str[id] = str
|
| 348 |
return self.str_to_id[str]
|
| 349 |
|
| 350 |
-
def compute(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 351 |
assert all(
|
| 352 |
len(reference) == 1 for reference in references
|
| 353 |
), "Only a single reference per prediction is allowed in F1 metric"
|
| 354 |
self.str_to_id = {}
|
| 355 |
self.id_to_str = {}
|
| 356 |
-
formatted_references = [
|
| 357 |
-
|
| 358 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 359 |
labels = list(set(formatted_references))
|
| 360 |
result = self._metric.compute(
|
| 361 |
-
predictions=formatted_predictions,
|
|
|
|
|
|
|
|
|
|
| 362 |
)
|
| 363 |
if isinstance(result["f1"], numpy.ndarray):
|
| 364 |
from statistics import mean
|
|
@@ -380,6 +646,11 @@ class F1Macro(F1):
|
|
| 380 |
main_score = "f1_macro"
|
| 381 |
|
| 382 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 383 |
class F1MultiLabel(GlobalMetric):
|
| 384 |
_metric = None
|
| 385 |
main_score = "f1_macro"
|
|
@@ -387,11 +658,11 @@ class F1MultiLabel(GlobalMetric):
|
|
| 387 |
classes_to_ignore = ["none"]
|
| 388 |
|
| 389 |
def prepare(self):
|
| 390 |
-
super(
|
| 391 |
self._metric = evaluate.load("f1", "multilabel")
|
| 392 |
|
| 393 |
def add_str_to_id(self, str):
|
| 394 |
-
if not
|
| 395 |
id = len(self.str_to_id)
|
| 396 |
self.str_to_id[str] = id
|
| 397 |
self.id_to_str[id] = str
|
|
@@ -404,17 +675,34 @@ class F1MultiLabel(GlobalMetric):
|
|
| 404 |
result[self.str_to_id[label]] = 1
|
| 405 |
return result
|
| 406 |
|
| 407 |
-
def compute(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 408 |
self.str_to_id = {}
|
| 409 |
self.id_to_str = {}
|
| 410 |
assert all(
|
| 411 |
len(reference) == 1 for reference in references
|
| 412 |
-
), "Only a single reference per prediction is allowed in F1 metric"
|
|
|
|
| 413 |
references = [reference[0] for reference in references]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 414 |
labels = [
|
| 415 |
-
|
| 416 |
-
for
|
| 417 |
-
if
|
| 418 |
]
|
| 419 |
# if no classes are left then F1 is not defined
|
| 420 |
# (e.g. only "none" in references)
|
|
@@ -423,8 +711,12 @@ class F1MultiLabel(GlobalMetric):
|
|
| 423 |
|
| 424 |
for label in labels:
|
| 425 |
self.add_str_to_id(label)
|
| 426 |
-
formatted_references = [
|
| 427 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 428 |
|
| 429 |
# There is odd behavior in scikit-learn that when passing a one-hot vector with a single
|
| 430 |
# element, it is treated a class identifier. Therefore, we add labels=[1] to limit to only
|
|
@@ -475,37 +767,53 @@ class Rouge(HuggingfaceMetric):
|
|
| 475 |
sent_split_newline: bool = True
|
| 476 |
|
| 477 |
def prepare(self):
|
| 478 |
-
self.hf_compute_args.update({"use_aggregator": self.use_aggregator, "rouge_types": self.rouge_types})
|
| 479 |
-
|
| 480 |
super().prepare()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 481 |
import nltk
|
| 482 |
|
| 483 |
nltk.download("punkt")
|
| 484 |
self.sent_tokenize = nltk.sent_tokenize
|
| 485 |
|
| 486 |
-
def compute(self, references, predictions):
|
| 487 |
if self.sent_split_newline:
|
| 488 |
-
predictions = [
|
| 489 |
-
|
| 490 |
-
|
| 491 |
-
|
| 492 |
-
|
| 493 |
-
|
| 494 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 495 |
reduction_map = {"mean": ["char_edit_dist_accuracy"]}
|
| 496 |
main_score = "char_edit_dist_accuracy"
|
| 497 |
|
| 498 |
def prepare(self):
|
|
|
|
| 499 |
import editdistance
|
| 500 |
|
| 501 |
self.eval = editdistance.eval
|
| 502 |
|
| 503 |
-
def compute(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 504 |
formatted_prediction = "".join(prediction.split())
|
| 505 |
-
formatted_reference = "".join(
|
| 506 |
max_length = max(len(formatted_reference), len(formatted_prediction))
|
| 507 |
if max_length == 0:
|
| 508 |
-
return 0
|
| 509 |
edit_dist = self.eval(formatted_reference, formatted_prediction)
|
| 510 |
return {"char_edit_dist_accuracy": (1 - edit_dist / max_length)}
|
| 511 |
|
|
@@ -514,12 +822,19 @@ class Wer(HuggingfaceMetric):
|
|
| 514 |
hf_metric_name = "wer"
|
| 515 |
main_score = "wer"
|
| 516 |
|
| 517 |
-
def compute(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 518 |
assert all(
|
| 519 |
len(reference) == 1 for reference in references
|
| 520 |
), "Only single reference per prediction is allowed in wer metric"
|
| 521 |
formatted_references = [reference[0] for reference in references]
|
| 522 |
-
result = self.metric.compute(
|
|
|
|
|
|
|
| 523 |
return {self.main_score: result}
|
| 524 |
|
| 525 |
|
|
@@ -534,16 +849,27 @@ class MatthewsCorrelation(HuggingfaceMetric):
|
|
| 534 |
self.str_to_id[str] = id
|
| 535 |
return self.str_to_id[str]
|
| 536 |
|
| 537 |
-
def compute(
|
| 538 |
-
|
| 539 |
-
|
| 540 |
-
|
| 541 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 542 |
|
| 543 |
|
| 544 |
class CustomF1(GlobalMetric):
|
| 545 |
main_score = "f1_micro"
|
| 546 |
classes = None
|
|
|
|
| 547 |
|
| 548 |
@abstractmethod
|
| 549 |
def get_element_group(self, element):
|
|
@@ -553,40 +879,64 @@ class CustomF1(GlobalMetric):
|
|
| 553 |
def get_element_representation(self, element):
|
| 554 |
pass
|
| 555 |
|
| 556 |
-
def group_elements(self,
|
| 557 |
return {
|
| 558 |
-
k: Counter(
|
| 559 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 560 |
}
|
| 561 |
|
| 562 |
def calculate_groups_ratio(self, actual_group, total_group):
|
| 563 |
-
return sum(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 564 |
|
| 565 |
def f1(self, pn, pd, rn, rd):
|
| 566 |
-
precision =
|
| 567 |
-
recall =
|
| 568 |
try:
|
| 569 |
return 2 * precision * recall / (precision + recall)
|
| 570 |
except ZeroDivisionError:
|
| 571 |
-
return
|
| 572 |
-
|
| 573 |
-
def compute(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 574 |
# in case reference are List[List[List[Any]]] and predictions are List[List[Any]]:
|
| 575 |
if isinstance(references[0], list) and isinstance(references[0][0], list):
|
| 576 |
references = [element[0] for element in references]
|
| 577 |
|
| 578 |
assert len(references) == len(predictions), (
|
| 579 |
-
f"references size ({len(references)})"
|
|
|
|
| 580 |
)
|
| 581 |
if self.classes is None:
|
| 582 |
-
classes =
|
|
|
|
|
|
|
| 583 |
else:
|
| 584 |
classes = self.classes
|
| 585 |
-
groups_statistics =
|
| 586 |
for references_batch, predictions_batch in zip(references, predictions):
|
| 587 |
grouped_references = self.group_elements(references_batch)
|
| 588 |
grouped_predictions = self.group_elements(predictions_batch)
|
| 589 |
-
all_groups = set(grouped_references.keys()).union(
|
|
|
|
|
|
|
| 590 |
for group in all_groups:
|
| 591 |
if group not in groups_statistics:
|
| 592 |
groups_statistics[group] = {
|
|
@@ -608,9 +958,11 @@ class CustomF1(GlobalMetric):
|
|
| 608 |
groups_statistics[group]["recall_numerator"] += rn
|
| 609 |
groups_statistics[group]["recall_denominator"] += rd
|
| 610 |
|
| 611 |
-
result = {}
|
| 612 |
num_of_unknown_class_predictions = 0
|
| 613 |
pn_total = pd_total = rn_total = rd_total = 0
|
|
|
|
|
|
|
|
|
|
| 614 |
for group in groups_statistics.keys():
|
| 615 |
pn, pd, rn, rd = (
|
| 616 |
groups_statistics[group]["precision_numerator"],
|
|
@@ -618,22 +970,45 @@ class CustomF1(GlobalMetric):
|
|
| 618 |
groups_statistics[group]["recall_numerator"],
|
| 619 |
groups_statistics[group]["recall_denominator"],
|
| 620 |
)
|
| 621 |
-
pn_total, pd_total, rn_total, rd_total =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 622 |
if group in classes:
|
| 623 |
-
|
|
|
|
|
|
|
| 624 |
else:
|
| 625 |
num_of_unknown_class_predictions += pd
|
|
|
|
|
|
|
| 626 |
try:
|
| 627 |
-
result["f1_macro"] = sum(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 628 |
except ZeroDivisionError:
|
| 629 |
-
result["f1_macro"] =
|
|
|
|
|
|
|
| 630 |
|
| 631 |
amount_of_predictions = pd_total
|
| 632 |
if amount_of_predictions == 0:
|
| 633 |
result["in_classes_support"] = 1.0
|
| 634 |
else:
|
| 635 |
-
result["in_classes_support"] =
|
| 636 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 637 |
return result
|
| 638 |
|
| 639 |
|
|
@@ -668,11 +1043,20 @@ class TokenOverlap(InstanceMetric):
|
|
| 668 |
reduction_map = {"mean": ["f1", "precision", "recall"]}
|
| 669 |
main_score = "f1"
|
| 670 |
|
| 671 |
-
def compute(
|
| 672 |
-
|
| 673 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 674 |
|
| 675 |
-
def _compute_single_ref(
|
|
|
|
|
|
|
| 676 |
prediction_tokens = normalize_answer(prediction).split()
|
| 677 |
reference_tokens = normalize_answer(reference).split()
|
| 678 |
common = Counter(prediction_tokens) & Counter(reference_tokens)
|
|
@@ -713,7 +1097,12 @@ class SentenceBert(BulkInstanceMetric):
|
|
| 713 |
self.model = SentenceTransformer(self.model_name)
|
| 714 |
self.util = sbert_util
|
| 715 |
|
| 716 |
-
def compute(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 717 |
scores = []
|
| 718 |
|
| 719 |
# we are in a multi-reference case (each prediction may have multiple
|
|
@@ -728,7 +1117,9 @@ class SentenceBert(BulkInstanceMetric):
|
|
| 728 |
|
| 729 |
# compute s-bert embeddings
|
| 730 |
preds_emb = self.model.encode(predictions)
|
| 731 |
-
refs_emb = self.model.encode(
|
|
|
|
|
|
|
| 732 |
|
| 733 |
# for each candidate, pick the reference with the highest score
|
| 734 |
for pred_emb, ref_group_bounds in zip(preds_emb, ref_group_boundaries):
|
|
@@ -746,11 +1137,17 @@ class Reward(BulkInstanceMetric):
|
|
| 746 |
model_name: str
|
| 747 |
|
| 748 |
def prepare(self):
|
|
|
|
| 749 |
from transformers import pipeline
|
| 750 |
|
| 751 |
self.pipe = pipeline("text-classification", model=self.model_name)
|
| 752 |
|
| 753 |
-
def compute(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 754 |
# treat the references as the questions and the predictions as answers
|
| 755 |
# assume a single reference
|
| 756 |
questions = [refs[0] for refs in references]
|
|
@@ -762,3 +1159,67 @@ class Reward(BulkInstanceMetric):
|
|
| 762 |
# compute the metric
|
| 763 |
# add function_to_apply="none" to disable sigmoid
|
| 764 |
return self.pipe(inputs, batch_size=self.batch_size)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import logging
|
| 2 |
import re
|
| 3 |
import string
|
| 4 |
import uuid
|
| 5 |
+
from abc import abstractmethod
|
| 6 |
from collections import Counter
|
| 7 |
from dataclasses import field
|
| 8 |
from typing import Any, Dict, Generator, List, Optional, Tuple
|
| 9 |
|
| 10 |
import evaluate
|
| 11 |
import numpy
|
| 12 |
+
import numpy as np
|
| 13 |
+
from scipy.stats import bootstrap
|
| 14 |
|
| 15 |
+
from .artifact import Artifact
|
| 16 |
from .dataclass import InternalField, OptionalField
|
| 17 |
from .operator import (
|
| 18 |
MultiStreamOperator,
|
|
|
|
| 21 |
StreamInstanceOperator,
|
| 22 |
)
|
| 23 |
from .operators import CopyFields
|
| 24 |
+
from .random_utils import get_seed
|
| 25 |
from .stream import MultiStream, Stream
|
| 26 |
|
| 27 |
+
# The default number of resamples used to estimate the confidence intervals
|
| 28 |
+
# global and instances metrics. Use None to disable confidence interval computation by default.
|
| 29 |
+
_N_RESAMPLES_DEFAULT_FOR_INSTANCE_METRICS = 1000
|
| 30 |
+
_N_RESAMPLES_DEFAULT_FOR_GLOBAL_METRICS = 100
|
| 31 |
+
|
| 32 |
|
| 33 |
def abstract_factory():
|
| 34 |
return {}
|
|
|
|
| 41 |
class UpdateStream(StreamInstanceOperator):
|
| 42 |
update: dict
|
| 43 |
|
| 44 |
+
def process(
|
| 45 |
+
self, instance: Dict[str, Any], stream_name: Optional[str] = None
|
| 46 |
+
) -> Dict[str, Any]:
|
| 47 |
instance.update(self.update)
|
| 48 |
return instance
|
| 49 |
|
| 50 |
|
| 51 |
# TODO: currently we have two classes with this name. metric.Metric and matrics.Metric...
|
| 52 |
+
class Metric(Artifact):
|
| 53 |
@property
|
| 54 |
@abstractmethod
|
| 55 |
def main_score(self):
|
| 56 |
pass
|
| 57 |
|
| 58 |
|
| 59 |
+
class MetricWithConfidenceInterval(Metric):
|
| 60 |
+
# The number of resamples used to estimate the confidence intervals of this metric.
|
| 61 |
+
# Use None to disable confidence interval computation.
|
| 62 |
+
n_resamples: int = None
|
| 63 |
+
confidence_level: float = 0.95
|
| 64 |
+
|
| 65 |
+
@staticmethod
|
| 66 |
+
def new_random_generator():
|
| 67 |
+
# The np.random.default_rng expects a 32-bit int, while hash(..) can return a 64-bit integer.
|
| 68 |
+
# So use '& MAX_32BIT' to get a 32-bit seed.
|
| 69 |
+
_max_32bit = 2**32 - 1
|
| 70 |
+
return np.random.default_rng(hash(get_seed()) & _max_32bit)
|
| 71 |
+
|
| 72 |
+
def disable_confidence_interval_calculation(self):
|
| 73 |
+
self.n_resamples = None
|
| 74 |
+
|
| 75 |
+
def _can_compute_confidence_intervals(self, num_predictions):
|
| 76 |
+
return (
|
| 77 |
+
self.n_resamples is not None
|
| 78 |
+
and self.n_resamples > 1
|
| 79 |
+
and num_predictions > 1
|
| 80 |
+
)
|
| 81 |
+
|
| 82 |
+
def score_based_confidence_interval(self, score_names: List[str], instances):
|
| 83 |
+
"""Compute confidence intervals based on existing scores, already computed on the input instances.
|
| 84 |
+
|
| 85 |
+
score_names: List[str]
|
| 86 |
+
Compute a confidence interval for each score_name from this list.
|
| 87 |
+
instances:
|
| 88 |
+
The instances for which the confidence intervals are computed.
|
| 89 |
+
"""
|
| 90 |
+
from statistics import mean
|
| 91 |
+
|
| 92 |
+
result = {}
|
| 93 |
+
|
| 94 |
+
if not self._can_compute_confidence_intervals(num_predictions=len(instances)):
|
| 95 |
+
return result
|
| 96 |
+
|
| 97 |
+
for score_name in score_names:
|
| 98 |
+
scores = [
|
| 99 |
+
instance["score"]["instance"][score_name] for instance in instances
|
| 100 |
+
]
|
| 101 |
+
ci = bootstrap(
|
| 102 |
+
(scores,),
|
| 103 |
+
statistic=mean,
|
| 104 |
+
n_resamples=self.n_resamples,
|
| 105 |
+
confidence_level=self.confidence_level,
|
| 106 |
+
random_state=self.new_random_generator(),
|
| 107 |
+
).confidence_interval
|
| 108 |
+
result[f"{score_name}_ci_low"] = ci.low
|
| 109 |
+
result[f"{score_name}_ci_high"] = ci.high
|
| 110 |
+
if score_name == self.main_score:
|
| 111 |
+
result["score_ci_low"] = ci.low
|
| 112 |
+
result["score_ci_high"] = ci.high
|
| 113 |
+
return result
|
| 114 |
+
|
| 115 |
+
def compute_global_confidence_intervals(
|
| 116 |
+
self, references, predictions, additional_inputs, score_name
|
| 117 |
+
):
|
| 118 |
+
"""Computed confidence intervals for a set of references and predictions."""
|
| 119 |
+
random_gen = self.new_random_generator()
|
| 120 |
+
|
| 121 |
+
def statistic(arr, axis):
|
| 122 |
+
# arr is a 2d array where each row is a resampling, so we
|
| 123 |
+
# iterate over the rows and compute the metric on each resampling
|
| 124 |
+
def metric(sample_refs, sample_preds, sample_additional_inputs):
|
| 125 |
+
try:
|
| 126 |
+
return self._compute(
|
| 127 |
+
references=sample_refs,
|
| 128 |
+
predictions=sample_preds,
|
| 129 |
+
additional_inputs=sample_additional_inputs,
|
| 130 |
+
)["score"]
|
| 131 |
+
except Exception as e:
|
| 132 |
+
# this happens in edge cases, for example, when the sampling creates a
|
| 133 |
+
# sample where all strings are empty and this fails bleu.
|
| 134 |
+
logging.info(f"Warning in {self.__class__.__name__}", e)
|
| 135 |
+
return np.nan
|
| 136 |
+
|
| 137 |
+
scores = numpy.apply_along_axis(
|
| 138 |
+
lambda x: metric(
|
| 139 |
+
sample_refs=[references[i] for i in x],
|
| 140 |
+
sample_preds=[predictions[i] for i in x],
|
| 141 |
+
sample_additional_inputs=[additional_inputs[i] for i in x],
|
| 142 |
+
),
|
| 143 |
+
axis=axis,
|
| 144 |
+
arr=arr,
|
| 145 |
+
)
|
| 146 |
+
|
| 147 |
+
# when running with bca interval (default), the statistic is called twice: with the
|
| 148 |
+
# original data and with the resamples. here we want to focus only on the latter.
|
| 149 |
+
if scores.size > 1:
|
| 150 |
+
# here we deal with samples on which the metric could not be computed. These are
|
| 151 |
+
# edge cases - for example, when the sample contains only empty strings.
|
| 152 |
+
# CI is about the distribution around the statistic (e.g. mean), it doesn't deal with
|
| 153 |
+
# cases in which the metric is not computable. Therefore, we ignore these edge cases
|
| 154 |
+
# as part of the computation of CI. The question is how to implement this policy.
|
| 155 |
+
# Options:
|
| 156 |
+
# 1. skip the errors and return a shorter array => this fails because Scipy demans
|
| 157 |
+
# this callback (i.e. the statistic() callback) to return an array of the same size
|
| 158 |
+
# as the number of resamples
|
| 159 |
+
# 2. Put np.nan for the errors => this fails because in such case the ci itself
|
| 160 |
+
# becomes np.nan. So one edge case can fail the whole CI computation.
|
| 161 |
+
# 3. Replace the errors with a sampling from the successful cases => this is what
|
| 162 |
+
# is implemented.
|
| 163 |
+
error_indices = numpy.isnan(scores)
|
| 164 |
+
n_errors = sum(error_indices)
|
| 165 |
+
if n_errors > 0:
|
| 166 |
+
new_scores = random_gen.choice(scores, n_errors, replace=True)
|
| 167 |
+
scores = scores[~error_indices]
|
| 168 |
+
scores = np.concatenate([scores, new_scores])
|
| 169 |
+
|
| 170 |
+
return scores
|
| 171 |
+
|
| 172 |
+
result = {}
|
| 173 |
+
num_predictions = len(predictions)
|
| 174 |
+
if self._can_compute_confidence_intervals(num_predictions=num_predictions):
|
| 175 |
+
identifiers = list(range(num_predictions))
|
| 176 |
+
ci = bootstrap(
|
| 177 |
+
(identifiers,),
|
| 178 |
+
statistic=statistic,
|
| 179 |
+
n_resamples=self.n_resamples,
|
| 180 |
+
confidence_level=self.confidence_level,
|
| 181 |
+
random_state=random_gen,
|
| 182 |
+
).confidence_interval
|
| 183 |
+
result["score_ci_low"] = ci.low
|
| 184 |
+
result["score_ci_high"] = ci.high
|
| 185 |
+
result[f"{score_name}_ci_low"] = ci.low
|
| 186 |
+
result[f"{score_name}_ci_high"] = ci.high
|
| 187 |
+
return result
|
| 188 |
+
|
| 189 |
+
|
| 190 |
+
class GlobalMetric(SingleStreamOperator, MetricWithConfidenceInterval):
|
| 191 |
+
"""A class for computing metrics that require joint calculations over all instances and are not just aggregation of scores of individuals instances.
|
| 192 |
+
|
| 193 |
+
For example, macro_F1 requires
|
| 194 |
+
calculation requires calculation of recall and precision per class, so all instances of the class
|
| 195 |
+
need to be considered. Accuracy, on the other hand, is just an average of the accuracy of all the instances.
|
| 196 |
+
"""
|
| 197 |
+
|
| 198 |
+
n_resamples = _N_RESAMPLES_DEFAULT_FOR_GLOBAL_METRICS
|
| 199 |
+
|
| 200 |
+
def process(self, stream: Stream, stream_name: Optional[str] = None) -> Generator:
|
| 201 |
references = []
|
| 202 |
predictions = []
|
| 203 |
+
additional_inputs = []
|
| 204 |
global_score = {}
|
| 205 |
|
| 206 |
instances = []
|
|
|
|
| 211 |
else:
|
| 212 |
global_score = instance["score"]["global"]
|
| 213 |
|
| 214 |
+
instance_references, instance_prediction = (
|
| 215 |
+
instance["references"],
|
| 216 |
+
instance["prediction"],
|
| 217 |
+
)
|
| 218 |
+
references.append(instance_references)
|
| 219 |
+
predictions.append(instance_prediction)
|
| 220 |
+
instances.append(instance)
|
| 221 |
|
| 222 |
+
instance_additional_inputs = (
|
| 223 |
+
instance["additional_inputs"] if "additional_inputs" in instance else {}
|
| 224 |
+
)
|
| 225 |
+
additional_inputs.append(instance_additional_inputs)
|
| 226 |
try:
|
| 227 |
+
instance_score = self._compute(
|
| 228 |
+
[instance_references],
|
| 229 |
+
[instance_prediction],
|
| 230 |
+
[instance_additional_inputs],
|
| 231 |
+
)
|
| 232 |
except:
|
| 233 |
instance_score = {"score": None, "score_name": self.main_score}
|
| 234 |
|
| 235 |
+
if isinstance(self.main_score, str):
|
| 236 |
instance_score[self.main_score] = None
|
| 237 |
|
| 238 |
instance["score"]["instance"].update(instance_score)
|
| 239 |
|
| 240 |
+
result = self._compute(references, predictions, additional_inputs)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 241 |
|
| 242 |
global_score.update(result)
|
| 243 |
|
| 244 |
+
score_name = global_score["score_name"]
|
| 245 |
+
confidence_interval = self.compute_global_confidence_intervals(
|
| 246 |
+
references, predictions, additional_inputs, score_name
|
| 247 |
+
)
|
| 248 |
+
global_score.update(confidence_interval)
|
| 249 |
+
|
| 250 |
for instance in instances:
|
| 251 |
instance["score"]["global"] = global_score
|
| 252 |
yield instance
|
| 253 |
|
| 254 |
+
def _compute(
|
| 255 |
+
self,
|
| 256 |
+
references: List[List[str]],
|
| 257 |
+
predictions: List[str],
|
| 258 |
+
additional_inputs: List[Any],
|
| 259 |
+
) -> dict:
|
| 260 |
+
result = self.compute(references, predictions, additional_inputs)
|
| 261 |
result["score"] = result[self.main_score]
|
| 262 |
result["score_name"] = self.main_score
|
| 263 |
return result
|
| 264 |
|
| 265 |
@abstractmethod
|
| 266 |
+
def compute(
|
| 267 |
+
self,
|
| 268 |
+
references: List[List[Any]],
|
| 269 |
+
predictions: List[Any],
|
| 270 |
+
additional_inputs: List[Any],
|
| 271 |
+
) -> dict:
|
| 272 |
pass
|
| 273 |
|
| 274 |
|
| 275 |
+
class BulkInstanceMetric(SingleStreamOperator, MetricWithConfidenceInterval):
|
| 276 |
+
n_resamples = _N_RESAMPLES_DEFAULT_FOR_INSTANCE_METRICS
|
| 277 |
main_score: str
|
| 278 |
reduction_map: Dict[str, List[str]]
|
| 279 |
|
| 280 |
implemented_reductions: List[str] = field(default_factory=lambda: ["mean"])
|
| 281 |
|
| 282 |
+
def process(self, stream: Stream, stream_name: Optional[str] = None) -> Generator:
|
| 283 |
global_score = {}
|
| 284 |
instances = []
|
| 285 |
|
| 286 |
# consume the stream
|
| 287 |
references, predictions = map(
|
| 288 |
+
list,
|
| 289 |
+
zip(
|
| 290 |
+
*[
|
| 291 |
+
(instance["references"], instance["prediction"])
|
| 292 |
+
for instance in stream
|
| 293 |
+
]
|
| 294 |
+
),
|
| 295 |
)
|
| 296 |
|
| 297 |
+
additional_inputs = [
|
| 298 |
+
instance["additional_inputs"] if "additional_inputs" in instance else {}
|
| 299 |
+
for instance in stream
|
| 300 |
+
]
|
| 301 |
+
|
| 302 |
# compute the metric over all refs and preds
|
| 303 |
+
instance_scores = self.compute(
|
| 304 |
+
references=references,
|
| 305 |
+
predictions=predictions,
|
| 306 |
+
additional_inputs=additional_inputs,
|
| 307 |
+
)
|
| 308 |
|
| 309 |
# add the score and score_name fields
|
| 310 |
for instance_score in instance_scores:
|
|
|
|
| 329 |
if reduction == "mean":
|
| 330 |
from statistics import mean
|
| 331 |
|
| 332 |
+
for field_name in fields:
|
| 333 |
+
global_score[field_name] = mean(
|
| 334 |
+
[
|
| 335 |
+
instance["score"]["instance"][field_name]
|
| 336 |
+
for instance in instances
|
| 337 |
+
]
|
| 338 |
+
)
|
| 339 |
+
if field_name == self.main_score:
|
| 340 |
+
global_score["score"] = global_score[field_name]
|
| 341 |
global_score["score_name"] = self.main_score
|
| 342 |
|
| 343 |
+
confidence_interval = self.score_based_confidence_interval(
|
| 344 |
+
score_names=[self.main_score], instances=instances
|
| 345 |
+
)
|
| 346 |
+
global_score.update(confidence_interval)
|
| 347 |
+
|
| 348 |
for instance in instances:
|
| 349 |
yield instance
|
| 350 |
|
| 351 |
@abstractmethod
|
| 352 |
+
def compute(
|
| 353 |
+
self,
|
| 354 |
+
references: List[List[Any]],
|
| 355 |
+
predictions: List[Any],
|
| 356 |
+
additional_inputs: List[Dict],
|
| 357 |
+
) -> Dict[str, Any]:
|
| 358 |
pass
|
| 359 |
|
| 360 |
|
| 361 |
+
class InstanceMetric(SingleStreamOperator, MetricWithConfidenceInterval):
|
| 362 |
+
n_resamples = _N_RESAMPLES_DEFAULT_FOR_INSTANCE_METRICS
|
| 363 |
+
|
| 364 |
implemented_reductions: List[str] = field(default_factory=lambda: ["mean"])
|
| 365 |
|
| 366 |
@property
|
|
|
|
| 368 |
def reduction_map(self) -> dict:
|
| 369 |
pass
|
| 370 |
|
| 371 |
+
def process(self, stream: Stream, stream_name: Optional[str] = None) -> Generator:
|
| 372 |
global_score = {}
|
| 373 |
instances = []
|
| 374 |
|
| 375 |
for instance in stream:
|
| 376 |
refs, pred = instance["references"], instance["prediction"]
|
| 377 |
+
additional_inputs = (
|
| 378 |
+
instance["additional_inputs"] if "additional_inputs" in instance else {}
|
| 379 |
+
)
|
| 380 |
|
| 381 |
+
instance_score = self.compute(
|
| 382 |
+
references=refs, prediction=pred, additional_inputs=additional_inputs
|
| 383 |
+
)
|
| 384 |
+
instance_score["score"] = instance_score[self.main_score]
|
| 385 |
+
instance_score["score_name"] = self.main_score
|
| 386 |
if "score" not in instance:
|
| 387 |
instance["score"] = {"global": global_score, "instance": {}}
|
| 388 |
else:
|
|
|
|
| 400 |
if reduction == "mean":
|
| 401 |
from statistics import mean
|
| 402 |
|
| 403 |
+
for field_name in fields:
|
| 404 |
+
scores = [
|
| 405 |
+
instance["score"]["instance"][field_name]
|
| 406 |
+
for instance in instances
|
| 407 |
+
]
|
| 408 |
+
global_score[field_name] = mean(scores)
|
| 409 |
+
if field_name == self.main_score:
|
| 410 |
+
global_score["score"] = global_score[field_name]
|
| 411 |
global_score["score_name"] = self.main_score
|
| 412 |
|
| 413 |
+
confidence_interval = self.score_based_confidence_interval(
|
| 414 |
+
score_names=[self.main_score], instances=instances
|
| 415 |
+
)
|
| 416 |
+
global_score.update(confidence_interval)
|
| 417 |
+
|
| 418 |
for instance in instances:
|
| 419 |
yield instance
|
| 420 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 421 |
@abstractmethod
|
| 422 |
+
def compute(
|
| 423 |
+
self, references: List[Any], prediction: Any, additional_inputs: Dict
|
| 424 |
+
) -> dict:
|
| 425 |
pass
|
| 426 |
|
| 427 |
|
|
|
|
| 431 |
metric = "squad"
|
| 432 |
|
| 433 |
def prepare(self):
|
| 434 |
+
super().prepare()
|
| 435 |
self._metric = evaluate.load(self.metric)
|
| 436 |
|
| 437 |
+
def compute(
|
| 438 |
+
self,
|
| 439 |
+
references: List[List[str]],
|
| 440 |
+
predictions: List[str],
|
| 441 |
+
additional_inputs: List[Dict],
|
| 442 |
+
) -> dict:
|
| 443 |
ids = [str(uuid.uuid4()).replace("-", "") for _ in range(len(predictions))]
|
| 444 |
formatted_predictions = [
|
| 445 |
+
{"prediction_text": prediction, "id": ids[i]}
|
| 446 |
+
for i, prediction in enumerate(predictions)
|
| 447 |
]
|
| 448 |
formatted_references = [
|
| 449 |
{"answers": {"answer_start": [-1], "text": reference}, "id": ids[i]}
|
| 450 |
for i, reference in enumerate(references)
|
| 451 |
]
|
| 452 |
|
| 453 |
+
return self._metric.compute(
|
| 454 |
+
predictions=formatted_predictions,
|
| 455 |
+
references=formatted_references,
|
| 456 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 457 |
|
| 458 |
|
| 459 |
+
class Accuracy(InstanceMetric):
|
| 460 |
reduction_map = {"mean": ["accuracy"]}
|
| 461 |
main_score = "accuracy"
|
| 462 |
|
| 463 |
+
def compute(
|
| 464 |
+
self, references: List[Any], prediction: Any, additional_inputs: List[Dict]
|
| 465 |
+
) -> dict:
|
| 466 |
+
result = {
|
| 467 |
+
self.main_score: float(
|
| 468 |
+
str(prediction) in [str(reference) for reference in references]
|
| 469 |
+
)
|
| 470 |
+
}
|
| 471 |
+
result["score"] = result[self.main_score]
|
| 472 |
+
result["score_name"] = self.main_score
|
| 473 |
+
return result
|
| 474 |
|
| 475 |
|
| 476 |
class MetricPipeline(MultiStreamOperator, Metric):
|
| 477 |
main_score: str = None
|
| 478 |
preprocess_steps: Optional[List[StreamingOperator]] = field(default_factory=list)
|
| 479 |
+
postpreprocess_steps: Optional[List[StreamingOperator]] = field(
|
| 480 |
+
default_factory=list
|
| 481 |
+
)
|
| 482 |
metric: Metric = None
|
| 483 |
|
| 484 |
def verify(self):
|
|
|
|
| 500 |
multi_stream = self.metric(multi_stream)
|
| 501 |
for step in self.postpreprocess_steps:
|
| 502 |
multi_stream = step(multi_stream)
|
| 503 |
+
return self.prepare_score(multi_stream)
|
|
|
|
| 504 |
|
| 505 |
|
| 506 |
class HuggingfaceMetric(GlobalMetric):
|
| 507 |
hf_metric_name: str = None
|
| 508 |
main_score: str = None # The main score returned from the metric
|
| 509 |
+
hf_main_score: str = (
|
| 510 |
+
None # USed if HF returns uses a different score name for the main metric
|
| 511 |
+
)
|
| 512 |
|
| 513 |
scale: float = 1.0 # optional scaling of main results
|
| 514 |
scaled_fields: list = None
|
|
|
|
| 517 |
|
| 518 |
def prepare(self):
|
| 519 |
super().prepare()
|
| 520 |
+
self.metric = evaluate.load(
|
| 521 |
+
self.hf_metric_name, experiment_id=self.experiment_id
|
| 522 |
+
)
|
| 523 |
|
| 524 |
+
def compute(
|
| 525 |
+
self,
|
| 526 |
+
references: List[List[Any]],
|
| 527 |
+
predictions: List[Any],
|
| 528 |
+
additional_inputs: List[Dict],
|
| 529 |
+
) -> dict:
|
| 530 |
+
result = self.metric.compute(
|
| 531 |
+
predictions=predictions, references=references, **self.hf_compute_args
|
| 532 |
+
)
|
| 533 |
if self.hf_main_score:
|
| 534 |
result[self.main_score] = result[self.hf_main_score]
|
| 535 |
del result[self.hf_main_score]
|
| 536 |
if self.scale != 1.0:
|
| 537 |
+
assert (
|
| 538 |
+
self.scaled_fields is not None
|
| 539 |
+
), f"Scaling factor was set to {self.scale}, but no fields specified"
|
| 540 |
for key in self.scaled_fields:
|
| 541 |
+
assert (
|
| 542 |
+
key in result
|
| 543 |
+
), f"Trying to scale field '{key}' which is not in results of metrics: {result}"
|
| 544 |
if isinstance(result[key], list):
|
| 545 |
assert all(
|
| 546 |
isinstance(v, float) for v in result[key]
|
| 547 |
), "Not all scaled field '{key}' values are floats: {result[key]}"
|
| 548 |
result[key] = [v / self.scale for v in result[key]]
|
| 549 |
else:
|
| 550 |
+
assert isinstance(
|
| 551 |
+
result[key], float
|
| 552 |
+
), "Scaled field '{key}' is not float: {result[key]}"
|
| 553 |
result[key] /= self.scale
|
| 554 |
return result
|
| 555 |
|
|
|
|
| 564 |
super().prepare()
|
| 565 |
self.metric = evaluate.load(self.hf_metric_name)
|
| 566 |
|
| 567 |
+
def compute(
|
| 568 |
+
self,
|
| 569 |
+
references: List[List[str]],
|
| 570 |
+
predictions: List[str],
|
| 571 |
+
additional_inputs: List[Any],
|
| 572 |
+
) -> List[Dict[str, Any]]:
|
| 573 |
+
scores = self.metric.compute(
|
| 574 |
+
predictions=predictions, references=references, **self.hf_compute_args
|
| 575 |
+
)
|
| 576 |
|
| 577 |
# convert dict of lists to a list of dicts
|
| 578 |
results = [{} for _ in range(len(scores[self.hf_metric_fields[0]]))]
|
|
|
|
| 591 |
metric = "f1"
|
| 592 |
|
| 593 |
def prepare(self):
|
| 594 |
+
super().prepare()
|
| 595 |
self._metric = evaluate.load(self.metric)
|
| 596 |
|
| 597 |
def get_str_id(self, str):
|
|
|
|
| 601 |
self.id_to_str[id] = str
|
| 602 |
return self.str_to_id[str]
|
| 603 |
|
| 604 |
+
def compute(
|
| 605 |
+
self,
|
| 606 |
+
references: List[List[str]],
|
| 607 |
+
predictions: List[str],
|
| 608 |
+
additional_inputs: List[Dict],
|
| 609 |
+
) -> dict:
|
| 610 |
assert all(
|
| 611 |
len(reference) == 1 for reference in references
|
| 612 |
), "Only a single reference per prediction is allowed in F1 metric"
|
| 613 |
self.str_to_id = {}
|
| 614 |
self.id_to_str = {}
|
| 615 |
+
formatted_references = [
|
| 616 |
+
self.get_str_id(reference[0]) for reference in references
|
| 617 |
+
]
|
| 618 |
+
self.str_to_id.keys()
|
| 619 |
+
formatted_predictions = [
|
| 620 |
+
self.get_str_id(prediction) for prediction in predictions
|
| 621 |
+
]
|
| 622 |
labels = list(set(formatted_references))
|
| 623 |
result = self._metric.compute(
|
| 624 |
+
predictions=formatted_predictions,
|
| 625 |
+
references=formatted_references,
|
| 626 |
+
labels=labels,
|
| 627 |
+
average=self.average,
|
| 628 |
)
|
| 629 |
if isinstance(result["f1"], numpy.ndarray):
|
| 630 |
from statistics import mean
|
|
|
|
| 646 |
main_score = "f1_macro"
|
| 647 |
|
| 648 |
|
| 649 |
+
class F1Weighted(F1):
|
| 650 |
+
main_score = "f1_weighted"
|
| 651 |
+
average = "weighted"
|
| 652 |
+
|
| 653 |
+
|
| 654 |
class F1MultiLabel(GlobalMetric):
|
| 655 |
_metric = None
|
| 656 |
main_score = "f1_macro"
|
|
|
|
| 658 |
classes_to_ignore = ["none"]
|
| 659 |
|
| 660 |
def prepare(self):
|
| 661 |
+
super().prepare()
|
| 662 |
self._metric = evaluate.load("f1", "multilabel")
|
| 663 |
|
| 664 |
def add_str_to_id(self, str):
|
| 665 |
+
if str not in self.str_to_id:
|
| 666 |
id = len(self.str_to_id)
|
| 667 |
self.str_to_id[str] = id
|
| 668 |
self.id_to_str[id] = str
|
|
|
|
| 675 |
result[self.str_to_id[label]] = 1
|
| 676 |
return result
|
| 677 |
|
| 678 |
+
def compute(
|
| 679 |
+
self,
|
| 680 |
+
references: List[List[str]],
|
| 681 |
+
predictions: List[List[str]],
|
| 682 |
+
additional_inputs: List[Dict],
|
| 683 |
+
) -> dict:
|
| 684 |
self.str_to_id = {}
|
| 685 |
self.id_to_str = {}
|
| 686 |
assert all(
|
| 687 |
len(reference) == 1 for reference in references
|
| 688 |
+
), "Only a single reference per prediction is allowed in F1 multi label metric"
|
| 689 |
+
|
| 690 |
references = [reference[0] for reference in references]
|
| 691 |
+
|
| 692 |
+
for reference in references:
|
| 693 |
+
assert isinstance(
|
| 694 |
+
references, list
|
| 695 |
+
), f"Each reference is expected to list of strings in F1 multi label metric. Received reference: {reference}"
|
| 696 |
+
|
| 697 |
+
for prediction in predictions:
|
| 698 |
+
assert isinstance(
|
| 699 |
+
prediction, list
|
| 700 |
+
), f"Each prediction is expected to list of strings in F1 multi label metric. Received prediction: {prediction}"
|
| 701 |
+
|
| 702 |
labels = [
|
| 703 |
+
lbl
|
| 704 |
+
for lbl in {label for reference in references for label in reference}
|
| 705 |
+
if lbl not in self.classes_to_ignore
|
| 706 |
]
|
| 707 |
# if no classes are left then F1 is not defined
|
| 708 |
# (e.g. only "none" in references)
|
|
|
|
| 711 |
|
| 712 |
for label in labels:
|
| 713 |
self.add_str_to_id(label)
|
| 714 |
+
formatted_references = [
|
| 715 |
+
self.get_one_hot_vector(reference) for reference in references
|
| 716 |
+
]
|
| 717 |
+
formatted_predictions = [
|
| 718 |
+
self.get_one_hot_vector(prediction) for prediction in predictions
|
| 719 |
+
]
|
| 720 |
|
| 721 |
# There is odd behavior in scikit-learn that when passing a one-hot vector with a single
|
| 722 |
# element, it is treated a class identifier. Therefore, we add labels=[1] to limit to only
|
|
|
|
| 767 |
sent_split_newline: bool = True
|
| 768 |
|
| 769 |
def prepare(self):
|
|
|
|
|
|
|
| 770 |
super().prepare()
|
| 771 |
+
|
| 772 |
+
self.hf_compute_args.update(
|
| 773 |
+
{"use_aggregator": self.use_aggregator, "rouge_types": self.rouge_types}
|
| 774 |
+
)
|
| 775 |
+
|
| 776 |
import nltk
|
| 777 |
|
| 778 |
nltk.download("punkt")
|
| 779 |
self.sent_tokenize = nltk.sent_tokenize
|
| 780 |
|
| 781 |
+
def compute(self, references, predictions, additional_inputs: List[Dict]):
|
| 782 |
if self.sent_split_newline:
|
| 783 |
+
predictions = [
|
| 784 |
+
"\n".join(self.sent_tokenize(prediction.strip()))
|
| 785 |
+
for prediction in predictions
|
| 786 |
+
]
|
| 787 |
+
references = [
|
| 788 |
+
["\n".join(self.sent_tokenize(r.strip())) for r in reference]
|
| 789 |
+
for reference in references
|
| 790 |
+
]
|
| 791 |
+
return super().compute(references, predictions, additional_inputs)
|
| 792 |
+
|
| 793 |
+
|
| 794 |
+
# Computes char edit distance, ignoring whitespace
|
| 795 |
+
class CharEditDistanceAccuracy(InstanceMetric):
|
| 796 |
reduction_map = {"mean": ["char_edit_dist_accuracy"]}
|
| 797 |
main_score = "char_edit_dist_accuracy"
|
| 798 |
|
| 799 |
def prepare(self):
|
| 800 |
+
super().prepare()
|
| 801 |
import editdistance
|
| 802 |
|
| 803 |
self.eval = editdistance.eval
|
| 804 |
|
| 805 |
+
def compute(
|
| 806 |
+
self, references, prediction: str, additional_inputs: List[Dict]
|
| 807 |
+
) -> dict:
|
| 808 |
+
assert (
|
| 809 |
+
len(references) == 1
|
| 810 |
+
), f"Expected only one reference , but received: {references}"
|
| 811 |
+
|
| 812 |
formatted_prediction = "".join(prediction.split())
|
| 813 |
+
formatted_reference = "".join(references[0].split())
|
| 814 |
max_length = max(len(formatted_reference), len(formatted_prediction))
|
| 815 |
if max_length == 0:
|
| 816 |
+
return {"char_edit_dist_accuracy": 0.0}
|
| 817 |
edit_dist = self.eval(formatted_reference, formatted_prediction)
|
| 818 |
return {"char_edit_dist_accuracy": (1 - edit_dist / max_length)}
|
| 819 |
|
|
|
|
| 822 |
hf_metric_name = "wer"
|
| 823 |
main_score = "wer"
|
| 824 |
|
| 825 |
+
def compute(
|
| 826 |
+
self,
|
| 827 |
+
references: List[List[str]],
|
| 828 |
+
predictions: List[str],
|
| 829 |
+
additional_inputs: List[Dict],
|
| 830 |
+
) -> dict:
|
| 831 |
assert all(
|
| 832 |
len(reference) == 1 for reference in references
|
| 833 |
), "Only single reference per prediction is allowed in wer metric"
|
| 834 |
formatted_references = [reference[0] for reference in references]
|
| 835 |
+
result = self.metric.compute(
|
| 836 |
+
predictions=predictions, references=formatted_references
|
| 837 |
+
)
|
| 838 |
return {self.main_score: result}
|
| 839 |
|
| 840 |
|
|
|
|
| 849 |
self.str_to_id[str] = id
|
| 850 |
return self.str_to_id[str]
|
| 851 |
|
| 852 |
+
def compute(
|
| 853 |
+
self,
|
| 854 |
+
references: List[List[str]],
|
| 855 |
+
predictions: List[str],
|
| 856 |
+
additional_inputs: List[Dict],
|
| 857 |
+
) -> dict:
|
| 858 |
+
formatted_references = [
|
| 859 |
+
self.get_str_id(reference[0]) for reference in references
|
| 860 |
+
]
|
| 861 |
+
formatted_predictions = [
|
| 862 |
+
self.get_str_id(prediction) for prediction in predictions
|
| 863 |
+
]
|
| 864 |
+
return self.metric.compute(
|
| 865 |
+
predictions=formatted_predictions, references=formatted_references
|
| 866 |
+
)
|
| 867 |
|
| 868 |
|
| 869 |
class CustomF1(GlobalMetric):
|
| 870 |
main_score = "f1_micro"
|
| 871 |
classes = None
|
| 872 |
+
zero_division = 0.0
|
| 873 |
|
| 874 |
@abstractmethod
|
| 875 |
def get_element_group(self, element):
|
|
|
|
| 879 |
def get_element_representation(self, element):
|
| 880 |
pass
|
| 881 |
|
| 882 |
+
def group_elements(self, elements_list):
|
| 883 |
return {
|
| 884 |
+
k: Counter(
|
| 885 |
+
[
|
| 886 |
+
self.get_element_representation(value)
|
| 887 |
+
for value in elements_list
|
| 888 |
+
if self.get_element_group(value) == k
|
| 889 |
+
]
|
| 890 |
+
)
|
| 891 |
+
for k in {self.get_element_group(e) for e in elements_list}
|
| 892 |
}
|
| 893 |
|
| 894 |
def calculate_groups_ratio(self, actual_group, total_group):
|
| 895 |
+
return sum(
|
| 896 |
+
[min(actual_group[k], total_group[k]) for k in actual_group.keys()]
|
| 897 |
+
), sum(actual_group.values())
|
| 898 |
+
|
| 899 |
+
def precision(self, pn, pd, rn, rd):
|
| 900 |
+
return self.zero_division if pn == 0 and pd == 0 else pn / pd
|
| 901 |
+
|
| 902 |
+
def recall(self, pn, pd, rn, rd):
|
| 903 |
+
return self.zero_division if rn == 0 and rd == 0 else rn / rd
|
| 904 |
|
| 905 |
def f1(self, pn, pd, rn, rd):
|
| 906 |
+
precision = self.precision(pn, pd, rn, rd)
|
| 907 |
+
recall = self.recall(pn, pd, rn, rd)
|
| 908 |
try:
|
| 909 |
return 2 * precision * recall / (precision + recall)
|
| 910 |
except ZeroDivisionError:
|
| 911 |
+
return self.zero_division
|
| 912 |
+
|
| 913 |
+
def compute(
|
| 914 |
+
self,
|
| 915 |
+
references: List[Any],
|
| 916 |
+
predictions: List[Any],
|
| 917 |
+
additional_inputs: List[Dict],
|
| 918 |
+
) -> dict:
|
| 919 |
# in case reference are List[List[List[Any]]] and predictions are List[List[Any]]:
|
| 920 |
if isinstance(references[0], list) and isinstance(references[0][0], list):
|
| 921 |
references = [element[0] for element in references]
|
| 922 |
|
| 923 |
assert len(references) == len(predictions), (
|
| 924 |
+
f"references size ({len(references)})"
|
| 925 |
+
f" doesn't mach predictions sise ({len(references)})."
|
| 926 |
)
|
| 927 |
if self.classes is None:
|
| 928 |
+
classes = {
|
| 929 |
+
self.get_element_group(e) for sublist in references for e in sublist
|
| 930 |
+
}
|
| 931 |
else:
|
| 932 |
classes = self.classes
|
| 933 |
+
groups_statistics = {}
|
| 934 |
for references_batch, predictions_batch in zip(references, predictions):
|
| 935 |
grouped_references = self.group_elements(references_batch)
|
| 936 |
grouped_predictions = self.group_elements(predictions_batch)
|
| 937 |
+
all_groups = set(grouped_references.keys()).union(
|
| 938 |
+
grouped_predictions.keys()
|
| 939 |
+
)
|
| 940 |
for group in all_groups:
|
| 941 |
if group not in groups_statistics:
|
| 942 |
groups_statistics[group] = {
|
|
|
|
| 958 |
groups_statistics[group]["recall_numerator"] += rn
|
| 959 |
groups_statistics[group]["recall_denominator"] += rd
|
| 960 |
|
|
|
|
| 961 |
num_of_unknown_class_predictions = 0
|
| 962 |
pn_total = pd_total = rn_total = rd_total = 0
|
| 963 |
+
f1_result = {}
|
| 964 |
+
recall_result = {}
|
| 965 |
+
precision_result = {}
|
| 966 |
for group in groups_statistics.keys():
|
| 967 |
pn, pd, rn, rd = (
|
| 968 |
groups_statistics[group]["precision_numerator"],
|
|
|
|
| 970 |
groups_statistics[group]["recall_numerator"],
|
| 971 |
groups_statistics[group]["recall_denominator"],
|
| 972 |
)
|
| 973 |
+
pn_total, pd_total, rn_total, rd_total = (
|
| 974 |
+
pn_total + pn,
|
| 975 |
+
pd_total + pd,
|
| 976 |
+
rn_total + rn,
|
| 977 |
+
rd_total + rd,
|
| 978 |
+
)
|
| 979 |
if group in classes:
|
| 980 |
+
f1_result[f"f1_{group}"] = self.f1(pn, pd, rn, rd)
|
| 981 |
+
recall_result[f"recall_{group}"] = self.recall(pn, pd, rn, rd)
|
| 982 |
+
precision_result[f"precision_{group}"] = self.precision(pn, pd, rn, rd)
|
| 983 |
else:
|
| 984 |
num_of_unknown_class_predictions += pd
|
| 985 |
+
|
| 986 |
+
result = f1_result
|
| 987 |
try:
|
| 988 |
+
result["f1_macro"] = sum(f1_result.values()) / len(result.keys())
|
| 989 |
+
result["recall_macro"] = sum(recall_result.values()) / len(
|
| 990 |
+
recall_result.keys()
|
| 991 |
+
)
|
| 992 |
+
result["precision_macro"] = sum(precision_result.values()) / len(
|
| 993 |
+
precision_result.keys()
|
| 994 |
+
)
|
| 995 |
except ZeroDivisionError:
|
| 996 |
+
result["f1_macro"] = self.zero_division
|
| 997 |
+
result["recall_macro"] = self.zero_division
|
| 998 |
+
result["micro_macro"] = self.zero_division
|
| 999 |
|
| 1000 |
amount_of_predictions = pd_total
|
| 1001 |
if amount_of_predictions == 0:
|
| 1002 |
result["in_classes_support"] = 1.0
|
| 1003 |
else:
|
| 1004 |
+
result["in_classes_support"] = (
|
| 1005 |
+
1.0 - num_of_unknown_class_predictions / amount_of_predictions
|
| 1006 |
+
)
|
| 1007 |
+
result["f1_micro"] = self.f1(pn_total, pd_total, rn_total, rd_total)
|
| 1008 |
+
result["recall_micro"] = self.recall(pn_total, pd_total, rn_total, rd_total)
|
| 1009 |
+
result["precision_micro"] = self.precision(
|
| 1010 |
+
pn_total, pd_total, rn_total, rd_total
|
| 1011 |
+
)
|
| 1012 |
return result
|
| 1013 |
|
| 1014 |
|
|
|
|
| 1043 |
reduction_map = {"mean": ["f1", "precision", "recall"]}
|
| 1044 |
main_score = "f1"
|
| 1045 |
|
| 1046 |
+
def compute(
|
| 1047 |
+
self, references: List[Any], prediction: Any, additional_inputs: List[Dict]
|
| 1048 |
+
) -> dict:
|
| 1049 |
+
results = [
|
| 1050 |
+
self._compute_single_ref(reference, prediction) for reference in references
|
| 1051 |
+
]
|
| 1052 |
+
return {
|
| 1053 |
+
measure: max(r[i] for r in results)
|
| 1054 |
+
for i, measure in enumerate(["precision", "recall", "f1"])
|
| 1055 |
+
}
|
| 1056 |
|
| 1057 |
+
def _compute_single_ref(
|
| 1058 |
+
self, reference: Any, prediction: Any
|
| 1059 |
+
) -> Tuple[float, float, float]:
|
| 1060 |
prediction_tokens = normalize_answer(prediction).split()
|
| 1061 |
reference_tokens = normalize_answer(reference).split()
|
| 1062 |
common = Counter(prediction_tokens) & Counter(reference_tokens)
|
|
|
|
| 1097 |
self.model = SentenceTransformer(self.model_name)
|
| 1098 |
self.util = sbert_util
|
| 1099 |
|
| 1100 |
+
def compute(
|
| 1101 |
+
self,
|
| 1102 |
+
references: List[List[Any]],
|
| 1103 |
+
predictions: List[Any],
|
| 1104 |
+
additional_inputs: List[Dict],
|
| 1105 |
+
) -> List[Any]:
|
| 1106 |
scores = []
|
| 1107 |
|
| 1108 |
# we are in a multi-reference case (each prediction may have multiple
|
|
|
|
| 1117 |
|
| 1118 |
# compute s-bert embeddings
|
| 1119 |
preds_emb = self.model.encode(predictions)
|
| 1120 |
+
refs_emb = self.model.encode(
|
| 1121 |
+
[ref for ref_group in references for ref in ref_group]
|
| 1122 |
+
)
|
| 1123 |
|
| 1124 |
# for each candidate, pick the reference with the highest score
|
| 1125 |
for pred_emb, ref_group_bounds in zip(preds_emb, ref_group_boundaries):
|
|
|
|
| 1137 |
model_name: str
|
| 1138 |
|
| 1139 |
def prepare(self):
|
| 1140 |
+
super().prepare()
|
| 1141 |
from transformers import pipeline
|
| 1142 |
|
| 1143 |
self.pipe = pipeline("text-classification", model=self.model_name)
|
| 1144 |
|
| 1145 |
+
def compute(
|
| 1146 |
+
self,
|
| 1147 |
+
references: List[List[Any]],
|
| 1148 |
+
predictions: List[Any],
|
| 1149 |
+
additional_inputs: List[Dict],
|
| 1150 |
+
) -> List[Any]:
|
| 1151 |
# treat the references as the questions and the predictions as answers
|
| 1152 |
# assume a single reference
|
| 1153 |
questions = [refs[0] for refs in references]
|
|
|
|
| 1159 |
# compute the metric
|
| 1160 |
# add function_to_apply="none" to disable sigmoid
|
| 1161 |
return self.pipe(inputs, batch_size=self.batch_size)
|
| 1162 |
+
|
| 1163 |
+
|
| 1164 |
+
class NDCG(GlobalMetric):
|
| 1165 |
+
"""Normalized Discounted Cumulative Gain: measures the quality of ranking with respect to ground truth ranking scores.
|
| 1166 |
+
|
| 1167 |
+
As this measures ranking, it is a global metric that can only be calculated over groups of instances. In the
|
| 1168 |
+
common use case where the instances are grouped by different queries, i.e., where the task is to provide a
|
| 1169 |
+
relevance score for a search result w.r.t. a query, an nDCG score is calculated per each query (specified in the
|
| 1170 |
+
"query" input field of an instance) and the final score is the average across all queries.
|
| 1171 |
+
Note that the expected scores are relevance scores (i.e., higher is better) and not rank indices. The absolute
|
| 1172 |
+
value of the scores is only meaningful for the reference scores; for the predictions, only the ordering of the
|
| 1173 |
+
scores affects the outcome - for example, predicted scores of [80, 1, 2] and [0.8, 0.5, 0.6] will receive
|
| 1174 |
+
the same nDCG score w.r.t. a given set of reference scores.
|
| 1175 |
+
|
| 1176 |
+
See also https://en.wikipedia.org/wiki/Discounted_cumulative_gain
|
| 1177 |
+
"""
|
| 1178 |
+
|
| 1179 |
+
main_score = "nDCG"
|
| 1180 |
+
|
| 1181 |
+
def prepare(self):
|
| 1182 |
+
from sklearn.metrics import ndcg_score
|
| 1183 |
+
|
| 1184 |
+
super().prepare()
|
| 1185 |
+
self.eval = ndcg_score
|
| 1186 |
+
|
| 1187 |
+
def compute(
|
| 1188 |
+
self,
|
| 1189 |
+
references: List[List[Any]],
|
| 1190 |
+
predictions: List[Any],
|
| 1191 |
+
additional_inputs: List[Any],
|
| 1192 |
+
) -> dict:
|
| 1193 |
+
from collections import defaultdict
|
| 1194 |
+
from statistics import mean
|
| 1195 |
+
|
| 1196 |
+
query_to_predictions_and_references = defaultdict(lambda: [[], []])
|
| 1197 |
+
for reference, pred, inputs_dict in zip(
|
| 1198 |
+
references, predictions, additional_inputs
|
| 1199 |
+
):
|
| 1200 |
+
query = inputs_dict.get("query")
|
| 1201 |
+
query_to_predictions_and_references[query][0].append(pred)
|
| 1202 |
+
query_to_predictions_and_references[query][1].append(reference)
|
| 1203 |
+
|
| 1204 |
+
scores = []
|
| 1205 |
+
for q_predictions, q_references in query_to_predictions_and_references.values():
|
| 1206 |
+
if len(q_references) == 1:
|
| 1207 |
+
continue
|
| 1208 |
+
|
| 1209 |
+
if (
|
| 1210 |
+
None in q_predictions
|
| 1211 |
+
): # model failed to predict numeric scores for some instances
|
| 1212 |
+
numeric_predictions = [
|
| 1213 |
+
pred for pred in q_predictions if pred is not None
|
| 1214 |
+
]
|
| 1215 |
+
if len(numeric_predictions) <= 1: # no meaningful ranking
|
| 1216 |
+
scores.append(0)
|
| 1217 |
+
continue
|
| 1218 |
+
# consider non-numeric model predictions as ranked last
|
| 1219 |
+
min_value = min(numeric_predictions)
|
| 1220 |
+
q_predictions = [
|
| 1221 |
+
1 + (pred - min_value) if pred is not None else 0
|
| 1222 |
+
for pred in q_predictions
|
| 1223 |
+
]
|
| 1224 |
+
scores.append(self.eval([q_references], [q_predictions]))
|
| 1225 |
+
return {self.main_score: mean(scores) if len(scores) > 0 else np.nan}
|