Upload operators.py with huggingface_hub
Browse files- operators.py +82 -34
operators.py
CHANGED
|
@@ -61,6 +61,7 @@ from .operator import (
|
|
| 61 |
MultiStream,
|
| 62 |
MultiStreamOperator,
|
| 63 |
PagedStreamOperator,
|
|
|
|
| 64 |
SingleStreamOperator,
|
| 65 |
SingleStreamReducer,
|
| 66 |
StreamingOperator,
|
|
@@ -880,6 +881,56 @@ class TakeByField(StreamInstanceOperator):
|
|
| 880 |
return instance
|
| 881 |
|
| 882 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 883 |
class CopyFields(FieldOperator):
|
| 884 |
"""Copies values from specified fields to specified fields.
|
| 885 |
|
|
@@ -1041,24 +1092,23 @@ class ApplyOperatorsField(StreamInstanceOperator, ArtifactFetcherMixin):
|
|
| 1041 |
"""Applies value operators to each instance in a stream based on specified fields.
|
| 1042 |
|
| 1043 |
Args:
|
| 1044 |
-
|
| 1045 |
-
|
| 1046 |
-
|
| 1047 |
-
|
| 1048 |
-
one after the other, for the processing.
|
| 1049 |
default_operators (List[str]): A list of default operators to be used if no operators are found in the instance.
|
| 1050 |
|
| 1051 |
Example:
|
| 1052 |
-
when instance {"
|
| 1053 |
-
operator
|
| 1054 |
-
|
|
|
|
|
|
|
| 1055 |
|
| 1056 |
"""
|
| 1057 |
|
| 1058 |
-
inputs_fields: List[str]
|
| 1059 |
operators_field: str
|
| 1060 |
default_operators: List[str] = None
|
| 1061 |
-
fields_to_treat_as_list: List[str] = NonPositionalField(default_factory=list)
|
| 1062 |
|
| 1063 |
def process(
|
| 1064 |
self, instance: Dict[str, Any], stream_name: Optional[str] = None
|
|
@@ -1072,17 +1122,11 @@ class ApplyOperatorsField(StreamInstanceOperator, ArtifactFetcherMixin):
|
|
| 1072 |
|
| 1073 |
if isinstance(operator_names, str):
|
| 1074 |
operator_names = [operator_names]
|
|
|
|
| 1075 |
|
| 1076 |
-
|
| 1077 |
-
|
| 1078 |
-
|
| 1079 |
-
value = instance[field_name]
|
| 1080 |
-
if field_name in self.fields_to_treat_as_list:
|
| 1081 |
-
instance[field_name] = [operator.process(v) for v in value]
|
| 1082 |
-
else:
|
| 1083 |
-
instance[field_name] = operator.process(value)
|
| 1084 |
-
|
| 1085 |
-
return instance
|
| 1086 |
|
| 1087 |
|
| 1088 |
class FilterByCondition(SingleStreamOperator):
|
|
@@ -1283,7 +1327,7 @@ class ExtractMostCommonFieldValues(MultiStreamOperator):
|
|
| 1283 |
|
| 1284 |
def process(self, multi_stream: MultiStream) -> MultiStream:
|
| 1285 |
stream = multi_stream[self.stream_name]
|
| 1286 |
-
|
| 1287 |
for instance in stream:
|
| 1288 |
if (not isinstance(instance[self.field], list)) and (
|
| 1289 |
self.process_every_value is True
|
|
@@ -1295,21 +1339,21 @@ class ExtractMostCommonFieldValues(MultiStreamOperator):
|
|
| 1295 |
self.process_every_value is False
|
| 1296 |
):
|
| 1297 |
# either not a list, or is a list but process_every_value == False : view contetns of 'field' as one entity whose occurrences are counted.
|
| 1298 |
-
|
| 1299 |
-
(*instance[self.field],)
|
| 1300 |
if isinstance(instance[self.field], list)
|
| 1301 |
-
else instance[self.field]
|
| 1302 |
) # convert to a tuple if list, to enable the use of Counter which would not accept
|
| 1303 |
-
# a list as an entity to count its occurrences
|
| 1304 |
else:
|
| 1305 |
# content of 'field' is a list and process_every_value == True: add one occurrence on behalf of each individual value
|
| 1306 |
-
|
| 1307 |
-
counter
|
| 1308 |
-
all_values
|
| 1309 |
-
) # here all_values is a list of individual values, or tupples. Hence, Counter is feasible
|
| 1310 |
values_and_counts = counter.most_common()
|
| 1311 |
if self.overall_top_frequency_percent < 100:
|
| 1312 |
-
top_frequency =
|
|
|
|
|
|
|
| 1313 |
sum_counts = 0
|
| 1314 |
for _i, p in enumerate(values_and_counts):
|
| 1315 |
sum_counts += p[1]
|
|
@@ -1317,7 +1361,7 @@ class ExtractMostCommonFieldValues(MultiStreamOperator):
|
|
| 1317 |
break
|
| 1318 |
values_and_counts = counter.most_common(_i + 1)
|
| 1319 |
if self.min_frequency_percent > 0:
|
| 1320 |
-
min_frequency = self.min_frequency_percent *
|
| 1321 |
while values_and_counts[-1][1] < min_frequency:
|
| 1322 |
values_and_counts.pop()
|
| 1323 |
values_to_keep = [
|
|
@@ -1712,14 +1756,18 @@ class LengthBalancer(DeterministicBalancer):
|
|
| 1712 |
|
| 1713 |
Args:
|
| 1714 |
segments_boundaries (List[int]): distinct integers sorted in increasing order, that maps a given total length
|
| 1715 |
-
|
| 1716 |
-
|
| 1717 |
|
| 1718 |
fields (Optional, List[str])
|
| 1719 |
|
| 1720 |
Example:
|
| 1721 |
when input [{"a": [1, 3], "b": 0, "id": 0}, {"a": [1, 3], "b": 0, "id": 1}, {"a": [], "b": "a", "id": 2}] is fed into
|
| 1722 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1723 |
input instances will be counted and balanced against two categories: empty total length (less than 1), and non-empty.
|
| 1724 |
"""
|
| 1725 |
|
|
|
|
| 61 |
MultiStream,
|
| 62 |
MultiStreamOperator,
|
| 63 |
PagedStreamOperator,
|
| 64 |
+
SequentialOperator,
|
| 65 |
SingleStreamOperator,
|
| 66 |
SingleStreamReducer,
|
| 67 |
StreamingOperator,
|
|
|
|
| 881 |
return instance
|
| 882 |
|
| 883 |
|
| 884 |
+
class Perturbate(FieldOperator):
|
| 885 |
+
"""Slightly perturbates the contents of 'field'. Could be Handy for imitating prediction from given target.
|
| 886 |
+
|
| 887 |
+
When task was classification, argument 'select_from' can be used to list the other potential classes, as a
|
| 888 |
+
relevant perturbation
|
| 889 |
+
"""
|
| 890 |
+
|
| 891 |
+
select_from: List[Any] = []
|
| 892 |
+
percentage_to_perturbate: int = 1 # 1 percent
|
| 893 |
+
|
| 894 |
+
def verify(self):
|
| 895 |
+
assert (
|
| 896 |
+
0 <= self.percentage_to_perturbate and self.percentage_to_perturbate <= 100
|
| 897 |
+
), f"'percentage_to_perturbate' should be in the range 0..100. Received {self.percentage_to_perturbate}"
|
| 898 |
+
|
| 899 |
+
def prepare(self):
|
| 900 |
+
super().prepare()
|
| 901 |
+
self.random_generator = new_random_generator(sub_seed="CopyWithPerturbation")
|
| 902 |
+
|
| 903 |
+
def process_value(self, value: Any) -> Any:
|
| 904 |
+
perturbate = (
|
| 905 |
+
self.random_generator.randint(1, 100) <= self.percentage_to_perturbate
|
| 906 |
+
)
|
| 907 |
+
if not perturbate:
|
| 908 |
+
return value
|
| 909 |
+
|
| 910 |
+
if value in self.select_from:
|
| 911 |
+
# 80% of cases, return a decent class, otherwise, perturbate the value itself as follows
|
| 912 |
+
if self.random_generator.random() < 0.8:
|
| 913 |
+
return self.random_generator.choice(self.select_from)
|
| 914 |
+
|
| 915 |
+
if isinstance(value, float):
|
| 916 |
+
return value * (0.5 + self.random_generator.random())
|
| 917 |
+
|
| 918 |
+
if isinstance(value, int):
|
| 919 |
+
perturb = 1 if self.random_generator.random() < 0.5 else -1
|
| 920 |
+
return value + perturb
|
| 921 |
+
|
| 922 |
+
if isinstance(value, str):
|
| 923 |
+
if len(value) < 2:
|
| 924 |
+
# give up perturbation
|
| 925 |
+
return value
|
| 926 |
+
# throw one char out
|
| 927 |
+
prefix_len = self.random_generator.randint(1, len(value) - 1)
|
| 928 |
+
return value[:prefix_len] + value[prefix_len + 1 :]
|
| 929 |
+
|
| 930 |
+
# and in any other case:
|
| 931 |
+
return value
|
| 932 |
+
|
| 933 |
+
|
| 934 |
class CopyFields(FieldOperator):
|
| 935 |
"""Copies values from specified fields to specified fields.
|
| 936 |
|
|
|
|
| 1092 |
"""Applies value operators to each instance in a stream based on specified fields.
|
| 1093 |
|
| 1094 |
Args:
|
| 1095 |
+
operators_field (str): name of the field that contains a single name, or a list of names, of the operators to be applied,
|
| 1096 |
+
one after the other, for the processing of the instance. Each operator is equipped with 'process_instance()'
|
| 1097 |
+
method.
|
| 1098 |
+
|
|
|
|
| 1099 |
default_operators (List[str]): A list of default operators to be used if no operators are found in the instance.
|
| 1100 |
|
| 1101 |
Example:
|
| 1102 |
+
when instance {"prediction": 111, "references": [222, 333] , "c": ["processors.to_string", "processors.first_character"]}
|
| 1103 |
+
is processed by operator (please look up the catalog that these operators, they are tuned to process fields "prediction" and
|
| 1104 |
+
"references"):
|
| 1105 |
+
operator = ApplyOperatorsField(operators_field="c"),
|
| 1106 |
+
the resulting instance is: {"prediction": "1", "references": ["2", "3"], "c": ["processors.to_string", "processors.first_character"]}
|
| 1107 |
|
| 1108 |
"""
|
| 1109 |
|
|
|
|
| 1110 |
operators_field: str
|
| 1111 |
default_operators: List[str] = None
|
|
|
|
| 1112 |
|
| 1113 |
def process(
|
| 1114 |
self, instance: Dict[str, Any], stream_name: Optional[str] = None
|
|
|
|
| 1122 |
|
| 1123 |
if isinstance(operator_names, str):
|
| 1124 |
operator_names = [operator_names]
|
| 1125 |
+
# otherwise , operator_names is already a list
|
| 1126 |
|
| 1127 |
+
# we now have a list of nanes of operators, each is equipped with process_instance method.
|
| 1128 |
+
operator = SequentialOperator(steps=operator_names)
|
| 1129 |
+
return operator.process_instance(instance)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1130 |
|
| 1131 |
|
| 1132 |
class FilterByCondition(SingleStreamOperator):
|
|
|
|
| 1327 |
|
| 1328 |
def process(self, multi_stream: MultiStream) -> MultiStream:
|
| 1329 |
stream = multi_stream[self.stream_name]
|
| 1330 |
+
counter = Counter()
|
| 1331 |
for instance in stream:
|
| 1332 |
if (not isinstance(instance[self.field], list)) and (
|
| 1333 |
self.process_every_value is True
|
|
|
|
| 1339 |
self.process_every_value is False
|
| 1340 |
):
|
| 1341 |
# either not a list, or is a list but process_every_value == False : view contetns of 'field' as one entity whose occurrences are counted.
|
| 1342 |
+
counter.update(
|
| 1343 |
+
[(*instance[self.field],)]
|
| 1344 |
if isinstance(instance[self.field], list)
|
| 1345 |
+
else [instance[self.field]]
|
| 1346 |
) # convert to a tuple if list, to enable the use of Counter which would not accept
|
| 1347 |
+
# a list as an hashable entity to count its occurrences
|
| 1348 |
else:
|
| 1349 |
# content of 'field' is a list and process_every_value == True: add one occurrence on behalf of each individual value
|
| 1350 |
+
counter.update(instance[self.field])
|
| 1351 |
+
# here counter counts occurrences of individual values, or tupples.
|
|
|
|
|
|
|
| 1352 |
values_and_counts = counter.most_common()
|
| 1353 |
if self.overall_top_frequency_percent < 100:
|
| 1354 |
+
top_frequency = (
|
| 1355 |
+
sum(counter.values()) * self.overall_top_frequency_percent / 100.0
|
| 1356 |
+
)
|
| 1357 |
sum_counts = 0
|
| 1358 |
for _i, p in enumerate(values_and_counts):
|
| 1359 |
sum_counts += p[1]
|
|
|
|
| 1361 |
break
|
| 1362 |
values_and_counts = counter.most_common(_i + 1)
|
| 1363 |
if self.min_frequency_percent > 0:
|
| 1364 |
+
min_frequency = self.min_frequency_percent * sum(counter.values()) / 100.0
|
| 1365 |
while values_and_counts[-1][1] < min_frequency:
|
| 1366 |
values_and_counts.pop()
|
| 1367 |
values_to_keep = [
|
|
|
|
| 1756 |
|
| 1757 |
Args:
|
| 1758 |
segments_boundaries (List[int]): distinct integers sorted in increasing order, that maps a given total length
|
| 1759 |
+
into the index of the least of them that exceeds the total length. (If none exceeds -- into one index
|
| 1760 |
+
beyond, namely, the length of segments_boudaries)
|
| 1761 |
|
| 1762 |
fields (Optional, List[str])
|
| 1763 |
|
| 1764 |
Example:
|
| 1765 |
when input [{"a": [1, 3], "b": 0, "id": 0}, {"a": [1, 3], "b": 0, "id": 1}, {"a": [], "b": "a", "id": 2}] is fed into
|
| 1766 |
+
|
| 1767 |
+
.. code-block::
|
| 1768 |
+
|
| 1769 |
+
LengthBalancer(fields=["a"], segments_boundaries=[1])
|
| 1770 |
+
|
| 1771 |
input instances will be counted and balanced against two categories: empty total length (less than 1), and non-empty.
|
| 1772 |
"""
|
| 1773 |
|