---
language:
- en
license: cc-by-nc-4.0
size_categories:
- 1M
# Datapoint
# Statistics
# Examples
# Download
For users in mainland China, try setting `export HF_ENDPOINT=https://hf-mirror.com` to successfully download the weights.
## Download the text and (compressed) image prompts with related information
```python
# Full (text and compressed image) prompts: ~13.4G
from datasets import load_dataset
ds = load_dataset("tipi2v/TIP-I2V", split='Full', streaming=True)
# Convert to Pandas format (it may be slow)
import pandas as pd
df = pd.DataFrame(ds)
```
```python
# 100k subset (text and compressed image) prompts: ~0.8G
from datasets import load_dataset
ds = load_dataset("tipi2v/TIP-I2V", split='Subset', streaming=True)
# Convert to Pandas format (it may be slow)
import pandas as pd
df = pd.DataFrame(ds)
```
```python
# 10k TIP-Eval (text and compressed image) prompts: ~0.08G
from datasets import load_dataset
ds = load_dataset("tipi2v/TIP-I2V", split='Eval', streaming=True)
# Convert to Pandas format (it may be slow)
import pandas as pd
df = pd.DataFrame(ds)
```
## Download the embeddings for text and image prompts
```python
# Embeddings for full text prompts (~21G) and image prompts (~3.5G)
from huggingface_hub import hf_hub_download
hf_hub_download(repo_id="tipi2v/TIP-I2V", filename="Embedding/Full_Text_Embedding.parquet", repo_type="dataset")
hf_hub_download(repo_id="tipi2v/TIP-I2V", filename="Embedding/Full_Image_Embedding.parquet", repo_type="dataset")
```
```python
# Embeddings for 100k subset text prompts (~1.2G) and image prompts (~0.2G)
from huggingface_hub import hf_hub_download
hf_hub_download(repo_id="tipi2v/TIP-I2V", filename="Embedding/Subset_Text_Embedding.parquet", repo_type="dataset")
hf_hub_download(repo_id="tipi2v/TIP-I2V", filename="Embedding/Subset_Image_Embedding.parquet", repo_type="dataset")
```
```python
# Embeddings for 10k TIP-Eval text prompts (~0.1G) and image prompts (~0.02G)
from huggingface_hub import hf_hub_download
hf_hub_download(repo_id="tipi2v/TIP-I2V", filename="Embedding/Eval_Text_Embedding.parquet", repo_type="dataset")
hf_hub_download(repo_id="tipi2v/TIP-I2V", filename="Embedding/Eval_Image_Embedding.parquet", repo_type="dataset")
```
## Download uncompressed image prompts
```python
# Full uncompressed image prompts: ~1T
from huggingface_hub import hf_hub_download
for i in range(1,52):
hf_hub_download(repo_id="tipi2v/TIP-I2V", filename="image_prompt_tar/image_prompt_%d.tar"%i, repo_type="dataset")
```
```python
# 100k subset uncompressed image prompts: ~69.6G
from huggingface_hub import hf_hub_download
for i in range(1,3):
hf_hub_download(repo_id="tipi2v/TIP-I2V", filename="sub_image_prompt_tar/sub_image_prompt_%d.tar"%i, repo_type="dataset")
```
```python
# 10k TIP-Eval uncompressed image prompts: ~6.5G
from huggingface_hub import hf_hub_download
hf_hub_download(repo_id="tipi2v/TIP-I2V", filename="eval_image_prompt_tar/eval_image_prompt.tar", repo_type="dataset")
```
## Download generated videos
```python
# Full videos generated by Pika: ~1T
from huggingface_hub import hf_hub_download
for i in range(1,52):
hf_hub_download(repo_id="tipi2v/TIP-I2V", filename="pika_videos_tar/pika_videos_%d.tar"%i, repo_type="dataset")
```
```python
# 100k subset videos generated by Pika (~57.6G), Stable Video Diffusion (~38.9G), Open-Sora (~47.2G), I2VGen-XL (~54.4G), and CogVideoX-5B (~36.7G)
from huggingface_hub import hf_hub_download
hf_hub_download(repo_id="tipi2v/TIP-I2V", filename="subset_videos_tar/pika_videos_subset_1.tar", repo_type="dataset")
hf_hub_download(repo_id="tipi2v/TIP-I2V", filename="subset_videos_tar/pika_videos_subset_2.tar", repo_type="dataset")
hf_hub_download(repo_id="tipi2v/TIP-I2V", filename="subset_videos_tar/svd_videos_subset.tar", repo_type="dataset")
hf_hub_download(repo_id="tipi2v/TIP-I2V", filename="subset_videos_tar/opensora_videos_subset.tar", repo_type="dataset")
hf_hub_download(repo_id="tipi2v/TIP-I2V", filename="subset_videos_tar/i2vgenxl_videos_subset_1.tar", repo_type="dataset")
hf_hub_download(repo_id="tipi2v/TIP-I2V", filename="subset_videos_tar/i2vgenxl_videos_subset_2.tar", repo_type="dataset")
hf_hub_download(repo_id="tipi2v/TIP-I2V", filename="subset_videos_tar/cog_videos_subset.tar", repo_type="dataset")
```
```python
# 10k TIP-Eval videos generated by Pika (~5.8G), Stable Video Diffusion (~3.9G), Open-Sora (~4.7G), I2VGen-XL (~5.4G), and CogVideoX-5B (~3.6G)
from huggingface_hub import hf_hub_download
hf_hub_download(repo_id="tipi2v/TIP-I2V", filename="eval_videos_tar/pika_videos_eval.tar", repo_type="dataset")
hf_hub_download(repo_id="tipi2v/TIP-I2V", filename="eval_videos_tar/svd_videos_eval.tar", repo_type="dataset")
hf_hub_download(repo_id="tipi2v/TIP-I2V", filename="eval_videos_tar/opensora_videos_eval.tar", repo_type="dataset")
hf_hub_download(repo_id="tipi2v/TIP-I2V", filename="eval_videos_tar/i2vgenxl_videos_eval.tar", repo_type="dataset")
hf_hub_download(repo_id="tipi2v/TIP-I2V", filename="eval_videos_tar/cog_videos_eval.tar", repo_type="dataset")
```
## Download original HTML files
```python
# 10 files (~32G)
from huggingface_hub import hf_hub_download
hf_hub_download(repo_id="tipi2v/TIP-I2V", filename="raw_html/Pika - Creations - generate-1 [1123665843365093487].html", repo_type="dataset")
hf_hub_download(repo_id="tipi2v/TIP-I2V", filename="raw_html/Pika - Creations - generate-2 [1126318113038798948].html", repo_type="dataset")
hf_hub_download(repo_id="tipi2v/TIP-I2V", filename="raw_html/Pika - Creations - generate-3 [1129173119609876580].html", repo_type="dataset")
hf_hub_download(repo_id="tipi2v/TIP-I2V", filename="raw_html/Pika - Creations - generate-4 [1129173161527750727].html", repo_type="dataset")
hf_hub_download(repo_id="tipi2v/TIP-I2V", filename="raw_html/Pika - Creations - generate-5 [1129173449592553564].html", repo_type="dataset")
hf_hub_download(repo_id="tipi2v/TIP-I2V", filename="raw_html/Pika - Creations - generate-6 [1134375192890712074].html", repo_type="dataset")
hf_hub_download(repo_id="tipi2v/TIP-I2V", filename="raw_html/Pika - Creations - generate-7 [1134375328442224690].html", repo_type="dataset")
hf_hub_download(repo_id="tipi2v/TIP-I2V", filename="raw_html/Pika - Creations - generate-8 [1134375370590802051].html", repo_type="dataset")
hf_hub_download(repo_id="tipi2v/TIP-I2V", filename="raw_html/Pika - Creations - generate-9 [1134375412189908992].html", repo_type="dataset")
hf_hub_download(repo_id="tipi2v/TIP-I2V", filename="raw_html/Pika - Creations - generate-10 [1134375457236725770].html", repo_type="dataset")
```
# Comparison with VidProM and DiffusionDB
Click the [WizMap (TIP-I2V VS VidProM)](https://poloclub.github.io/wizmap/?dataURL=https%3A%2F%2Fhuggingface.co%2Fdatasets%2Ftipi2v%2FTIP-I2V%2Fresolve%2Fmain%2Ftip-i2v-visualize%2Fdata_tip-i2v_vidprom.ndjson&gridURL=https%3A%2F%2Fhuggingface.co%2Fdatasets%2Ftipi2v%2FTIP-I2V%2Fresolve%2Fmain%2Ftip-i2v-visualize%2Fgrid_tip-i2v_vidprom.json) and [WizMap (TIP-I2V VS DiffusionDB)](https://poloclub.github.io/wizmap/?dataURL=https%3A%2F%2Fhuggingface.co%2Fdatasets%2Ftipi2v%2FTIP-I2V%2Fresolve%2Fmain%2Ftip-i2v-visualize%2Fdata_tip-i2v_diffusiondb.ndjson&gridURL=https%3A%2F%2Fhuggingface.co%2Fdatasets%2Ftipi2v%2FTIP-I2V%2Fresolve%2Fmain%2Ftip-i2v-visualize%2Fgrid_tip-i2v_diffusiondb.json)
(wait for 5 seconds) for an interactive visualization of our 1.70 million prompts. (The WizMap visualization website is maintained by its official team rather than by us, ensuring that the anonymity requirement is not violated.)
# License
The prompts and videos in our TIP-I2V are licensed under the [CC BY-NC 4.0 license](https://creativecommons.org/licenses/by-nc/4.0/deed.en).