File size: 10,389 Bytes
c7f937d 065e18e a407097 c7f937d a407097 f156643 065e18e f156643 bf1ae7e 065e18e bf1ae7e a407097 f156643 bf1ae7e c7f937d 065e18e c7f937d db594a0 c7f937d 6b85d13 c7f937d 6b85d13 c7f937d 6b85d13 c7f937d b69952b c7f937d 6b85d13 c7f937d 6b85d13 c7f937d 6b85d13 c7f937d 6b85d13 c7f937d 6b85d13 c7f937d 6b85d13 c7f937d 6b85d13 c7f937d 6b85d13 c7f937d 6b85d13 c7f937d 6b85d13 c7f937d 6b85d13 c7f937d 6b85d13 c7f937d 9862f06 b888169 9862f06 c7f937d 6b85d13 c7f937d b13124e c7f937d 6b85d13 c7f937d 6b85d13 a152b42 c7f937d 065e18e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 |
---
language:
- en
license: cc-by-nc-4.0
size_categories:
- 1M<n<10M
task_categories:
- image-to-video
- text-to-video
- text-to-image
- image-to-image
pretty_name: TIP-I2V
tags:
- prompt
- image-to-video
- visual-generation
- video-generation
dataset_info:
features:
- name: UUID
dtype: string
- name: UserID
dtype: string
- name: Text_Prompt
dtype: string
- name: Image_Prompt
dtype: image
- name: Subject
dtype: string
- name: Direction
dtype: string
- name: Timestamp
dtype: string
- name: Text_NSFW
dtype: float32
- name: Image_NSFW
dtype: string
splits:
- name: Full
num_bytes: 13538959055.45
num_examples: 1701935
- name: Subset
num_bytes: 796512047
num_examples: 100000
- name: Eval
num_bytes: 78836541
num_examples: 10000
download_size: 14247800861
dataset_size: 14414307643.45
configs:
- config_name: default
data_files:
- split: Full
path: data/Full-*
- split: Subset
path: data/Subset-*
- split: Eval
path: data/Eval-*
---
# News
🌟 Downloaded **10,000+** times on Hugging Face after one month of release.
✨ Ranked **Top 1** in the Hugging Face Dataset Trending List for the visual generation community (image-to-video, text-to-video, text-to-image, and image-to-image) on November 10, 2024.
# Summary
This is the dataset proposed in our paper **TIP-I2V: A Million-Scale Real Text and Image Prompt Dataset for Image-to-Video Generation**.
TIP-I2V is the first dataset comprising over 1.70 million unique user-provided text and image prompts. Besides the prompts, TIP-I2V also includes videos generated by five state-of-the-art image-to-video models (Pika, Stable Video Diffusion, Open-Sora, I2VGen-XL, and CogVideoX-5B). The TIP-I2V contributes to the development of better and safer image-to-video models.
<p align="center">
<img src="https://huggingface.co/datasets/tipi2v/TIP-I2V/resolve/main/assets/teasor.png" width="1000">
</p>
# Datapoint
<p align="center">
<img src="https://huggingface.co/datasets/tipi2v/TIP-I2V/resolve/main/assets/datapoint.png" width="1000">
</p>
# Statistics
<p align="center">
<img src="https://huggingface.co/datasets/tipi2v/TIP-I2V/resolve/main/assets/stat.png" width="1000">
</p>
# Examples
<p align="center">
<img src="https://huggingface.co/datasets/tipi2v/TIP-I2V/resolve/main/assets/example_a.png" width="1000">
</p>
<p align="center">
<img src="https://huggingface.co/datasets/tipi2v/TIP-I2V/resolve/main/assets/example_b.png" width="1000">
</p>
# Download
For users in mainland China, try setting `export HF_ENDPOINT=https://hf-mirror.com` to successfully download the weights.
## Download the text and (compressed) image prompts with related information
```python
# Full (text and compressed image) prompts: ~13.4G
from datasets import load_dataset
ds = load_dataset("tipi2v/TIP-I2V", split='Full', streaming=True)
# Convert to Pandas format (it may be slow)
import pandas as pd
df = pd.DataFrame(ds)
```
```python
# 100k subset (text and compressed image) prompts: ~0.8G
from datasets import load_dataset
ds = load_dataset("tipi2v/TIP-I2V", split='Subset', streaming=True)
# Convert to Pandas format (it may be slow)
import pandas as pd
df = pd.DataFrame(ds)
```
```python
# 10k TIP-Eval (text and compressed image) prompts: ~0.08G
from datasets import load_dataset
ds = load_dataset("tipi2v/TIP-I2V", split='Eval', streaming=True)
# Convert to Pandas format (it may be slow)
import pandas as pd
df = pd.DataFrame(ds)
```
## Download the embeddings for text and image prompts
```python
# Embeddings for full text prompts (~21G) and image prompts (~3.5G)
from huggingface_hub import hf_hub_download
hf_hub_download(repo_id="tipi2v/TIP-I2V", filename="Embedding/Full_Text_Embedding.parquet", repo_type="dataset")
hf_hub_download(repo_id="tipi2v/TIP-I2V", filename="Embedding/Full_Image_Embedding.parquet", repo_type="dataset")
```
```python
# Embeddings for 100k subset text prompts (~1.2G) and image prompts (~0.2G)
from huggingface_hub import hf_hub_download
hf_hub_download(repo_id="tipi2v/TIP-I2V", filename="Embedding/Subset_Text_Embedding.parquet", repo_type="dataset")
hf_hub_download(repo_id="tipi2v/TIP-I2V", filename="Embedding/Subset_Image_Embedding.parquet", repo_type="dataset")
```
```python
# Embeddings for 10k TIP-Eval text prompts (~0.1G) and image prompts (~0.02G)
from huggingface_hub import hf_hub_download
hf_hub_download(repo_id="tipi2v/TIP-I2V", filename="Embedding/Eval_Text_Embedding.parquet", repo_type="dataset")
hf_hub_download(repo_id="tipi2v/TIP-I2V", filename="Embedding/Eval_Image_Embedding.parquet", repo_type="dataset")
```
## Download uncompressed image prompts
```python
# Full uncompressed image prompts: ~1T
from huggingface_hub import hf_hub_download
for i in range(1,52):
hf_hub_download(repo_id="tipi2v/TIP-I2V", filename="image_prompt_tar/image_prompt_%d.tar"%i, repo_type="dataset")
```
```python
# 100k subset uncompressed image prompts: ~69.6G
from huggingface_hub import hf_hub_download
for i in range(1,3):
hf_hub_download(repo_id="tipi2v/TIP-I2V", filename="sub_image_prompt_tar/sub_image_prompt_%d.tar"%i, repo_type="dataset")
```
```python
# 10k TIP-Eval uncompressed image prompts: ~6.5G
from huggingface_hub import hf_hub_download
hf_hub_download(repo_id="tipi2v/TIP-I2V", filename="eval_image_prompt_tar/eval_image_prompt.tar", repo_type="dataset")
```
## Download generated videos
```python
# Full videos generated by Pika: ~1T
from huggingface_hub import hf_hub_download
for i in range(1,52):
hf_hub_download(repo_id="tipi2v/TIP-I2V", filename="pika_videos_tar/pika_videos_%d.tar"%i, repo_type="dataset")
```
```python
# 100k subset videos generated by Pika (~57.6G), Stable Video Diffusion (~38.9G), Open-Sora (~47.2G), I2VGen-XL (~54.4G), and CogVideoX-5B (~36.7G)
from huggingface_hub import hf_hub_download
hf_hub_download(repo_id="tipi2v/TIP-I2V", filename="subset_videos_tar/pika_videos_subset_1.tar", repo_type="dataset")
hf_hub_download(repo_id="tipi2v/TIP-I2V", filename="subset_videos_tar/pika_videos_subset_2.tar", repo_type="dataset")
hf_hub_download(repo_id="tipi2v/TIP-I2V", filename="subset_videos_tar/svd_videos_subset.tar", repo_type="dataset")
hf_hub_download(repo_id="tipi2v/TIP-I2V", filename="subset_videos_tar/opensora_videos_subset.tar", repo_type="dataset")
hf_hub_download(repo_id="tipi2v/TIP-I2V", filename="subset_videos_tar/i2vgenxl_videos_subset_1.tar", repo_type="dataset")
hf_hub_download(repo_id="tipi2v/TIP-I2V", filename="subset_videos_tar/i2vgenxl_videos_subset_2.tar", repo_type="dataset")
hf_hub_download(repo_id="tipi2v/TIP-I2V", filename="subset_videos_tar/cog_videos_subset.tar", repo_type="dataset")
```
```python
# 10k TIP-Eval videos generated by Pika (~5.8G), Stable Video Diffusion (~3.9G), Open-Sora (~4.7G), I2VGen-XL (~5.4G), and CogVideoX-5B (~3.6G)
from huggingface_hub import hf_hub_download
hf_hub_download(repo_id="tipi2v/TIP-I2V", filename="eval_videos_tar/pika_videos_eval.tar", repo_type="dataset")
hf_hub_download(repo_id="tipi2v/TIP-I2V", filename="eval_videos_tar/svd_videos_eval.tar", repo_type="dataset")
hf_hub_download(repo_id="tipi2v/TIP-I2V", filename="eval_videos_tar/opensora_videos_eval.tar", repo_type="dataset")
hf_hub_download(repo_id="tipi2v/TIP-I2V", filename="eval_videos_tar/i2vgenxl_videos_eval.tar", repo_type="dataset")
hf_hub_download(repo_id="tipi2v/TIP-I2V", filename="eval_videos_tar/cog_videos_eval.tar", repo_type="dataset")
```
## Download original HTML files
```python
# 10 files (~32G)
from huggingface_hub import hf_hub_download
hf_hub_download(repo_id="tipi2v/TIP-I2V", filename="raw_html/Pika - Creations - generate-1 [1123665843365093487].html", repo_type="dataset")
hf_hub_download(repo_id="tipi2v/TIP-I2V", filename="raw_html/Pika - Creations - generate-2 [1126318113038798948].html", repo_type="dataset")
hf_hub_download(repo_id="tipi2v/TIP-I2V", filename="raw_html/Pika - Creations - generate-3 [1129173119609876580].html", repo_type="dataset")
hf_hub_download(repo_id="tipi2v/TIP-I2V", filename="raw_html/Pika - Creations - generate-4 [1129173161527750727].html", repo_type="dataset")
hf_hub_download(repo_id="tipi2v/TIP-I2V", filename="raw_html/Pika - Creations - generate-5 [1129173449592553564].html", repo_type="dataset")
hf_hub_download(repo_id="tipi2v/TIP-I2V", filename="raw_html/Pika - Creations - generate-6 [1134375192890712074].html", repo_type="dataset")
hf_hub_download(repo_id="tipi2v/TIP-I2V", filename="raw_html/Pika - Creations - generate-7 [1134375328442224690].html", repo_type="dataset")
hf_hub_download(repo_id="tipi2v/TIP-I2V", filename="raw_html/Pika - Creations - generate-8 [1134375370590802051].html", repo_type="dataset")
hf_hub_download(repo_id="tipi2v/TIP-I2V", filename="raw_html/Pika - Creations - generate-9 [1134375412189908992].html", repo_type="dataset")
hf_hub_download(repo_id="tipi2v/TIP-I2V", filename="raw_html/Pika - Creations - generate-10 [1134375457236725770].html", repo_type="dataset")
```
# Comparison with VidProM and DiffusionDB
<p align="center">
<img src="https://huggingface.co/datasets/tipi2v/TIP-I2V/resolve/main/assets/table.png" width="1000">
</p>
<p align="center">
<img src="https://huggingface.co/datasets/tipi2v/TIP-I2V/resolve/main/assets/comparison.png" width="1000">
</p>
Click the [WizMap (TIP-I2V VS VidProM)](https://poloclub.github.io/wizmap/?dataURL=https%3A%2F%2Fhuggingface.co%2Fdatasets%2Ftipi2v%2FTIP-I2V%2Fresolve%2Fmain%2Ftip-i2v-visualize%2Fdata_tip-i2v_vidprom.ndjson&gridURL=https%3A%2F%2Fhuggingface.co%2Fdatasets%2Ftipi2v%2FTIP-I2V%2Fresolve%2Fmain%2Ftip-i2v-visualize%2Fgrid_tip-i2v_vidprom.json) and [WizMap (TIP-I2V VS DiffusionDB)](https://poloclub.github.io/wizmap/?dataURL=https%3A%2F%2Fhuggingface.co%2Fdatasets%2Ftipi2v%2FTIP-I2V%2Fresolve%2Fmain%2Ftip-i2v-visualize%2Fdata_tip-i2v_diffusiondb.ndjson&gridURL=https%3A%2F%2Fhuggingface.co%2Fdatasets%2Ftipi2v%2FTIP-I2V%2Fresolve%2Fmain%2Ftip-i2v-visualize%2Fgrid_tip-i2v_diffusiondb.json)
(wait for 5 seconds) for an interactive visualization of our 1.70 million prompts. (The WizMap visualization website is maintained by its official team rather than by us, ensuring that the anonymity requirement is not violated.)
# License
The prompts and videos in our TIP-I2V are licensed under the [CC BY-NC 4.0 license](https://creativecommons.org/licenses/by-nc/4.0/deed.en). |