|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
This module contains the HuggingFace dataset reader for the "Multi-Layer Materials Science Corpus (MuLMS)" |
|
""" |
|
|
|
from dataclasses import dataclass |
|
from os import listdir |
|
from os.path import exists, join |
|
|
|
import datasets |
|
import pandas as pd |
|
from puima.collection_utils import DocumentCollection |
|
|
|
SENT_TYPE = "de.tudarmstadt.ukp.dkpro.core.api.segmentation.type.Sentence" |
|
MATSCI_SENT_TYPE = "webanno.custom.MatSci_Sentence" |
|
TOKEN_TYPE = "de.tudarmstadt.ukp.dkpro.core.api.segmentation.type.Token" |
|
SKIPPING_TYPE = "webanno.custom.MatSci_Skipping" |
|
ENTITY_TYPE = "webanno.custom.MatSci_Entity" |
|
RELATION_TYPE = "webanno.custom.MatSci_Relations" |
|
PASSAGE_TYPE = "webanno.custom.MatSci_Passage" |
|
DOCUMENT_METADATA_TYPE = "de.tudarmstadt.ukp.dkpro.core.api.metadata.type.DocumentMetaData" |
|
|
|
|
|
def get_token_indices_for_annot(annot, sent_tokens, doc): |
|
""" |
|
Retrieves indices of tokens within the list of sententence tokens (sent_tokens) for |
|
the annotation annot. |
|
param: annot - puima Annotation object |
|
param: sent_tokens - list of puima Annotation objects (tokens of the sentence) |
|
""" |
|
indices = [None, None] |
|
for annot_token in doc.select_covered(TOKEN_TYPE, annot): |
|
token_index = sent_tokens.index(annot_token) |
|
if indices[0] is None or indices[0] > token_index: |
|
indices[0] = token_index |
|
if indices[1] is None or indices[1] < token_index: |
|
indices[1] = token_index |
|
return tuple(indices) |
|
|
|
|
|
def get_token_index_for_annot_if_subtoken(annot, sent_tokens, doc): |
|
""" |
|
Retrieves indices of tokens within the list of sententence tokens (sent_tokens) for |
|
the annotation annot. |
|
param: annot - puima Annotation object |
|
param: sent_tokens - list of puima Annotation objects (tokens of the sentence) |
|
""" |
|
annot_token = next(doc.select_covering(TOKEN_TYPE, annot)) |
|
token_index = sent_tokens.index(annot_token) |
|
return (token_index, token_index) |
|
|
|
|
|
az_content_labels: list = [ |
|
"Experiment", |
|
"Results", |
|
"Exp_Preparation", |
|
"Exp_Characterization", |
|
"Background_PriorWork", |
|
"Explanation", |
|
"Conclusion", |
|
"Motivation", |
|
"Background", |
|
] |
|
az_structure_labels: list = ["Metadata", "Caption", "Heading", "Abstract"] |
|
|
|
meas_labels: list = ["MEASUREMENT", "QUAL_MEASUREMENT", "O"] |
|
|
|
mulms_ne_labels: list = [ |
|
"MAT", |
|
"NUM", |
|
"VALUE", |
|
"UNIT", |
|
"PROPERTY", |
|
"CITE", |
|
"TECHNIQUE", |
|
"RANGE", |
|
"INSTRUMENT", |
|
"SAMPLE", |
|
"FORM", |
|
"DEV", |
|
"MEASUREMENT", |
|
] |
|
|
|
rel_labels: list = [ |
|
"hasForm", |
|
"measuresProperty", |
|
"usedAs", |
|
"conditionProperty", |
|
"conditionSampleFeatures", |
|
"usesTechnique", |
|
"conditionEnvironment", |
|
"propertyValue", |
|
"usedIn", |
|
"conditionInstrument", |
|
"dopedBy", |
|
"takenFrom", |
|
"usedTogether", |
|
] |
|
|
|
ne_labels_set = set(mulms_ne_labels) |
|
all_az_labels = set(az_content_labels) | set(az_structure_labels) |
|
meas_labels_set = set(meas_labels) |
|
rel_label_set: set = set(rel_labels) |
|
|
|
_CITATION = """\ |
|
@InProceedings{schrader-etal-2023-mulms, |
|
title = {MuLMS-AZ: An Argumentative Zoning Dataset for the Materials Science Domain}, |
|
author={Timo Pierre Schrader, Teresa Bürkle, Sophie Henning, Sherry Tan, Matteo Finco, Stefan Grünewald, Maira Indrikova, Felix Hildebrand, Annemarie Friedrich |
|
}, |
|
year={2023} |
|
}, |
|
@InProceedings{schrader-etal-2023-mulms, |
|
title = {MuLMS: A Multi-Layer Annotated Text Corpus for Information Extraction in the Materials Science Domain}, |
|
author={Timo Pierre Schrader, Matteo Finco, Stefan Grünewald, Felix Hildebrand, Annemarie Friedrich |
|
}, |
|
year={2023} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
This dataset represents the Multi-Layer Material Science (MuLMS) corpus. |
|
It consists of 50 thoroughly annotated documents from the materials science domain and |
|
provides annotations for named entities, argumentative zoning (AZ), relation extraction, |
|
measurement classification and citation context retrieval. Please refer to our papers for |
|
more details about the MuLMS corpus. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/boschresearch/mulms-az-codi2023" |
|
|
|
_LICENSE = "AGPL-3" |
|
|
|
_URLS = "https://github.com/boschresearch/mulms-az-codi2023/raw/refs/heads/main/data/mulms_corpus.zip" |
|
|
|
|
|
@dataclass |
|
class MuLMSDatasetBuilderConfig(datasets.BuilderConfig): |
|
""" |
|
Config class for the dataset class. |
|
""" |
|
|
|
replace_heading_AZ_labels: bool = True |
|
remove_figure_and_table_labels: bool = True |
|
|
|
|
|
class MuLMSDataset(datasets.GeneratorBasedBuilder): |
|
"""This dataset represents the Multi-Layer Material Science Corpus with 50 documents across multiple domains.""" |
|
|
|
VERSION = datasets.Version("1.0.0") |
|
|
|
BUILDER_CONFIG_CLASS = MuLMSDatasetBuilderConfig |
|
|
|
BUILDER_CONFIGS = [ |
|
MuLMSDatasetBuilderConfig( |
|
name="MuLMS_Corpus", |
|
version=VERSION, |
|
description="This part of the dataset covers all annotations.", |
|
), |
|
datasets.BuilderConfig( |
|
name="NER_Dependencies", |
|
version=VERSION, |
|
description="This part of the dataset represents Named Entities as dependencies (returned in CONLL format).", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "MuLMS_Corpus" |
|
|
|
AZ_HEADING_REPLACEMENT_LABELS = [ |
|
"Supporting Information", |
|
"Author Contribution", |
|
"Confict of Interest", |
|
"Acknowledgment", |
|
] |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
""" |
|
Provides information about this dataset. |
|
|
|
Returns: |
|
datasets.DatasetInfo |
|
""" |
|
if self.config.name == "default": |
|
self.config.name = self.DEFAULT_CONFIG_NAME |
|
if self.config.name == "MuLMS_Corpus": |
|
features: datasets.Features = datasets.Features( |
|
{ |
|
"doc_id": datasets.Value("string"), |
|
"sentence": datasets.Value("string"), |
|
"tokens": datasets.Sequence(datasets.Value("string")), |
|
"beginOffset": datasets.Value("int32"), |
|
"endOffset": datasets.Value("int32"), |
|
"AZ_labels": datasets.Value("string"), |
|
"Measurement_label": datasets.Value("string"), |
|
"NER_labels": datasets.Sequence( |
|
{ |
|
"text": datasets.Value("string"), |
|
"id": datasets.Value("int32"), |
|
"value": datasets.Value("string"), |
|
"begin": datasets.Value("string"), |
|
"end": datasets.Value("string"), |
|
"tokenIndices": datasets.Sequence(datasets.Value("int32")), |
|
} |
|
), |
|
"NER_labels_BILOU": datasets.Sequence(datasets.Value("string")), |
|
"relations": datasets.Sequence( |
|
{ |
|
"ne_id_gov": datasets.Value("int32"), |
|
"ne_id_dep": datasets.Value("int32"), |
|
"label": datasets.Value("string"), |
|
} |
|
), |
|
"docFileName": datasets.Value("string"), |
|
"data_split": datasets.Value("string"), |
|
"category": datasets.Value("string"), |
|
} |
|
) |
|
elif self.config.name == "NER_Dependencies": |
|
features: datasets.Features = datasets.Features( |
|
{ |
|
"ID": datasets.Value("int32"), |
|
"sentence": datasets.Value("string"), |
|
"token_id": datasets.Value("int32"), |
|
"token_text": datasets.Value("string"), |
|
"NE_Dependencies": datasets.Value("string"), |
|
"data_split": datasets.Value("string"), |
|
} |
|
) |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager) -> list: |
|
""" |
|
Downloads files from URL or reads them from the file system and provides _generate_examples |
|
with necessary information. |
|
|
|
Args: |
|
dl_manager: Handles data retrieval |
|
|
|
Returns: |
|
list: Information about files and splits |
|
""" |
|
|
|
data_files: list = dl_manager.download_and_extract(_URLS) |
|
self.data_dir: str = join(data_files, "mulms_corpus") |
|
data_files = listdir(join(self.data_dir, "xmi")) |
|
assert exists( |
|
join(self.data_dir, "MuLMS_Corpus_Metadata.csv") |
|
), "MuLMS_Corpus_Metadata.csv is missing." |
|
|
|
if "/" in data_files[0]: |
|
data_files = [f.split("/")[-1] for f in data_files] |
|
if "\\" in data_files[0]: |
|
data_files = [f.split("\\")[-1] for f in data_files] |
|
|
|
metadata_df: pd.DataFrame = pd.read_csv( |
|
join(self.data_dir, "MuLMS_Corpus_Metadata.csv") |
|
) |
|
train_files: list = sorted( |
|
[ |
|
f |
|
for f in data_files |
|
if any( |
|
name in f |
|
for name in list(metadata_df[metadata_df["set"].str.contains("train")]["name"]) |
|
) |
|
] |
|
) |
|
dev_files: list = sorted( |
|
[ |
|
f |
|
for f in data_files |
|
if any( |
|
name in f for name in list(metadata_df[metadata_df["set"] == "dev"]["name"]) |
|
) |
|
] |
|
) |
|
test_files: list = sorted( |
|
[ |
|
f |
|
for f in data_files |
|
if any( |
|
name in f for name in list(metadata_df[metadata_df["set"] == "test"]["name"]) |
|
) |
|
] |
|
) |
|
|
|
if self.config.name == "MuLMS_Corpus": |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"dir": join(self.data_dir, "xmi"), |
|
"files": train_files, |
|
"data_split": metadata_df[metadata_df["set"].str.contains("train")][ |
|
["name", "set", "category"] |
|
], |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"dir": join(self.data_dir, "xmi"), |
|
"files": dev_files, |
|
"data_split": metadata_df[metadata_df["set"] == "dev"][ |
|
["name", "set", "category"] |
|
], |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"dir": join(self.data_dir, "xmi"), |
|
"files": test_files, |
|
"data_split": metadata_df[metadata_df["set"] == "test"][ |
|
["name", "set", "category"] |
|
], |
|
}, |
|
), |
|
] |
|
|
|
elif self.config.name == "NER_Dependencies": |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"dir": join(self.data_dir, "ne_dependencies_conll"), |
|
"files": [ |
|
"ne_deps_train1.conllu", |
|
"ne_deps_train2.conllu", |
|
"ne_deps_train3.conllu", |
|
"ne_deps_train4.conllu", |
|
"ne_deps_train5.conllu", |
|
], |
|
"data_split": None, |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"dir": join(self.data_dir, "ne_dependencies_conll"), |
|
"files": ["ne_deps_dev.conllu"], |
|
"data_split": None, |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"dir": join(self.data_dir, "ne_dependencies_conll"), |
|
"files": ["ne_deps_test.conllu"], |
|
"data_split": None, |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, dir: str, files: list, data_split: pd.DataFrame): |
|
""" |
|
Yields the data during runtime. |
|
|
|
Args: |
|
dir (str): Path to downloaded or local files. |
|
files (list): List of filenames corresponding to the current split; must be contained within "dir" |
|
data_split (pd.DataFrame): Category and train/dev/test split info for each document |
|
|
|
Yields: |
|
tuple: Yields document ID and dictionary with current data sample |
|
""" |
|
|
|
if self.config.name == "MuLMS_Corpus": |
|
|
|
doc_coll: DocumentCollection = DocumentCollection( |
|
xmi_dir=dir, file_list=files) |
|
|
|
split_info: str = None |
|
category_info: str = None |
|
|
|
for doc_name in doc_coll.docs: |
|
doc = doc_coll.docs[doc_name] |
|
for sent_id, sent_annot in enumerate( |
|
doc.select_annotations(SENT_TYPE) |
|
): |
|
sent_text = doc.get_covered_text(sent_annot) |
|
|
|
|
|
az_labels = set() |
|
for matsci_sent in doc.select_covered( |
|
MATSCI_SENT_TYPE, sent_annot |
|
): |
|
content_info = matsci_sent.get_feature_value( |
|
"ContentInformation") |
|
struct_info = matsci_sent.get_feature_value( |
|
"StructureInformation") |
|
az_labels.add(content_info) |
|
az_labels.add(struct_info) |
|
if "None" in az_labels: |
|
az_labels.remove("None") |
|
if None in az_labels: |
|
az_labels.remove(None) |
|
|
|
sent_meas_label = list( |
|
set.intersection(az_labels, meas_labels)) |
|
if len(sent_meas_label) == 2: |
|
sent_meas_label = "MEASUREMENT" |
|
elif len(sent_meas_label) == 1: |
|
sent_meas_label = sent_meas_label[0] |
|
else: |
|
sent_meas_label = "O" |
|
|
|
az_labels = list( |
|
set.intersection(all_az_labels, az_labels) |
|
) |
|
|
|
if len(az_labels) == 0: |
|
continue |
|
|
|
|
|
sent_tokens = list(doc.select_covered(TOKEN_TYPE, sent_annot)) |
|
sent_token_list = [0] * len(sent_tokens) |
|
|
|
token2idx = {} |
|
for i, token in enumerate(sent_tokens): |
|
token2idx[token.begin] = i |
|
sent_token_list[i] = doc.get_covered_text( |
|
token) |
|
|
|
|
|
sent_offset: int = sent_annot.begin |
|
ner_labels: list = [] |
|
ner_labels_duplicate_lookup: dict = ( |
|
dict() |
|
) |
|
ne_annot2id: dict = {} |
|
for ent_annot in doc.select_covered(ENTITY_TYPE, sent_annot): |
|
if ent_annot.get_feature_value("implicitEntity") is None: |
|
label = ent_annot.get_feature_value("value") |
|
if label in ne_labels_set: |
|
|
|
ent_indices = get_token_indices_for_annot( |
|
ent_annot, sent_tokens, doc |
|
) |
|
if ( |
|
None in ent_indices |
|
): |
|
try: |
|
ent_indices = get_token_index_for_annot_if_subtoken( |
|
ent_annot, sent_tokens, doc |
|
) |
|
except StopIteration: |
|
pass |
|
except ValueError: |
|
pass |
|
if None in ent_indices: |
|
continue |
|
|
|
try: |
|
ne_annot2id[ent_annot] = ent_annot.id |
|
ne_dict: dict = { |
|
"text": doc.get_covered_text(ent_annot), |
|
"id": ent_annot.id, |
|
"value": label, |
|
"begin": ent_annot.begin - sent_offset, |
|
"end": ent_annot.end - sent_offset, |
|
"tokenIndices": ent_indices, |
|
} |
|
if ( |
|
not tuple( |
|
[ne_dict["value"], |
|
ne_dict["begin"], ne_dict["end"]] |
|
) |
|
in ner_labels_duplicate_lookup.keys() |
|
): |
|
ner_labels.append(ne_dict) |
|
ner_labels_duplicate_lookup[ |
|
( |
|
tuple( |
|
[ |
|
ne_dict["value"], |
|
ne_dict["begin"], |
|
ne_dict["end"], |
|
] |
|
) |
|
) |
|
] = ent_annot.id |
|
else: |
|
ne_annot2id[ent_annot] = ner_labels_duplicate_lookup[ |
|
( |
|
tuple( |
|
[ |
|
ne_dict["value"], |
|
ne_dict["begin"], |
|
ne_dict["end"], |
|
] |
|
) |
|
) |
|
] |
|
except KeyError: |
|
pass |
|
|
|
|
|
B: str = "B-{0}" |
|
I: str = "I-{0}" |
|
L: str = "L-{0}" |
|
O: str = "O" |
|
U: str = "U-{0}" |
|
ner_labels.sort( |
|
key=lambda x: (x["tokenIndices"] |
|
[0], -x["tokenIndices"][1]) |
|
) |
|
nested_bilou_labels: list = [O] * len(sent_tokens) |
|
if len(ner_labels) > 0: |
|
for i in range(len(ner_labels)): |
|
begin_idx: int = ner_labels[i]["tokenIndices"][0] |
|
end_idx: int = ner_labels[i]["tokenIndices"][1] |
|
|
|
|
|
skip_current_entity: bool = False |
|
for j in range(begin_idx, end_idx + 1): |
|
if ( |
|
nested_bilou_labels[j].count("+") == 2 |
|
): |
|
skip_current_entity = True |
|
break |
|
|
|
if skip_current_entity: |
|
continue |
|
|
|
tag: str = ner_labels[i]["value"] |
|
|
|
|
|
if begin_idx == end_idx: |
|
if nested_bilou_labels[begin_idx] == O: |
|
nested_bilou_labels[begin_idx] = U.format( |
|
tag) |
|
else: |
|
nested_bilou_labels[begin_idx] += "+" + \ |
|
U.format(tag) |
|
continue |
|
|
|
|
|
if nested_bilou_labels[begin_idx] == O: |
|
nested_bilou_labels[begin_idx] = B.format(tag) |
|
else: |
|
nested_bilou_labels[begin_idx] += "+" + \ |
|
B.format(tag) |
|
|
|
|
|
for j in range(begin_idx + 1, end_idx + 1): |
|
if j < end_idx: |
|
if nested_bilou_labels[j] == O: |
|
nested_bilou_labels[j] = I.format(tag) |
|
else: |
|
nested_bilou_labels[j] += "+" + \ |
|
I.format(tag) |
|
else: |
|
if nested_bilou_labels[j] == O: |
|
nested_bilou_labels[j] = L.format(tag) |
|
else: |
|
nested_bilou_labels[j] += "+" + \ |
|
L.format(tag) |
|
|
|
|
|
rel_labels: list = [] |
|
for rel_annot in doc.select_covered(RELATION_TYPE, sent_annot): |
|
label: str = rel_annot.get_feature_value( |
|
"RelationType") |
|
|
|
gov_annot = rel_annot.get_feature_value( |
|
"Governor", True) |
|
dep_annot = rel_annot.get_feature_value( |
|
"Dependent", True) |
|
|
|
gov_label = gov_annot.get_feature_value("value") |
|
|
|
if ( |
|
label in rel_label_set |
|
): |
|
|
|
|
|
|
|
|
|
|
|
if gov_label == "MEASUREMENT" and label in { |
|
"conditionProperty", |
|
"measuresProperty", |
|
}: |
|
for rel_annot2 in doc.select_covered( |
|
RELATION_TYPE, sent_annot |
|
): |
|
label2: str = rel_annot2.get_feature_value( |
|
"RelationType") |
|
gov_annot2 = rel_annot2.get_feature_value( |
|
"Governor", True) |
|
dep_annot2 = rel_annot2.get_feature_value( |
|
"Dependent", True) |
|
|
|
if label2 == "propertyValue" and gov_annot2 == dep_annot: |
|
if label == "conditionProperty": |
|
transitiveLabel = "conditionPropertyValue" |
|
elif label == "measuresProperty": |
|
transitiveLabel = "measuresPropertyValue" |
|
else: |
|
assert False |
|
|
|
try: |
|
rel_labels.append( |
|
{ |
|
"ne_id_gov": ne_annot2id[gov_annot], |
|
"ne_id_dep": ne_annot2id[dep_annot2], |
|
"label": transitiveLabel, |
|
} |
|
) |
|
except KeyError: |
|
continue |
|
|
|
|
|
if ( |
|
gov_annot.get_feature_value( |
|
"value") not in ne_labels_set |
|
or dep_annot.get_feature_value("value") not in ne_labels_set |
|
): |
|
|
|
continue |
|
if gov_annot is dep_annot: |
|
continue |
|
if ( |
|
gov_annot.begin == dep_annot.begin |
|
and gov_annot.end == dep_annot.end |
|
): |
|
|
|
continue |
|
|
|
if gov_annot not in ne_annot2id: |
|
|
|
if doc.get_covered_text(dep_annot) == "nanoparticle-type": |
|
continue |
|
sent_list2 = list( |
|
doc.select_covering(SENT_TYPE, gov_annot) |
|
) |
|
try: |
|
sent_list2.remove(sent_annot) |
|
except ValueError: |
|
pass |
|
if len(sent_list2) == 0: |
|
continue |
|
sent_annot2 = sent_list2[0] |
|
if sent_annot2 is not sent_annot: |
|
|
|
continue |
|
if dep_annot not in ne_annot2id: |
|
sent_list2 = list( |
|
doc.select_covering(SENT_TYPE, dep_annot) |
|
) |
|
try: |
|
sent_list2.remove(sent_annot) |
|
except ValueError: |
|
pass |
|
if len(sent_list2) == 0: |
|
continue |
|
sent_annot2 = sent_list2[0] |
|
if sent_annot2 != sent_annot: |
|
|
|
continue |
|
|
|
if gov_annot not in ne_annot2id: |
|
if gov_annot.get_feature_value("valueType") == "implicit": |
|
|
|
continue |
|
assert False |
|
if dep_annot not in ne_annot2id: |
|
assert False |
|
rel_labels.append( |
|
{ |
|
"ne_id_gov": ne_annot2id[gov_annot], |
|
"ne_id_dep": ne_annot2id[dep_annot], |
|
"label": label, |
|
} |
|
) |
|
|
|
if split_info is None: |
|
split_info = data_split[data_split["name"] |
|
== doc_name]["set"].values[0] |
|
category_info = data_split[data_split["name"] == doc_name][ |
|
"category" |
|
].values[0] |
|
|
|
|
|
yield doc_name + "/" + str(sent_id), { |
|
"doc_id": doc_name, |
|
"sentence": sent_text, |
|
"tokens": sent_token_list, |
|
"beginOffset": sent_annot.begin, |
|
"endOffset": sent_annot.end, |
|
"AZ_labels": az_labels, |
|
"Measurement_label": sent_meas_label, |
|
"NER_labels": ner_labels, |
|
"NER_labels_BILOU": nested_bilou_labels, |
|
|
|
"relations": rel_labels, |
|
"docFileName": doc_name, |
|
"data_split": split_info, |
|
"category": category_info, |
|
} |
|
|
|
split_info = None |
|
category_info = None |
|
elif self.config.name == "NER_Dependencies": |
|
id: int = 0 |
|
sent_id: int = 0 |
|
sent_text: str = None |
|
for i, f in enumerate(files): |
|
split_info: str = ( |
|
f"train{i+1}" if "train" in f else ( |
|
"dev" if "dev" in f else "test") |
|
) |
|
with open(join(dir, f), mode="r", encoding="utf-8") as cf: |
|
conll_lines: list[str] = cf.read().splitlines() |
|
for line in conll_lines: |
|
if line.startswith("#"): |
|
sent_text = line.split("# text = ")[-1] |
|
sent_id += 1 |
|
continue |
|
elif line == "": |
|
continue |
|
t_id, t_text, deps = line.split("\t") |
|
yield id, { |
|
"ID": sent_id, |
|
"sentence": sent_text, |
|
"token_id": t_id, |
|
"token_text": t_text, |
|
"NE_Dependencies": deps, |
|
"data_split": split_info, |
|
} |
|
id += 1 |
|
|