File size: 8,707 Bytes
dc39372
194d6d1
 
 
 
 
 
 
dc39372
 
 
 
 
 
 
 
 
 
 
 
 
 
194d6d1
dc39372
 
194d6d1
dc39372
 
194d6d1
dc39372
194d6d1
 
56a42b0
7474161
194d6d1
 
 
 
 
 
 
 
 
dc39372
 
8ee9a4a
 
 
 
dc39372
8ee9a4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
---
language:
- he
size_categories:
- 1K<n<10K
task_categories:
- token-classification
pretty_name: HebrewMetaphors
dataset_info:
  features:
  - name: text
    dtype: string
  - name: source
    dtype: string
  - name: label
    dtype: int64
  - name: verb
    dtype: string
  - name: tweet_id
    dtype: string
  splits:
  - name: train
    num_bytes: 669160
    num_examples: 4944
  - name: val
    num_bytes: 168781
    num_examples: 1271
  - name: test
    num_bytes: 206836
    num_examples: 1593
  download_size: 449410
  dataset_size: 1044777
model:
- tdklab/hebert-finetuned-hebrew-metaphor
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
  - split: val
    path: data/val-*
  - split: test
    path: data/test-*
---
# Dataset Card for "HebrewMetaphors"
### Dataset Summary
A common dataset for text classification task is IMDb. Large Movie Review Dataset. This is a dataset for binary sentiment classification.
The first step in our project was to create a Hebrew dataset with an IMDB-like structure but different in that, in addition to the sentences we have, there will also be verb names, and a classification of whether the verb name is literal or metaphorical in the given sentence.
Using an API, sentences that contained the verbs we selected were pulled from Twitter and Wikipedia and Prodigy was used to classify them. The accuracy of the classification was confirmed by having two different persons classify each line twice.

### Supported Tasks and Leaderboards
Classification 

### Languages
Hebrew

## Dataset Structure
The IMDb dataset is a json file with objects containing the text of the review, and a number 0 or 1 which is a negative or positive review

For example:

```
{
    "label": 1, //(pos)
    "text": "A wonderful little production ... "
}, {
    "label": 0, //(neg)
    "text": ""It actually pains me to say it, but this movie was horrible on every level ..."
}
```

After retrieving data from Wikipedia and Twitter, classifying and processing, we received the following data:

```
{'text': 'ืžืชื—ื™ืœ ืœืืžืฅ ืœืฉืœื•ื— ืืช ื”ื‘ื’ื“ื™ื ืœืžื›ื‘ืกื” ืื—ืจื™ ื˜ื™ื•ืœ ืœื—ื•ืœ ื›ื™ ืœืžื™ ื™ืฉ ื›ื•ื— ืœื›ื‘ืก ื›ืœ ื›ืš ื”ืจื‘ื” ื‘ื’ื“ื™ื ืื—ืจื™ ื—ื•ืคืฉ',
 'source': 'twitter',
 'label': 0,
 'verb': 'ืœื›ื‘ืก',
 'tweet_id': '1546803262065606658'},
 
{'text': ' ื‘ื™ื ื’ ื‘ื•ื ื’ ืžื’ื™ื— ืžืŸ ื”ืžืขืจื‘ ื•ืžืชื—ื™ืœ ืœื–ืจื•ืข ื”ืจืก ื‘ืžืžืœื›ืช ืขื•ืฅ',
 'source': 'wikipedia',
 'label': 1, //(Metaphor)
 'verb': 'ืœื–ืจื•ืข',
 'tweet_id': None},
 
 {'text': 'ื”ื ื™ืฉืชืžืฉื• ื‘ืžืขืจื‘ืœ ื›ื“ื™ ืœื”ืคื ื•ืช ืืช ื”ืžื˜ื•ืก ืœืฉื“ื” ื”ืชืขื•ืคื” ืฉื”ื ื™ื‘ื—ืจื• ื•ื›ืš ืœืฉื“ื•ื“ ืื•ืชื•',
 'source': 'wikipedia',
 'label': 0, //(Literal)
 'verb': 'ืœืฉื“ื•ื“',
 'tweet_id': None}
 ```

As you can see, we have the following fields:
- 'text': A sentence in Hebrew that was taken from Wikipedia or Twitter that included the verb name.
- 'source': There are two possible sources for this text:  'twitter' or 'wikipedia'.
- 'label': Classification of whether the verb name is literal ('label': 0) or metaphorical ('label': 1) in the given sentence.
- 'verb': A verb name in Hebrew on which the text is labeled.
- 'tweet_id': If the text was taken from Twitter, the tweet's id, or None if it was retrieved from Wikipedia.

In the next section we will explain how we created the dataset.

### Data Statistics


<!-- TABLE_GENERATE_START -->

| Verb | After Agreement Between Taggers | Disagreements because of different answers | Disagreements because of different ignores | Total Literals After Agreement | Total Metaphors After Agreement | Split For Train Set | Split For Validation Set | Split For Test Set |
|---|---|---|---|---|---|------------------|-----------------------|--------------------|
| lakhalom_twitter | 131 | 42 | 42 | 26 | 105 | 83               | 21                    | 27                 |
| lakhalom_wiki | 93 | 53 | 69 | 34 | 59 | 58               | 16                    | 19                 |
| lakhatokh_twitter | 220 | 41 | 40 | 100 | 120 | 140              | 36                    | 44                 |
| lakhatokh_wiki | 288 | 54 | 6 | 286 | 2 | 182              | 47                    | 59                 |
| lauf_twitter | 166 | 8 | 29 | 14 | 152 | 104              | 28                    | 34                 |
| lauf_wiki | 172 | 11 | 67 | 161 | 11 | 108              | 28                    | 36                 |
| lefareq_twitter | 70 | 109 | 71 | 21 | 49 | 43               | 12                    | 15                 |
| lefareq_wiki | 96 | 48 | 213 | 89 | 7 | 60               | 16                    | 20                 |
| lehadliq_twitter | 270 | 14 | 19 | 194 | 76 | 172              | 43                    | 55                 |
| lehadliq_wiki | 375 | 13 | 13 | 370 | 5 | 239              | 61                    | 75                 |
| lekhabes_twitter | 203 | 2 | 26 | 155 | 48 | 129              | 33                    | 41                 |
| lekhabes_wiki | 55 | 1 | 0 | 51 | 4 | 34               | 9                     | 12                 |
| lekhofef_twitter | 289 | 7 | 11 | 18 | 271 | 183              | 47                    | 59                 |
| lekhofef_wiki | 107 | 3 | 6 | 73 | 34 | 67               | 18                    | 22                 |
| lerasek_twitter | 141 | 6 | 4 | 18 | 123 | 89               | 23                    | 29                 |
| lerasek_wiki | 154 | 3 | 12 | 110 | 44 | 98               | 25                    | 31                 |
| levashel_twitter | 280 | 3 | 19 | 264 | 16 | 177              | 46                    | 57                 |
| levashel_wiki | 228 | 3 | 19 | 221 | 7 | 144              | 37                    | 47                 |
| limkhoq_twitter | 222 | 16 | 22 | 123 | 99 | 141              | 36                    | 45                 |
| limkhoq_wiki | 212 | 11 | 29 | 109 | 103 | 134              | 35                    | 43                 |
| liqpots_twitter | 178 | 18 | 25 | 77 | 101 | 112              | 29                    | 37                 |
| liqpots_wiki | 168 | 6 | 28 | 163 | 5 | 107              | 27                    | 34                 |
| liqroa_twitter | 261 | 26 | 16 | 36 | 225 | 166              | 42                    | 53                 |
| liqroa_wiki | 226 | 18 | 19 | 147 | 79 | 143              | 37                    | 46                 |
| liqtsor_twitter | 256 | 18 | 28 | 43 | 213 | 163              | 41                    | 52                 |
| liqtsor_wiki | 167 | 11 | 2 | 99 | 68 | 106              | 27                    | 34                 |
| lirqod_twitter | 187 | 14 | 31 | 138 | 49 | 119              | 30                    | 38                 |
| lirqod_wiki | 214 | 18 | 34 | 211 | 3 | 135              | 35                    | 44                 |
| lishbor_twitter | 185 | 8 | 30 | 38 | 147 | 117              | 30                    | 38                 |
| lishbor_wiki | 244 | 6 | 50 | 69 | 175 | 156              | 39                    | 49                 |
| lishdod_twitter | 163 | 21 | 16 | 91 | 72 | 102              | 27                    | 34                 |
| lishdod_wiki | 209 | 2 | 4 | 209 | 0 | 133              | 34                    | 42                 |
| lishtot_twitter | 275 | 6 | 20 | 219 | 56 | 175              | 44                    | 56                 |
| lishtot_wiki | 192 | 7 | 2 | 192 | 0 | 122              | 31                    | 39                 |
| litkhon_twitter | 280 | 13 | 20 | 44 | 236 | 178              | 45                    | 57                 |
| litkhon_wiki | 87 | 0 | 0 | 85 | 2 | 54               | 15                    | 18                 |
| litpor_twitter | 193 | 4 | 13 | 26 | 167 | 122              | 31                    | 40                 |
| litpor_wiki | 178 | 2 | 14 | 153 | 25 | 113              | 29                    | 36                 |
| lizroa_twitter | 246 | 3 | 51 | 11 | 235 | 156              | 40                    | 50                 |
| lizroa_wiki | 127 | 2 | 171 | 67 | 60 | 80               | 21                    | 26                 |
| total | 7808 | 651 | 1291 | 4555 | 3253 | 4944             | 1271                  | 1593               |

<!-- TABLE_GENERATE_END -->


### Contributions
Created by Doron Ben-chorin, Matan Ben-chorin, Tomer Tzipori, Guided by Dr. Oren Mishali. This is our project as part of computer engineering studies in the Faculty of Electrical Engineering combined with Computer Science at Technion, Israel Institute of Technology. For more cooperation, please contact email:

Doron Ben-chorin: [email protected]

Matan Ben-chorin: [email protected]

Tomer Tzipori: [email protected]