import torch from torch.utils.data import Dataset from typing import List import os from mm_datautils import process_video_frames from transformers import BaseImageProcessor from concurrent.futures import ThreadPoolExecutor, as_completed class EnTubeDataset(Dataset): def __init__( self, folder_paths: List[str], image_processors: List[BaseImageProcessor], device: str ) -> None: self.file_paths = [] self.image_processors = image_processors self.device = device for folder_path in folder_paths: file_names = os.listdir(folder_path) for file_name in file_names: file_path = os.path.join(folder_path, file_name) self.file_paths.append(file_path) # with ThreadPoolExecutor(max_workers=get_optimal_workers()) as executor: # futures = [] # for folder_path in folder_paths: # print(f'@tcm: In EnTubeDataset.__init__(): folder_path={folder_path}') # file_names = os.listdir(folder_path) # for file_name in file_names: # file_path = os.path.join(folder_path, file_name) # print(f'@tcm: In EnTubeDataset.__init__(): file_path={file_path}') # future = executor.submit(process_video_frames, file_path, image_processor, device) # futures.append(future) # for future in as_completed(futures): # result = future.result() # if result is not None: # video, image_size = result # self.videos.append(video) # self.image_sizes.append(image_size) def __len__(self): return len(self.file_paths) def __getitem__(self, idx): print(f'@tcm: In EnTubeDataset.__getitem__(): idx={idx}') video, image_size = process_video_frames(self.file_paths[idx], self.image_processors, self.device) return video, image_size def collate_fn(batch): """ batch: list of samples from EnTubeDataset.__getitem__() """ assert isinstance(batch, list) assert isinstance(batch[0], tuple) image_sizes = batch[0][1] batch_videos = [video for video, _ in batch] batch_videos = [list(videos) for videos in zip(*batch_videos)] return batch_videos, image_sizes