tcm03
commited on
Commit
·
484e90b
1
Parent(s):
51273ab
collate_fn for dataloader and extract vision features
Browse files- preprocessing/constants.py +1 -1
- preprocessing/entube_dataset.py +42 -28
- preprocessing/main.py +19 -5
- preprocessing/mm_datautils.py +8 -8
preprocessing/constants.py
CHANGED
|
@@ -1 +1 @@
|
|
| 1 |
-
|
|
|
|
| 1 |
+
CHUNK_SIZE = 64 # adapted from LongVU: number of frames in each chunk
|
preprocessing/entube_dataset.py
CHANGED
|
@@ -1,8 +1,3 @@
|
|
| 1 |
-
import sys
|
| 2 |
-
from pathlib import Path
|
| 3 |
-
sys.path.append(str(Path.cwd()))
|
| 4 |
-
from annotation.utils import get_optimal_workers
|
| 5 |
-
|
| 6 |
import torch
|
| 7 |
from torch.utils.data import Dataset
|
| 8 |
from typing import List
|
|
@@ -16,36 +11,55 @@ class EnTubeDataset(Dataset):
|
|
| 16 |
def __init__(
|
| 17 |
self,
|
| 18 |
folder_paths: List[str],
|
| 19 |
-
|
| 20 |
device: str
|
| 21 |
) -> None:
|
| 22 |
-
self.
|
| 23 |
-
self.
|
| 24 |
self.device = device
|
| 25 |
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
for
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
|
| 44 |
|
| 45 |
|
| 46 |
def __len__(self):
|
| 47 |
-
return len(self.
|
| 48 |
|
| 49 |
def __getitem__(self, idx):
|
| 50 |
-
print(f'@tcm: In EnTubeDataset.__getitem__(): idx={idx}
|
| 51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import torch
|
| 2 |
from torch.utils.data import Dataset
|
| 3 |
from typing import List
|
|
|
|
| 11 |
def __init__(
|
| 12 |
self,
|
| 13 |
folder_paths: List[str],
|
| 14 |
+
image_processors: List[BaseImageProcessor],
|
| 15 |
device: str
|
| 16 |
) -> None:
|
| 17 |
+
self.file_paths = []
|
| 18 |
+
self.image_processors = image_processors
|
| 19 |
self.device = device
|
| 20 |
|
| 21 |
+
for folder_path in folder_paths:
|
| 22 |
+
file_names = os.listdir(folder_path)
|
| 23 |
+
for file_name in file_names:
|
| 24 |
+
file_path = os.path.join(folder_path, file_name)
|
| 25 |
+
self.file_paths.append(file_path)
|
| 26 |
+
|
| 27 |
+
# with ThreadPoolExecutor(max_workers=get_optimal_workers()) as executor:
|
| 28 |
+
# futures = []
|
| 29 |
+
# for folder_path in folder_paths:
|
| 30 |
+
# print(f'@tcm: In EnTubeDataset.__init__(): folder_path={folder_path}')
|
| 31 |
+
# file_names = os.listdir(folder_path)
|
| 32 |
+
# for file_name in file_names:
|
| 33 |
+
# file_path = os.path.join(folder_path, file_name)
|
| 34 |
+
# print(f'@tcm: In EnTubeDataset.__init__(): file_path={file_path}')
|
| 35 |
+
# future = executor.submit(process_video_frames, file_path, image_processor, device)
|
| 36 |
+
# futures.append(future)
|
| 37 |
+
|
| 38 |
+
# for future in as_completed(futures):
|
| 39 |
+
# result = future.result()
|
| 40 |
+
# if result is not None:
|
| 41 |
+
# video, image_size = result
|
| 42 |
+
# self.videos.append(video)
|
| 43 |
+
# self.image_sizes.append(image_size)
|
| 44 |
|
| 45 |
|
| 46 |
|
| 47 |
def __len__(self):
|
| 48 |
+
return len(self.file_paths)
|
| 49 |
|
| 50 |
def __getitem__(self, idx):
|
| 51 |
+
print(f'@tcm: In EnTubeDataset.__getitem__(): idx={idx}')
|
| 52 |
+
video, image_size = process_video_frames(self.file_paths[idx], self.image_processors, self.device)
|
| 53 |
+
return video, image_size
|
| 54 |
+
|
| 55 |
+
def collate_fn(batch):
|
| 56 |
+
"""
|
| 57 |
+
batch: list of samples from EnTubeDataset.__getitem__()
|
| 58 |
+
"""
|
| 59 |
+
assert isinstance(batch, list)
|
| 60 |
+
assert isinstance(batch[0], tuple)
|
| 61 |
+
|
| 62 |
+
image_sizes = batch[0][1]
|
| 63 |
+
batch_videos = [video for video, _ in batch]
|
| 64 |
+
batch_videos = [list(videos) for videos in zip(*batch_videos)]
|
| 65 |
+
return batch_videos, image_sizes
|
preprocessing/main.py
CHANGED
|
@@ -1,3 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
import argparse
|
| 3 |
from typing import List, Dict
|
|
@@ -8,7 +13,7 @@ from safetensors.torch import save_file
|
|
| 8 |
from collections import defaultdict
|
| 9 |
import logging
|
| 10 |
from multiprocessing import cpu_count
|
| 11 |
-
from entube_dataset import EnTubeDataset
|
| 12 |
from torch.utils.data import Dataset, DataLoader
|
| 13 |
from transformers import BaseImageProcessor
|
| 14 |
|
|
@@ -74,13 +79,22 @@ if __name__ == "__main__":
|
|
| 74 |
|
| 75 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 76 |
entube_dataset = EnTubeDataset(folder_paths, image_processors, device)
|
| 77 |
-
dataloader = DataLoader(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
|
| 79 |
for batch_idx, (videos, image_sizes) in enumerate(dataloader):
|
| 80 |
print(f"Processing batch {batch_idx + 1}/{len(dataloader)}")
|
| 81 |
-
|
| 82 |
-
|
|
|
|
|
|
|
|
|
|
| 83 |
break
|
| 84 |
|
| 85 |
|
| 86 |
-
save_file(dict(data_tensor), args.output_file)
|
|
|
|
| 1 |
+
import sys
|
| 2 |
+
from pathlib import Path
|
| 3 |
+
sys.path.append(str(Path.cwd()))
|
| 4 |
+
from annotation.utils import get_optimal_workers
|
| 5 |
+
|
| 6 |
import os
|
| 7 |
import argparse
|
| 8 |
from typing import List, Dict
|
|
|
|
| 13 |
from collections import defaultdict
|
| 14 |
import logging
|
| 15 |
from multiprocessing import cpu_count
|
| 16 |
+
from entube_dataset import EnTubeDataset, collate_fn
|
| 17 |
from torch.utils.data import Dataset, DataLoader
|
| 18 |
from transformers import BaseImageProcessor
|
| 19 |
|
|
|
|
| 79 |
|
| 80 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 81 |
entube_dataset = EnTubeDataset(folder_paths, image_processors, device)
|
| 82 |
+
dataloader = DataLoader(
|
| 83 |
+
entube_dataset,
|
| 84 |
+
batch_size=4,
|
| 85 |
+
collate_fn=collate_fn,
|
| 86 |
+
# num_workers=get_optimal_workers()
|
| 87 |
+
num_workers=1
|
| 88 |
+
)
|
| 89 |
|
| 90 |
for batch_idx, (videos, image_sizes) in enumerate(dataloader):
|
| 91 |
print(f"Processing batch {batch_idx + 1}/{len(dataloader)}")
|
| 92 |
+
assert isinstance(videos, list), "List of videos features for each processor (vision encoder)"
|
| 93 |
+
assert isinstance(videos[0], list) or isinstance(videos[0], torch.Tensor), "List of videos in the batch"
|
| 94 |
+
image_aux_features_list = processor.prepare_mm_features(videos, image_sizes)
|
| 95 |
+
for i, image_aux_features in enumerate(image_aux_features_list):
|
| 96 |
+
print(f"@tcm: In main(): image_aux_features[{i}].shape={image_aux_features.shape}")
|
| 97 |
break
|
| 98 |
|
| 99 |
|
| 100 |
+
# save_file(dict(data_tensor), args.output_file)
|
preprocessing/mm_datautils.py
CHANGED
|
@@ -22,7 +22,7 @@ def expand2square(pil_img, background_color):
|
|
| 22 |
|
| 23 |
def process_images(
|
| 24 |
images: torch.Tensor,
|
| 25 |
-
image_processor: BaseImageProcessor,
|
| 26 |
device: str
|
| 27 |
) -> Union[torch.Tensor, List[torch.Tensor]]:
|
| 28 |
# images.shape: (4294, 360, 640, 3)
|
|
@@ -80,7 +80,7 @@ def process_images(
|
|
| 80 |
|
| 81 |
def process_video_frames(
|
| 82 |
video_path: str,
|
| 83 |
-
|
| 84 |
device: str
|
| 85 |
) -> Tuple[List[torch.Tensor], List[Tuple[int, int]]]:
|
| 86 |
vr = VideoReader(video_path, ctx=cpu(0), num_threads=1)
|
|
@@ -89,17 +89,17 @@ def process_video_frames(
|
|
| 89 |
print(f'@tcm: In process_video_frames(): # frames = {len(frame_indices)}')
|
| 90 |
image_sizes = [vr[0].shape[:2]]
|
| 91 |
|
| 92 |
-
video = [[] for _ in range(len(
|
| 93 |
-
for i in range(0, len(frame_indices),
|
| 94 |
-
print(f'@tcm: In process_video_frames(): segment {i/
|
| 95 |
-
sub_frame_indices = frame_indices[i:min(i+
|
| 96 |
sub_videos = []
|
| 97 |
process_time = time.time()
|
| 98 |
for frame_index in sub_frame_indices:
|
| 99 |
img = vr[frame_index].asnumpy()
|
| 100 |
sub_videos.append(img)
|
| 101 |
sub_videos = np.stack(sub_videos) # shape: (num_frames, height, width, channels)
|
| 102 |
-
sub_videos = process_images(sub_videos,
|
| 103 |
print(f'@tcm: In process_video_frames(): process_time={time.time()-process_time:4f}')
|
| 104 |
assert len(sub_videos) == len(video)
|
| 105 |
for j, sub_video in enumerate(sub_videos):
|
|
@@ -120,7 +120,7 @@ def process_video_frames(
|
|
| 120 |
# print(f'@tcm: In process_video_frames(): vectorize_time={time.time()-vectorize_time:4f}')
|
| 121 |
# image_sizes = [video[0].shape[:2]]
|
| 122 |
# process_time = time.time()
|
| 123 |
-
# video = process_images(video,
|
| 124 |
# print(f'@tcm: In process_video_frames(): process_time={time.time()-process_time:4f}')
|
| 125 |
video = [item.unsqueeze(0) for item in video]
|
| 126 |
return video, image_sizes
|
|
|
|
| 22 |
|
| 23 |
def process_images(
|
| 24 |
images: torch.Tensor,
|
| 25 |
+
image_processor: List[BaseImageProcessor],
|
| 26 |
device: str
|
| 27 |
) -> Union[torch.Tensor, List[torch.Tensor]]:
|
| 28 |
# images.shape: (4294, 360, 640, 3)
|
|
|
|
| 80 |
|
| 81 |
def process_video_frames(
|
| 82 |
video_path: str,
|
| 83 |
+
image_processors: List[BaseImageProcessor],
|
| 84 |
device: str
|
| 85 |
) -> Tuple[List[torch.Tensor], List[Tuple[int, int]]]:
|
| 86 |
vr = VideoReader(video_path, ctx=cpu(0), num_threads=1)
|
|
|
|
| 89 |
print(f'@tcm: In process_video_frames(): # frames = {len(frame_indices)}')
|
| 90 |
image_sizes = [vr[0].shape[:2]]
|
| 91 |
|
| 92 |
+
video = [[] for _ in range(len(image_processors))]
|
| 93 |
+
for i in range(0, len(frame_indices), CHUNK_SIZE):
|
| 94 |
+
print(f'@tcm: In process_video_frames(): segment {int(i/CHUNK_SIZE)}')
|
| 95 |
+
sub_frame_indices = frame_indices[i:min(i+CHUNK_SIZE, len(frame_indices))]
|
| 96 |
sub_videos = []
|
| 97 |
process_time = time.time()
|
| 98 |
for frame_index in sub_frame_indices:
|
| 99 |
img = vr[frame_index].asnumpy()
|
| 100 |
sub_videos.append(img)
|
| 101 |
sub_videos = np.stack(sub_videos) # shape: (num_frames, height, width, channels)
|
| 102 |
+
sub_videos = process_images(sub_videos, image_processors, device)
|
| 103 |
print(f'@tcm: In process_video_frames(): process_time={time.time()-process_time:4f}')
|
| 104 |
assert len(sub_videos) == len(video)
|
| 105 |
for j, sub_video in enumerate(sub_videos):
|
|
|
|
| 120 |
# print(f'@tcm: In process_video_frames(): vectorize_time={time.time()-vectorize_time:4f}')
|
| 121 |
# image_sizes = [video[0].shape[:2]]
|
| 122 |
# process_time = time.time()
|
| 123 |
+
# video = process_images(video, image_processors, device)
|
| 124 |
# print(f'@tcm: In process_video_frames(): process_time={time.time()-process_time:4f}')
|
| 125 |
video = [item.unsqueeze(0) for item in video]
|
| 126 |
return video, image_sizes
|