Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
parquet
Sub-tasks:
sentiment-classification
Languages:
French
Size:
100K - 1M
License:
Commit
·
56ded24
1
Parent(s):
489fda2
Delete loading script
Browse files- allocine.py +0 -106
allocine.py
DELETED
|
@@ -1,106 +0,0 @@
|
|
| 1 |
-
"""Allocine Dataset: A Large-Scale French Movie Reviews Dataset."""
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
import json
|
| 5 |
-
|
| 6 |
-
import datasets
|
| 7 |
-
from datasets.tasks import TextClassification
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
_CITATION = """\
|
| 11 |
-
@misc{blard2019allocine,
|
| 12 |
-
author = {Blard, Theophile},
|
| 13 |
-
title = {french-sentiment-analysis-with-bert},
|
| 14 |
-
year = {2020},
|
| 15 |
-
publisher = {GitHub},
|
| 16 |
-
journal = {GitHub repository},
|
| 17 |
-
howpublished={\\url{https://github.com/TheophileBlard/french-sentiment-analysis-with-bert}},
|
| 18 |
-
}
|
| 19 |
-
"""
|
| 20 |
-
|
| 21 |
-
_DESCRIPTION = """\
|
| 22 |
-
Allocine Dataset: A Large-Scale French Movie Reviews Dataset.
|
| 23 |
-
This is a dataset for binary sentiment classification, made of user reviews scraped from Allocine.fr.
|
| 24 |
-
It contains 100k positive and 100k negative reviews divided into 3 balanced splits: train (160k reviews), val (20k) and test (20k).
|
| 25 |
-
"""
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
class AllocineConfig(datasets.BuilderConfig):
|
| 29 |
-
"""BuilderConfig for Allocine."""
|
| 30 |
-
|
| 31 |
-
def __init__(self, **kwargs):
|
| 32 |
-
"""BuilderConfig for Allocine.
|
| 33 |
-
|
| 34 |
-
Args:
|
| 35 |
-
**kwargs: keyword arguments forwarded to super.
|
| 36 |
-
"""
|
| 37 |
-
super(AllocineConfig, self).__init__(**kwargs)
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
class AllocineDataset(datasets.GeneratorBasedBuilder):
|
| 41 |
-
"""Allocine Dataset: A Large-Scale French Movie Reviews Dataset."""
|
| 42 |
-
|
| 43 |
-
_DOWNLOAD_URL = "https://github.com/TheophileBlard/french-sentiment-analysis-with-bert/raw/master/allocine_dataset/data.tar.bz2"
|
| 44 |
-
_TRAIN_FILE = "train.jsonl"
|
| 45 |
-
_VAL_FILE = "val.jsonl"
|
| 46 |
-
_TEST_FILE = "test.jsonl"
|
| 47 |
-
|
| 48 |
-
BUILDER_CONFIGS = [
|
| 49 |
-
AllocineConfig(
|
| 50 |
-
name="allocine",
|
| 51 |
-
version=datasets.Version("1.0.0"),
|
| 52 |
-
description="Allocine Dataset: A Large-Scale French Movie Reviews Dataset",
|
| 53 |
-
),
|
| 54 |
-
]
|
| 55 |
-
|
| 56 |
-
def _info(self):
|
| 57 |
-
return datasets.DatasetInfo(
|
| 58 |
-
description=_DESCRIPTION,
|
| 59 |
-
features=datasets.Features(
|
| 60 |
-
{
|
| 61 |
-
"review": datasets.Value("string"),
|
| 62 |
-
"label": datasets.features.ClassLabel(names=["neg", "pos"]),
|
| 63 |
-
}
|
| 64 |
-
),
|
| 65 |
-
supervised_keys=None,
|
| 66 |
-
homepage="https://github.com/TheophileBlard/french-sentiment-analysis-with-bert",
|
| 67 |
-
citation=_CITATION,
|
| 68 |
-
task_templates=[TextClassification(text_column="review", label_column="label")],
|
| 69 |
-
)
|
| 70 |
-
|
| 71 |
-
def _split_generators(self, dl_manager):
|
| 72 |
-
archive_path = dl_manager.download(self._DOWNLOAD_URL)
|
| 73 |
-
data_dir = "data"
|
| 74 |
-
return [
|
| 75 |
-
datasets.SplitGenerator(
|
| 76 |
-
name=datasets.Split.TRAIN,
|
| 77 |
-
gen_kwargs={
|
| 78 |
-
"filepath": f"{data_dir}/{self._TRAIN_FILE}",
|
| 79 |
-
"files": dl_manager.iter_archive(archive_path),
|
| 80 |
-
},
|
| 81 |
-
),
|
| 82 |
-
datasets.SplitGenerator(
|
| 83 |
-
name=datasets.Split.VALIDATION,
|
| 84 |
-
gen_kwargs={
|
| 85 |
-
"filepath": f"{data_dir}/{self._VAL_FILE}",
|
| 86 |
-
"files": dl_manager.iter_archive(archive_path),
|
| 87 |
-
},
|
| 88 |
-
),
|
| 89 |
-
datasets.SplitGenerator(
|
| 90 |
-
name=datasets.Split.TEST,
|
| 91 |
-
gen_kwargs={
|
| 92 |
-
"filepath": f"{data_dir}/{self._TEST_FILE}",
|
| 93 |
-
"files": dl_manager.iter_archive(archive_path),
|
| 94 |
-
},
|
| 95 |
-
),
|
| 96 |
-
]
|
| 97 |
-
|
| 98 |
-
def _generate_examples(self, filepath, files):
|
| 99 |
-
"""Generate Allocine examples."""
|
| 100 |
-
for path, file in files:
|
| 101 |
-
if path == filepath:
|
| 102 |
-
for id_, row in enumerate(file):
|
| 103 |
-
data = json.loads(row.decode("utf-8"))
|
| 104 |
-
review = data["review"]
|
| 105 |
-
label = "neg" if data["polarity"] == 0 else "pos"
|
| 106 |
-
yield id_, {"review": review, "label": label}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|