Update metrics/bleu.py
Browse files- metrics/bleu.py +38 -121
metrics/bleu.py
CHANGED
@@ -1,122 +1,39 @@
|
|
1 |
-
# Copied from https://github.com/
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
"
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
Returns:
|
39 |
-
The Counter containing all n-grams upto max_order in segment
|
40 |
-
with a count of how many times each n-gram occurred.
|
41 |
-
"""
|
42 |
-
ngram_counts = collections.Counter()
|
43 |
-
for order in range(1, max_order + 1):
|
44 |
-
for i in range(0, len(segment) - order + 1):
|
45 |
-
ngram = tuple(segment[i : i + order])
|
46 |
-
ngram_counts[ngram] += 1
|
47 |
-
return ngram_counts
|
48 |
-
|
49 |
-
|
50 |
-
def compute_bleu(translation_corpus, reference_corpus, max_order=4, smooth=False):
|
51 |
-
"""Computes BLEU score of translated segments against one or more references.
|
52 |
-
|
53 |
-
Args:
|
54 |
-
translation_corpus: list of translations to score. Each translation
|
55 |
-
should be tokenized into a list of tokens.
|
56 |
-
reference_corpus: list of lists of references for each translation. Each
|
57 |
-
reference should be tokenized into a list of tokens.
|
58 |
-
max_order: Maximum n-gram order to use when computing BLEU score.
|
59 |
-
smooth: Whether or not to apply Lin et al. 2004 smoothing.
|
60 |
-
|
61 |
-
Returns:
|
62 |
-
3-Tuple with the BLEU score, n-gram precisions, geometric mean of n-gram
|
63 |
-
precisions and brevity penalty.
|
64 |
-
"""
|
65 |
-
matches_by_order = [0] * max_order
|
66 |
-
possible_matches_by_order = [0] * max_order
|
67 |
-
reference_length = 0
|
68 |
-
translation_length = 0
|
69 |
-
for (references, translation) in zip(reference_corpus, translation_corpus):
|
70 |
-
reference_length += min(len(r) for r in references)
|
71 |
-
translation_length += len(translation)
|
72 |
-
|
73 |
-
merged_ref_ngram_counts = collections.Counter()
|
74 |
-
for reference in references:
|
75 |
-
merged_ref_ngram_counts |= _get_ngrams(reference, max_order)
|
76 |
-
translation_ngram_counts = _get_ngrams(translation, max_order)
|
77 |
-
overlap = translation_ngram_counts & merged_ref_ngram_counts
|
78 |
-
for ngram in overlap:
|
79 |
-
matches_by_order[len(ngram) - 1] += overlap[ngram]
|
80 |
-
for order in range(1, max_order + 1):
|
81 |
-
possible_matches = len(translation) - order + 1
|
82 |
-
if possible_matches > 0:
|
83 |
-
possible_matches_by_order[order - 1] += possible_matches
|
84 |
-
|
85 |
-
precisions = [0] * max_order
|
86 |
-
for i in range(0, max_order):
|
87 |
-
if smooth:
|
88 |
-
precisions[i] = (matches_by_order[i] + 1.0) / (possible_matches_by_order[i] + 1.0)
|
89 |
-
else:
|
90 |
-
if possible_matches_by_order[i] > 0:
|
91 |
-
precisions[i] = float(matches_by_order[i]) / possible_matches_by_order[i]
|
92 |
-
else:
|
93 |
-
precisions[i] = 0.0
|
94 |
-
|
95 |
-
if min(precisions) > 0:
|
96 |
-
p_log_sum = sum((1.0 / max_order) * math.log(p) for p in precisions)
|
97 |
-
geo_mean = math.exp(p_log_sum)
|
98 |
-
else:
|
99 |
-
geo_mean = 0
|
100 |
-
|
101 |
-
ratio = float(translation_length) / reference_length
|
102 |
-
|
103 |
-
if ratio > 1.0:
|
104 |
-
bp = 1.0
|
105 |
-
else:
|
106 |
-
bp = math.exp(1 - 1.0 / ratio)
|
107 |
-
|
108 |
-
bleu = geo_mean * bp
|
109 |
-
|
110 |
-
return {
|
111 |
-
"bleu": bleu,
|
112 |
-
**{f"precision-{i+1}": round(p, 4) for i, p in enumerate(precisions)},
|
113 |
-
"brevity_penalty": bp,
|
114 |
-
"length_ratio": ratio,
|
115 |
-
"translation_length": translation_length,
|
116 |
-
"reference_length": reference_length,
|
117 |
}
|
118 |
-
|
119 |
-
|
120 |
-
def postprocess_text(text):
|
121 |
-
# TODO: Tokenize properly
|
122 |
-
return text.split()
|
|
|
1 |
+
# Copied from https://github.com/huggingface/datasets/blob/76bb45964df1e62d1411b0a9e9fc673e9a791c9a/metrics/sacrebleu/sacrebleu.py
|
2 |
+
|
3 |
+
import sacrebleu as scb
|
4 |
+
|
5 |
+
|
6 |
+
def compute_bleu(
|
7 |
+
predictions,
|
8 |
+
references,
|
9 |
+
smooth_method="exp",
|
10 |
+
smooth_value=None,
|
11 |
+
force=False,
|
12 |
+
lowercase=False,
|
13 |
+
tokenize=None,
|
14 |
+
use_effective_order=False,
|
15 |
+
):
|
16 |
+
references_per_prediction = len(references[0])
|
17 |
+
if any(len(refs) != references_per_prediction for refs in references):
|
18 |
+
raise ValueError("Sacrebleu requires the same number of references for each prediction")
|
19 |
+
transformed_references = [[refs[i] for refs in references] for i in range(references_per_prediction)]
|
20 |
+
output = scb.corpus_bleu(
|
21 |
+
predictions,
|
22 |
+
transformed_references,
|
23 |
+
smooth_method=smooth_method,
|
24 |
+
smooth_value=smooth_value,
|
25 |
+
force=force,
|
26 |
+
lowercase=lowercase,
|
27 |
+
use_effective_order=use_effective_order,
|
28 |
+
**(dict(tokenize=tokenize) if tokenize else {}),
|
29 |
+
)
|
30 |
+
output_dict = {
|
31 |
+
"score": output.score,
|
32 |
+
"counts": output.counts,
|
33 |
+
"totals": output.totals,
|
34 |
+
"precisions": output.precisions,
|
35 |
+
"bp": output.bp,
|
36 |
+
"sys_len": output.sys_len,
|
37 |
+
"ref_len": output.ref_len,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
}
|
39 |
+
return output_dict
|
|
|
|
|
|
|
|