Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,190 @@
|
|
1 |
---
|
2 |
license: mit
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: mit
|
3 |
---
|
4 |
+
|
5 |
+
# Visual Dexterity
|
6 |
+
|
7 |
+
---
|
8 |
+
|
9 |
+
This is the codebase for [Visual Dexterity: In-Hand Reorientation of Novel and Complex Object Shapes](https://arxiv.org/abs/2211.11744), accepted by Science Robotics. While we provide the code that uses the D'Claw robot hand, it can be easily adapted to other robot hands.
|
10 |
+
|
11 |
+
### [[Project Page]](https://taochenshh.github.io/projects/visual-dexterity), [[Science Robotics]](https://www.science.org/doi/10.1126/scirobotics.adc9244), [[arXiv]](https://arxiv.org/abs/2211.11744), [[Github]](https://github.com/Improbable-AI/dexenv)
|
12 |
+
|
13 |
+
[](https://doi.org/10.5281/zenodo.10039109)
|
14 |
+
|
15 |
+
|
16 |
+
## :books: Citation
|
17 |
+
|
18 |
+
```
|
19 |
+
@article{chen2023visual,
|
20 |
+
author = {Tao Chen and Megha Tippur and Siyang Wu and Vikash Kumar and Edward Adelson and Pulkit Agrawal },
|
21 |
+
title = {Visual dexterity: In-hand reorientation of novel and complex object shapes},
|
22 |
+
journal = {Science Robotics},
|
23 |
+
volume = {8},
|
24 |
+
number = {84},
|
25 |
+
pages = {eadc9244},
|
26 |
+
year = {2023},
|
27 |
+
doi = {10.1126/scirobotics.adc9244},
|
28 |
+
URL = {https://www.science.org/doi/abs/10.1126/scirobotics.adc9244},
|
29 |
+
eprint = {https://www.science.org/doi/pdf/10.1126/scirobotics.adc9244},
|
30 |
+
}
|
31 |
+
```
|
32 |
+
|
33 |
+
```
|
34 |
+
@article{chen2021system,
|
35 |
+
title={A System for General In-Hand Object Re-Orientation},
|
36 |
+
author={Chen, Tao and Xu, Jie and Agrawal, Pulkit},
|
37 |
+
journal={Conference on Robot Learning},
|
38 |
+
year={2021}
|
39 |
+
}
|
40 |
+
```
|
41 |
+
|
42 |
+
## :gear: Installation
|
43 |
+
|
44 |
+
#### Dependencies
|
45 |
+
* [PyTorch](https://pytorch.org/)
|
46 |
+
* [PyTorch3D](https://pytorch3d.org/)
|
47 |
+
* [Isaac Gym](https://developer.nvidia.com/isaac-gym) (results in the paper are trained with Preview 3.)
|
48 |
+
* [IsaacGymEnvs](https://github.com/NVIDIA-Omniverse/IsaacGymEnvs)
|
49 |
+
* [Minkowski Engine](https://github.com/NVIDIA/MinkowskiEngine)
|
50 |
+
* [Wandb](https://wandb.ai/site)
|
51 |
+
|
52 |
+
|
53 |
+
#### Download packages
|
54 |
+
You can either use a virtual python environment or a docker for training. Below we show the process to set up the docker image. If you prefer using a virtual python environment, you can just install the dependencies in the virtual environment.
|
55 |
+
|
56 |
+
Here is how the directory looks like:
|
57 |
+
```
|
58 |
+
-- Root
|
59 |
+
---- dexenv
|
60 |
+
---- IsaacGymEnvs
|
61 |
+
---- isaacgym
|
62 |
+
```
|
63 |
+
|
64 |
+
```
|
65 |
+
# download packages
|
66 |
+
git clone [email protected]:Improbable-AI/dexenv.git
|
67 |
+
git clone https://github.com/NVIDIA-Omniverse/IsaacGymEnvs.git
|
68 |
+
|
69 |
+
# download IsaacGym from:
|
70 |
+
# (https://developer.nvidia.com/isaac-gym)
|
71 |
+
# unzip it in the current directory
|
72 |
+
|
73 |
+
# remove the package dependencies in the setup.py in isaacgym/python and IsaacGymEnvs/
|
74 |
+
```
|
75 |
+
|
76 |
+
#### Download the assets
|
77 |
+
|
78 |
+
Download the robot and object assets from [here](https://huggingface.co/datasets/taochenshh/dexenv/blob/main/assets.zip), and unzip it to `dexenv/dexenv/`.
|
79 |
+
|
80 |
+
#### Download the pretrained models
|
81 |
+
|
82 |
+
Download the pretrained checkpoints from [here](https://huggingface.co/datasets/taochenshh/dexenv/blob/main/pretrained.zip), and unzip it to `dexenv/dexenv/`.
|
83 |
+
|
84 |
+
#### Prepare the docker image
|
85 |
+
1. You can download a pre-built docker image:
|
86 |
+
```
|
87 |
+
docker pull improbableailab/dexenv:latest
|
88 |
+
```
|
89 |
+
2. Or you can build the docker image locally:
|
90 |
+
```
|
91 |
+
cd dexenv/docker
|
92 |
+
python docker_build.py -f Dockerfile
|
93 |
+
```
|
94 |
+
|
95 |
+
#### Launch the docker image
|
96 |
+
|
97 |
+
To run the docker image, you would need to have the nvidia-docker installed. Follow the instructions [here](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html)
|
98 |
+
```bash
|
99 |
+
# launch docker
|
100 |
+
./run_image.sh # you would need to have wandb installed in the python environment
|
101 |
+
```
|
102 |
+
|
103 |
+
In another terminal
|
104 |
+
```bash
|
105 |
+
./visualize_access.sh
|
106 |
+
# after this, you can close it, just need to run this once after every machine reboot
|
107 |
+
```
|
108 |
+
|
109 |
+
|
110 |
+
## :scroll: Usage
|
111 |
+
|
112 |
+
#### :bulb: Training Teacher
|
113 |
+
|
114 |
+
```bash
|
115 |
+
# if you are running in the docker, you might need to run the following line
|
116 |
+
git config --global --add safe.directory /workspace/dexenv
|
117 |
+
|
118 |
+
# debug teacher (run debug first to make sure everything runs)
|
119 |
+
cd /workspace/dexenv/dexenv/train/teacher
|
120 |
+
python mlp.py -cn=debug_dclaw # show the GUI
|
121 |
+
python mlp.py task.headless=True -cn=debug_dclaw # in headless mode
|
122 |
+
|
123 |
+
# if you wanna just train the hand to reorient a cube, add `task.env.name=DClawBase`
|
124 |
+
python mlp.py task.env.name=DClawBase -cn=debug_dclaw
|
125 |
+
|
126 |
+
# training teacher
|
127 |
+
cd /workspace/dexenv/dexenv/train/teacher
|
128 |
+
python mlp.py -cn=dclaw
|
129 |
+
python mlp.py task.task.randomize=False -cn=dclaw # turn off domain randomization
|
130 |
+
python mlp.py task.env.name=DClawBase task.task.randomize=False -cn=dclaw # reorient a cube without domain randomization
|
131 |
+
|
132 |
+
# if you wanna change the number of objects or the number of environments
|
133 |
+
python mlp.py alg.num_envs=4000 task.obj.num_objs=10 -cn=dclaw
|
134 |
+
|
135 |
+
# testing teacher
|
136 |
+
cd /workspace/dexenv/dexenv/train/teacher
|
137 |
+
python mlp.py alg.num_envs=20 resume_id=<wandb exp ID> -cn=test_dclaw
|
138 |
+
# e.g. python mlp.py alg.num_envs=20 resume_id=dexenv/1d1tvd0b -cn=test_dclaw
|
139 |
+
|
140 |
+
```
|
141 |
+
|
142 |
+
#### :high_brightness: Training Student with Synthetic Point Cloud (student stage 1)
|
143 |
+
|
144 |
+
```
|
145 |
+
# debug student
|
146 |
+
cd /workspace/dexenv/dexenv/train/student
|
147 |
+
python rnn.py -cn=debug_dclaw_fptd
|
148 |
+
# by default, the command above used the pretrained teacher model you downloaded above,
|
149 |
+
#if you wanna use another teacher model, add `alg.expert_path=<path>`
|
150 |
+
python rnn.py alg.expert_path=<path to teacher model> -cn=debug_dclaw_fptd
|
151 |
+
|
152 |
+
# training student
|
153 |
+
cd /workspace/dexenv/dexenv/train/student
|
154 |
+
python rnn.py -cn=dclaw_fptd
|
155 |
+
|
156 |
+
# testing student
|
157 |
+
cd /workspace/dexenv/dexenv/train/student
|
158 |
+
python rnn.py resume_id=<wandb exp ID> -cn=test_dclaw_fptd
|
159 |
+
```
|
160 |
+
|
161 |
+
#### :tada: Training Student with rendered Point Cloud (student stage 2)
|
162 |
+
|
163 |
+
```
|
164 |
+
# debug student
|
165 |
+
cd /workspace/dexenv/dexenv/train/student
|
166 |
+
python rnn.py -cn=debug_dclaw_rptd
|
167 |
+
|
168 |
+
# training student
|
169 |
+
cd /workspace/dexenv/dexenv/train/student
|
170 |
+
python rnn.py -cn=dclaw_rptd
|
171 |
+
|
172 |
+
# testing student
|
173 |
+
cd /workspace/dexenv/dexenv/train/student
|
174 |
+
python rnn.py resume_id=<wandb exp ID> -cn=test_dclaw_rptd
|
175 |
+
```
|
176 |
+
|
177 |
+
## :rocket: Pre-trained models
|
178 |
+
|
179 |
+
We provide the pre-trained models for both the teacher and the student (stage 2) in `dexenv/expert/artifacts`. The models were trained using Isaac Gym preview 3.
|
180 |
+
|
181 |
+
```
|
182 |
+
# to see the teacher pretrained model
|
183 |
+
cd /workspace/dexenv/dexenv/train/teacher
|
184 |
+
python demo.py
|
185 |
+
|
186 |
+
# to see the student pretrained model
|
187 |
+
cd /workspace/dexenv/dexenv/train/student
|
188 |
+
python rnn.py alg.num_envs=20 task.obj.num_objs=10 alg.pretrain_model=/workspace/dexenv/dexenv/pretrained/artifacts/student/train-model.pt test_pretrain=True test_num=3 -cn=debug_dclaw_rptd
|
189 |
+
```
|
190 |
+
|