Datasets:
Tasks:
Image Classification
Modalities:
Image
Sub-tasks:
multi-class-image-classification
Languages:
English
Size:
100B<n<1T
License:
File size: 2,834 Bytes
5ac94b0 b1ed3c8 5ac94b0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
---
license: cc-by-4.0
language:
- en
tags:
- image
- dehazing
- dehazer
- classification
- haze
- hazy
- hazespace2m
- removal
- enhancement
- restoration
- image restoration
- image enhancement
- single image dehazing
- multi weather dehazing
- dehazing dataset
pretty_name: >-
Single Image Dehazing Dataset with Over 2 Million Hazy Images of three
different types of hazes such as fog, cloud, and environmental haze (EH) of 10
different intense levels.
size_categories:
- 100B<n<1T
task_categories: # Full list at https://github.com/huggingface/huggingface.js/blob/main/packages/tasks/src/pipelines.ts
- image-classification
task_ids:
- multi-class-image-classification
---
<h4 align="center"><strong><a href="https://2024.acmmm.org/">Published in ACM Multimedia 2024, Melbourne, Australia</a></strong></h4>
<h2 align="center"><strong>HazeSpace2M: A Dataset for Haze Aware Single Image Dehazing <a href="https://tanvirnwu.github.io/assets/papers/HazeSpace2M.pdf" target="_blank">[Paper]</a></strong></h2>
<h6 align="center">Md Tanvir Islam<sup> 1</sup>, Nasir Rahim<sup> 1</sup>, Saeed Anwar<sup> 2</sup>, Muhammad Saqib<sup> 3</sup>, Sambit Bakshi<sup> 4</sup>, Khan Muhammad<sup> 1, *</sup></h6>
<h6 align="center">| 1. Sungkyunkwan University, South Korea | 2. KFUPM, KSA | 3. UTS, Australia | 4. NIT Rourkela, India || *Corresponding Author |</h6>
<hr>
# IMPORTANT UPDATES
- 2025/03/22 | Fixed the indexing issues of the [Farmland](https://huggingface.co/datasets/tanvirnwu/HazeSpace2M/tree/main/Farmland) subset.
- 2025/03/21 | Identified an indexing issue between GT and Haze images. We are working on it to fix the issues.
<hr>
<h1><b></b>Dataset Description</b></h1>
<b>GitHub Repository:</b> https://github.com/tanvirnwu/HazeSpace2M
<b>Paper:</b> https://dl.acm.org/doi/abs/10.1145/3664647.3681382
<b>Point of Contact:</b> [email protected]
<b>Dataset Size:</b> Outdoor: 269GB | Street: 295GB | Farmland: 90GB | Satellite: 153GB
<hr>
# HazeSpace2M Dataset

<hr>
# HazeSpace2M Folder Structure

<hr>
# Proposed Multi-stage Haze Aware Dehazing

<hr>
# Cite This Paper
If you find our work useful in your research, please consider citing our paper:
```bibtex
@inproceedings{hazespace2m,
title={HazeSpace2M: A Dataset for Haze Aware Single Image Dehazing},
author={Islam, Md Tanvir and Rahim, Nasir and Anwar, Saeed and Saqib Muhammad and Bakshi, Sambit and Muhammad, Khan},
booktitle={Proceedings of the 32nd ACM International Conference on Multimedia},
year={2024},
doi = {10.1145/3664647.3681382}
}
|