2023-09-03 19:44:59,244 ---------------------------------------------------------------------------------------------------- 2023-09-03 19:44:59,245 Model: "SequenceTagger( (embeddings): TransformerWordEmbeddings( (model): BertModel( (embeddings): BertEmbeddings( (word_embeddings): Embedding(32001, 768) (position_embeddings): Embedding(512, 768) (token_type_embeddings): Embedding(2, 768) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) (encoder): BertEncoder( (layer): ModuleList( (0-11): 12 x BertLayer( (attention): BertAttention( (self): BertSelfAttention( (query): Linear(in_features=768, out_features=768, bias=True) (key): Linear(in_features=768, out_features=768, bias=True) (value): Linear(in_features=768, out_features=768, bias=True) (dropout): Dropout(p=0.1, inplace=False) ) (output): BertSelfOutput( (dense): Linear(in_features=768, out_features=768, bias=True) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) (intermediate): BertIntermediate( (dense): Linear(in_features=768, out_features=3072, bias=True) (intermediate_act_fn): GELUActivation() ) (output): BertOutput( (dense): Linear(in_features=3072, out_features=768, bias=True) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) ) ) (pooler): BertPooler( (dense): Linear(in_features=768, out_features=768, bias=True) (activation): Tanh() ) ) ) (locked_dropout): LockedDropout(p=0.5) (linear): Linear(in_features=768, out_features=21, bias=True) (loss_function): CrossEntropyLoss() )" 2023-09-03 19:44:59,245 ---------------------------------------------------------------------------------------------------- 2023-09-03 19:44:59,246 MultiCorpus: 3575 train + 1235 dev + 1266 test sentences - NER_HIPE_2022 Corpus: 3575 train + 1235 dev + 1266 test sentences - /app/.flair/datasets/ner_hipe_2022/v2.1/hipe2020/de/with_doc_seperator 2023-09-03 19:44:59,246 ---------------------------------------------------------------------------------------------------- 2023-09-03 19:44:59,246 Train: 3575 sentences 2023-09-03 19:44:59,246 (train_with_dev=False, train_with_test=False) 2023-09-03 19:44:59,246 ---------------------------------------------------------------------------------------------------- 2023-09-03 19:44:59,246 Training Params: 2023-09-03 19:44:59,246 - learning_rate: "5e-05" 2023-09-03 19:44:59,246 - mini_batch_size: "8" 2023-09-03 19:44:59,246 - max_epochs: "10" 2023-09-03 19:44:59,246 - shuffle: "True" 2023-09-03 19:44:59,246 ---------------------------------------------------------------------------------------------------- 2023-09-03 19:44:59,246 Plugins: 2023-09-03 19:44:59,246 - LinearScheduler | warmup_fraction: '0.1' 2023-09-03 19:44:59,246 ---------------------------------------------------------------------------------------------------- 2023-09-03 19:44:59,246 Final evaluation on model from best epoch (best-model.pt) 2023-09-03 19:44:59,246 - metric: "('micro avg', 'f1-score')" 2023-09-03 19:44:59,247 ---------------------------------------------------------------------------------------------------- 2023-09-03 19:44:59,247 Computation: 2023-09-03 19:44:59,247 - compute on device: cuda:0 2023-09-03 19:44:59,247 - embedding storage: none 2023-09-03 19:44:59,247 ---------------------------------------------------------------------------------------------------- 2023-09-03 19:44:59,247 Model training base path: "hmbench-hipe2020/de-dbmdz/bert-base-historic-multilingual-cased-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2" 2023-09-03 19:44:59,247 ---------------------------------------------------------------------------------------------------- 2023-09-03 19:44:59,247 ---------------------------------------------------------------------------------------------------- 2023-09-03 19:45:05,857 epoch 1 - iter 44/447 - loss 3.05895178 - time (sec): 6.61 - samples/sec: 1206.22 - lr: 0.000005 - momentum: 0.000000 2023-09-03 19:45:12,691 epoch 1 - iter 88/447 - loss 2.11073299 - time (sec): 13.44 - samples/sec: 1185.47 - lr: 0.000010 - momentum: 0.000000 2023-09-03 19:45:19,769 epoch 1 - iter 132/447 - loss 1.51691462 - time (sec): 20.52 - samples/sec: 1203.61 - lr: 0.000015 - momentum: 0.000000 2023-09-03 19:45:26,516 epoch 1 - iter 176/447 - loss 1.24634762 - time (sec): 27.27 - samples/sec: 1196.86 - lr: 0.000020 - momentum: 0.000000 2023-09-03 19:45:33,690 epoch 1 - iter 220/447 - loss 1.05616858 - time (sec): 34.44 - samples/sec: 1197.99 - lr: 0.000024 - momentum: 0.000000 2023-09-03 19:45:42,842 epoch 1 - iter 264/447 - loss 0.91207757 - time (sec): 43.59 - samples/sec: 1184.02 - lr: 0.000029 - momentum: 0.000000 2023-09-03 19:45:50,353 epoch 1 - iter 308/447 - loss 0.82591020 - time (sec): 51.11 - samples/sec: 1166.61 - lr: 0.000034 - momentum: 0.000000 2023-09-03 19:45:57,145 epoch 1 - iter 352/447 - loss 0.75411732 - time (sec): 57.90 - samples/sec: 1175.35 - lr: 0.000039 - momentum: 0.000000 2023-09-03 19:46:04,586 epoch 1 - iter 396/447 - loss 0.69733732 - time (sec): 65.34 - samples/sec: 1169.96 - lr: 0.000044 - momentum: 0.000000 2023-09-03 19:46:11,651 epoch 1 - iter 440/447 - loss 0.65001169 - time (sec): 72.40 - samples/sec: 1169.08 - lr: 0.000049 - momentum: 0.000000 2023-09-03 19:46:13,120 ---------------------------------------------------------------------------------------------------- 2023-09-03 19:46:13,120 EPOCH 1 done: loss 0.6402 - lr: 0.000049 2023-09-03 19:46:23,336 DEV : loss 0.17735987901687622 - f1-score (micro avg) 0.5967 2023-09-03 19:46:23,362 saving best model 2023-09-03 19:46:23,836 ---------------------------------------------------------------------------------------------------- 2023-09-03 19:46:31,012 epoch 2 - iter 44/447 - loss 0.20544633 - time (sec): 7.17 - samples/sec: 1187.90 - lr: 0.000049 - momentum: 0.000000 2023-09-03 19:46:38,511 epoch 2 - iter 88/447 - loss 0.18673012 - time (sec): 14.67 - samples/sec: 1149.88 - lr: 0.000049 - momentum: 0.000000 2023-09-03 19:46:45,256 epoch 2 - iter 132/447 - loss 0.17694085 - time (sec): 21.42 - samples/sec: 1167.73 - lr: 0.000048 - momentum: 0.000000 2023-09-03 19:46:52,651 epoch 2 - iter 176/447 - loss 0.17433877 - time (sec): 28.81 - samples/sec: 1172.35 - lr: 0.000048 - momentum: 0.000000 2023-09-03 19:46:59,416 epoch 2 - iter 220/447 - loss 0.16657912 - time (sec): 35.58 - samples/sec: 1168.52 - lr: 0.000047 - momentum: 0.000000 2023-09-03 19:47:07,929 epoch 2 - iter 264/447 - loss 0.16283126 - time (sec): 44.09 - samples/sec: 1154.74 - lr: 0.000047 - momentum: 0.000000 2023-09-03 19:47:14,974 epoch 2 - iter 308/447 - loss 0.15741588 - time (sec): 51.14 - samples/sec: 1158.92 - lr: 0.000046 - momentum: 0.000000 2023-09-03 19:47:22,920 epoch 2 - iter 352/447 - loss 0.15314425 - time (sec): 59.08 - samples/sec: 1160.86 - lr: 0.000046 - momentum: 0.000000 2023-09-03 19:47:30,918 epoch 2 - iter 396/447 - loss 0.15205093 - time (sec): 67.08 - samples/sec: 1147.38 - lr: 0.000045 - momentum: 0.000000 2023-09-03 19:47:38,144 epoch 2 - iter 440/447 - loss 0.15048232 - time (sec): 74.31 - samples/sec: 1147.07 - lr: 0.000045 - momentum: 0.000000 2023-09-03 19:47:39,160 ---------------------------------------------------------------------------------------------------- 2023-09-03 19:47:39,160 EPOCH 2 done: loss 0.1503 - lr: 0.000045 2023-09-03 19:47:51,877 DEV : loss 0.12148022651672363 - f1-score (micro avg) 0.6901 2023-09-03 19:47:51,904 saving best model 2023-09-03 19:47:53,220 ---------------------------------------------------------------------------------------------------- 2023-09-03 19:48:01,161 epoch 3 - iter 44/447 - loss 0.09924091 - time (sec): 7.94 - samples/sec: 1072.62 - lr: 0.000044 - momentum: 0.000000 2023-09-03 19:48:09,418 epoch 3 - iter 88/447 - loss 0.08969886 - time (sec): 16.20 - samples/sec: 1118.01 - lr: 0.000043 - momentum: 0.000000 2023-09-03 19:48:17,460 epoch 3 - iter 132/447 - loss 0.09047889 - time (sec): 24.24 - samples/sec: 1123.80 - lr: 0.000043 - momentum: 0.000000 2023-09-03 19:48:25,295 epoch 3 - iter 176/447 - loss 0.08321965 - time (sec): 32.07 - samples/sec: 1126.69 - lr: 0.000042 - momentum: 0.000000 2023-09-03 19:48:33,299 epoch 3 - iter 220/447 - loss 0.08905560 - time (sec): 40.08 - samples/sec: 1123.12 - lr: 0.000042 - momentum: 0.000000 2023-09-03 19:48:40,616 epoch 3 - iter 264/447 - loss 0.08981123 - time (sec): 47.39 - samples/sec: 1110.01 - lr: 0.000041 - momentum: 0.000000 2023-09-03 19:48:47,565 epoch 3 - iter 308/447 - loss 0.08795390 - time (sec): 54.34 - samples/sec: 1119.05 - lr: 0.000041 - momentum: 0.000000 2023-09-03 19:48:54,505 epoch 3 - iter 352/447 - loss 0.08610301 - time (sec): 61.28 - samples/sec: 1123.02 - lr: 0.000040 - momentum: 0.000000 2023-09-03 19:49:02,184 epoch 3 - iter 396/447 - loss 0.08514806 - time (sec): 68.96 - samples/sec: 1118.00 - lr: 0.000040 - momentum: 0.000000 2023-09-03 19:49:09,340 epoch 3 - iter 440/447 - loss 0.08672027 - time (sec): 76.12 - samples/sec: 1120.18 - lr: 0.000039 - momentum: 0.000000 2023-09-03 19:49:10,414 ---------------------------------------------------------------------------------------------------- 2023-09-03 19:49:10,415 EPOCH 3 done: loss 0.0869 - lr: 0.000039 2023-09-03 19:49:23,440 DEV : loss 0.14279478788375854 - f1-score (micro avg) 0.7312 2023-09-03 19:49:23,466 saving best model 2023-09-03 19:49:24,811 ---------------------------------------------------------------------------------------------------- 2023-09-03 19:49:31,483 epoch 4 - iter 44/447 - loss 0.05469815 - time (sec): 6.67 - samples/sec: 1132.40 - lr: 0.000038 - momentum: 0.000000 2023-09-03 19:49:39,956 epoch 4 - iter 88/447 - loss 0.04959434 - time (sec): 15.14 - samples/sec: 1110.71 - lr: 0.000038 - momentum: 0.000000 2023-09-03 19:49:47,478 epoch 4 - iter 132/447 - loss 0.05492602 - time (sec): 22.67 - samples/sec: 1106.59 - lr: 0.000037 - momentum: 0.000000 2023-09-03 19:49:54,970 epoch 4 - iter 176/447 - loss 0.05135116 - time (sec): 30.16 - samples/sec: 1115.21 - lr: 0.000037 - momentum: 0.000000 2023-09-03 19:50:01,928 epoch 4 - iter 220/447 - loss 0.05098197 - time (sec): 37.12 - samples/sec: 1106.13 - lr: 0.000036 - momentum: 0.000000 2023-09-03 19:50:11,049 epoch 4 - iter 264/447 - loss 0.04879327 - time (sec): 46.24 - samples/sec: 1103.35 - lr: 0.000036 - momentum: 0.000000 2023-09-03 19:50:19,900 epoch 4 - iter 308/447 - loss 0.04932569 - time (sec): 55.09 - samples/sec: 1085.19 - lr: 0.000035 - momentum: 0.000000 2023-09-03 19:50:27,153 epoch 4 - iter 352/447 - loss 0.04866242 - time (sec): 62.34 - samples/sec: 1088.19 - lr: 0.000035 - momentum: 0.000000 2023-09-03 19:50:35,195 epoch 4 - iter 396/447 - loss 0.04767351 - time (sec): 70.38 - samples/sec: 1095.46 - lr: 0.000034 - momentum: 0.000000 2023-09-03 19:50:42,562 epoch 4 - iter 440/447 - loss 0.04931913 - time (sec): 77.75 - samples/sec: 1097.96 - lr: 0.000033 - momentum: 0.000000 2023-09-03 19:50:43,634 ---------------------------------------------------------------------------------------------------- 2023-09-03 19:50:43,635 EPOCH 4 done: loss 0.0489 - lr: 0.000033 2023-09-03 19:50:57,187 DEV : loss 0.1648201197385788 - f1-score (micro avg) 0.7606 2023-09-03 19:50:57,213 saving best model 2023-09-03 19:50:58,556 ---------------------------------------------------------------------------------------------------- 2023-09-03 19:51:06,145 epoch 5 - iter 44/447 - loss 0.05705444 - time (sec): 7.59 - samples/sec: 1065.57 - lr: 0.000033 - momentum: 0.000000 2023-09-03 19:51:13,447 epoch 5 - iter 88/447 - loss 0.04319302 - time (sec): 14.89 - samples/sec: 1067.09 - lr: 0.000032 - momentum: 0.000000 2023-09-03 19:51:21,475 epoch 5 - iter 132/447 - loss 0.03634302 - time (sec): 22.92 - samples/sec: 1069.66 - lr: 0.000032 - momentum: 0.000000 2023-09-03 19:51:28,956 epoch 5 - iter 176/447 - loss 0.03666310 - time (sec): 30.40 - samples/sec: 1074.08 - lr: 0.000031 - momentum: 0.000000 2023-09-03 19:51:37,660 epoch 5 - iter 220/447 - loss 0.03444196 - time (sec): 39.10 - samples/sec: 1087.00 - lr: 0.000031 - momentum: 0.000000 2023-09-03 19:51:44,587 epoch 5 - iter 264/447 - loss 0.03435495 - time (sec): 46.03 - samples/sec: 1104.34 - lr: 0.000030 - momentum: 0.000000 2023-09-03 19:51:52,881 epoch 5 - iter 308/447 - loss 0.03424624 - time (sec): 54.32 - samples/sec: 1100.18 - lr: 0.000030 - momentum: 0.000000 2023-09-03 19:52:01,766 epoch 5 - iter 352/447 - loss 0.03319613 - time (sec): 63.21 - samples/sec: 1092.33 - lr: 0.000029 - momentum: 0.000000 2023-09-03 19:52:09,298 epoch 5 - iter 396/447 - loss 0.03312079 - time (sec): 70.74 - samples/sec: 1098.90 - lr: 0.000028 - momentum: 0.000000 2023-09-03 19:52:15,926 epoch 5 - iter 440/447 - loss 0.03388957 - time (sec): 77.37 - samples/sec: 1101.65 - lr: 0.000028 - momentum: 0.000000 2023-09-03 19:52:17,020 ---------------------------------------------------------------------------------------------------- 2023-09-03 19:52:17,020 EPOCH 5 done: loss 0.0335 - lr: 0.000028 2023-09-03 19:52:30,551 DEV : loss 0.17944809794425964 - f1-score (micro avg) 0.7624 2023-09-03 19:52:30,577 saving best model 2023-09-03 19:52:31,909 ---------------------------------------------------------------------------------------------------- 2023-09-03 19:52:39,597 epoch 6 - iter 44/447 - loss 0.02485402 - time (sec): 7.69 - samples/sec: 1116.90 - lr: 0.000027 - momentum: 0.000000 2023-09-03 19:52:47,114 epoch 6 - iter 88/447 - loss 0.02547663 - time (sec): 15.20 - samples/sec: 1103.64 - lr: 0.000027 - momentum: 0.000000 2023-09-03 19:52:54,357 epoch 6 - iter 132/447 - loss 0.02496451 - time (sec): 22.45 - samples/sec: 1105.73 - lr: 0.000026 - momentum: 0.000000 2023-09-03 19:53:01,908 epoch 6 - iter 176/447 - loss 0.02252033 - time (sec): 30.00 - samples/sec: 1105.92 - lr: 0.000026 - momentum: 0.000000 2023-09-03 19:53:09,954 epoch 6 - iter 220/447 - loss 0.02461582 - time (sec): 38.04 - samples/sec: 1093.96 - lr: 0.000025 - momentum: 0.000000 2023-09-03 19:53:17,244 epoch 6 - iter 264/447 - loss 0.02321987 - time (sec): 45.33 - samples/sec: 1102.08 - lr: 0.000025 - momentum: 0.000000 2023-09-03 19:53:24,181 epoch 6 - iter 308/447 - loss 0.02317291 - time (sec): 52.27 - samples/sec: 1106.26 - lr: 0.000024 - momentum: 0.000000 2023-09-03 19:53:32,115 epoch 6 - iter 352/447 - loss 0.02274179 - time (sec): 60.20 - samples/sec: 1103.52 - lr: 0.000023 - momentum: 0.000000 2023-09-03 19:53:40,466 epoch 6 - iter 396/447 - loss 0.02264507 - time (sec): 68.56 - samples/sec: 1094.47 - lr: 0.000023 - momentum: 0.000000 2023-09-03 19:53:49,679 epoch 6 - iter 440/447 - loss 0.02271494 - time (sec): 77.77 - samples/sec: 1093.16 - lr: 0.000022 - momentum: 0.000000 2023-09-03 19:53:51,045 ---------------------------------------------------------------------------------------------------- 2023-09-03 19:53:51,045 EPOCH 6 done: loss 0.0225 - lr: 0.000022 2023-09-03 19:54:04,567 DEV : loss 0.20019599795341492 - f1-score (micro avg) 0.7655 2023-09-03 19:54:04,597 saving best model 2023-09-03 19:54:05,905 ---------------------------------------------------------------------------------------------------- 2023-09-03 19:54:13,458 epoch 7 - iter 44/447 - loss 0.01666146 - time (sec): 7.55 - samples/sec: 1139.14 - lr: 0.000022 - momentum: 0.000000 2023-09-03 19:54:21,169 epoch 7 - iter 88/447 - loss 0.01354020 - time (sec): 15.26 - samples/sec: 1120.25 - lr: 0.000021 - momentum: 0.000000 2023-09-03 19:54:28,391 epoch 7 - iter 132/447 - loss 0.01334057 - time (sec): 22.49 - samples/sec: 1161.60 - lr: 0.000021 - momentum: 0.000000 2023-09-03 19:54:36,296 epoch 7 - iter 176/447 - loss 0.01659884 - time (sec): 30.39 - samples/sec: 1144.50 - lr: 0.000020 - momentum: 0.000000 2023-09-03 19:54:43,739 epoch 7 - iter 220/447 - loss 0.01532998 - time (sec): 37.83 - samples/sec: 1129.04 - lr: 0.000020 - momentum: 0.000000 2023-09-03 19:54:51,605 epoch 7 - iter 264/447 - loss 0.01415707 - time (sec): 45.70 - samples/sec: 1124.83 - lr: 0.000019 - momentum: 0.000000 2023-09-03 19:54:59,015 epoch 7 - iter 308/447 - loss 0.01444906 - time (sec): 53.11 - samples/sec: 1119.15 - lr: 0.000018 - momentum: 0.000000 2023-09-03 19:55:06,627 epoch 7 - iter 352/447 - loss 0.01551328 - time (sec): 60.72 - samples/sec: 1117.77 - lr: 0.000018 - momentum: 0.000000 2023-09-03 19:55:13,724 epoch 7 - iter 396/447 - loss 0.01473543 - time (sec): 67.82 - samples/sec: 1112.82 - lr: 0.000017 - momentum: 0.000000 2023-09-03 19:55:22,391 epoch 7 - iter 440/447 - loss 0.01420854 - time (sec): 76.49 - samples/sec: 1106.37 - lr: 0.000017 - momentum: 0.000000 2023-09-03 19:55:24,456 ---------------------------------------------------------------------------------------------------- 2023-09-03 19:55:24,456 EPOCH 7 done: loss 0.0143 - lr: 0.000017 2023-09-03 19:55:37,962 DEV : loss 0.2281445562839508 - f1-score (micro avg) 0.7771 2023-09-03 19:55:37,989 saving best model 2023-09-03 19:55:39,292 ---------------------------------------------------------------------------------------------------- 2023-09-03 19:55:46,351 epoch 8 - iter 44/447 - loss 0.00442347 - time (sec): 7.06 - samples/sec: 1182.60 - lr: 0.000016 - momentum: 0.000000 2023-09-03 19:55:56,134 epoch 8 - iter 88/447 - loss 0.00807419 - time (sec): 16.84 - samples/sec: 1060.16 - lr: 0.000016 - momentum: 0.000000 2023-09-03 19:56:03,654 epoch 8 - iter 132/447 - loss 0.01003653 - time (sec): 24.36 - samples/sec: 1071.34 - lr: 0.000015 - momentum: 0.000000 2023-09-03 19:56:10,984 epoch 8 - iter 176/447 - loss 0.00929882 - time (sec): 31.69 - samples/sec: 1089.54 - lr: 0.000015 - momentum: 0.000000 2023-09-03 19:56:18,155 epoch 8 - iter 220/447 - loss 0.00972771 - time (sec): 38.86 - samples/sec: 1091.29 - lr: 0.000014 - momentum: 0.000000 2023-09-03 19:56:26,590 epoch 8 - iter 264/447 - loss 0.00984762 - time (sec): 47.30 - samples/sec: 1082.78 - lr: 0.000013 - momentum: 0.000000 2023-09-03 19:56:34,284 epoch 8 - iter 308/447 - loss 0.01092729 - time (sec): 54.99 - samples/sec: 1092.57 - lr: 0.000013 - momentum: 0.000000 2023-09-03 19:56:41,737 epoch 8 - iter 352/447 - loss 0.01138641 - time (sec): 62.44 - samples/sec: 1092.31 - lr: 0.000012 - momentum: 0.000000 2023-09-03 19:56:49,454 epoch 8 - iter 396/447 - loss 0.01142584 - time (sec): 70.16 - samples/sec: 1094.14 - lr: 0.000012 - momentum: 0.000000 2023-09-03 19:56:57,103 epoch 8 - iter 440/447 - loss 0.01077808 - time (sec): 77.81 - samples/sec: 1095.66 - lr: 0.000011 - momentum: 0.000000 2023-09-03 19:56:58,265 ---------------------------------------------------------------------------------------------------- 2023-09-03 19:56:58,265 EPOCH 8 done: loss 0.0106 - lr: 0.000011 2023-09-03 19:57:11,784 DEV : loss 0.23382732272148132 - f1-score (micro avg) 0.7852 2023-09-03 19:57:11,811 saving best model 2023-09-03 19:57:13,138 ---------------------------------------------------------------------------------------------------- 2023-09-03 19:57:20,737 epoch 9 - iter 44/447 - loss 0.00165931 - time (sec): 7.60 - samples/sec: 1126.33 - lr: 0.000011 - momentum: 0.000000 2023-09-03 19:57:27,693 epoch 9 - iter 88/447 - loss 0.00338486 - time (sec): 14.55 - samples/sec: 1156.33 - lr: 0.000010 - momentum: 0.000000 2023-09-03 19:57:35,368 epoch 9 - iter 132/447 - loss 0.00456257 - time (sec): 22.23 - samples/sec: 1126.60 - lr: 0.000010 - momentum: 0.000000 2023-09-03 19:57:42,847 epoch 9 - iter 176/447 - loss 0.00458564 - time (sec): 29.71 - samples/sec: 1133.33 - lr: 0.000009 - momentum: 0.000000 2023-09-03 19:57:52,291 epoch 9 - iter 220/447 - loss 0.00481797 - time (sec): 39.15 - samples/sec: 1106.53 - lr: 0.000008 - momentum: 0.000000 2023-09-03 19:57:59,739 epoch 9 - iter 264/447 - loss 0.00481335 - time (sec): 46.60 - samples/sec: 1110.30 - lr: 0.000008 - momentum: 0.000000 2023-09-03 19:58:07,268 epoch 9 - iter 308/447 - loss 0.00589621 - time (sec): 54.13 - samples/sec: 1104.51 - lr: 0.000007 - momentum: 0.000000 2023-09-03 19:58:15,233 epoch 9 - iter 352/447 - loss 0.00584651 - time (sec): 62.09 - samples/sec: 1107.37 - lr: 0.000007 - momentum: 0.000000 2023-09-03 19:58:22,095 epoch 9 - iter 396/447 - loss 0.00623178 - time (sec): 68.96 - samples/sec: 1111.26 - lr: 0.000006 - momentum: 0.000000 2023-09-03 19:58:29,284 epoch 9 - iter 440/447 - loss 0.00617847 - time (sec): 76.14 - samples/sec: 1117.26 - lr: 0.000006 - momentum: 0.000000 2023-09-03 19:58:31,053 ---------------------------------------------------------------------------------------------------- 2023-09-03 19:58:31,054 EPOCH 9 done: loss 0.0063 - lr: 0.000006 2023-09-03 19:58:43,941 DEV : loss 0.2306753247976303 - f1-score (micro avg) 0.7844 2023-09-03 19:58:43,968 ---------------------------------------------------------------------------------------------------- 2023-09-03 19:58:51,779 epoch 10 - iter 44/447 - loss 0.00222028 - time (sec): 7.81 - samples/sec: 1171.46 - lr: 0.000005 - momentum: 0.000000 2023-09-03 19:58:58,749 epoch 10 - iter 88/447 - loss 0.00444802 - time (sec): 14.78 - samples/sec: 1161.23 - lr: 0.000005 - momentum: 0.000000 2023-09-03 19:59:06,006 epoch 10 - iter 132/447 - loss 0.00413128 - time (sec): 22.04 - samples/sec: 1150.68 - lr: 0.000004 - momentum: 0.000000 2023-09-03 19:59:14,713 epoch 10 - iter 176/447 - loss 0.00339273 - time (sec): 30.74 - samples/sec: 1147.16 - lr: 0.000003 - momentum: 0.000000 2023-09-03 19:59:21,550 epoch 10 - iter 220/447 - loss 0.00445031 - time (sec): 37.58 - samples/sec: 1157.95 - lr: 0.000003 - momentum: 0.000000 2023-09-03 19:59:28,080 epoch 10 - iter 264/447 - loss 0.00448787 - time (sec): 44.11 - samples/sec: 1173.73 - lr: 0.000002 - momentum: 0.000000 2023-09-03 19:59:34,811 epoch 10 - iter 308/447 - loss 0.00440139 - time (sec): 50.84 - samples/sec: 1171.05 - lr: 0.000002 - momentum: 0.000000 2023-09-03 19:59:42,765 epoch 10 - iter 352/447 - loss 0.00399426 - time (sec): 58.79 - samples/sec: 1160.10 - lr: 0.000001 - momentum: 0.000000 2023-09-03 19:59:49,844 epoch 10 - iter 396/447 - loss 0.00395381 - time (sec): 65.87 - samples/sec: 1158.72 - lr: 0.000001 - momentum: 0.000000 2023-09-03 19:59:57,688 epoch 10 - iter 440/447 - loss 0.00420395 - time (sec): 73.72 - samples/sec: 1158.44 - lr: 0.000000 - momentum: 0.000000 2023-09-03 19:59:58,758 ---------------------------------------------------------------------------------------------------- 2023-09-03 19:59:58,758 EPOCH 10 done: loss 0.0041 - lr: 0.000000 2023-09-03 20:00:11,492 DEV : loss 0.2330584079027176 - f1-score (micro avg) 0.7858 2023-09-03 20:00:11,520 saving best model 2023-09-03 20:00:13,308 ---------------------------------------------------------------------------------------------------- 2023-09-03 20:00:13,309 Loading model from best epoch ... 2023-09-03 20:00:15,075 SequenceTagger predicts: Dictionary with 21 tags: O, S-loc, B-loc, E-loc, I-loc, S-pers, B-pers, E-pers, I-pers, S-org, B-org, E-org, I-org, S-prod, B-prod, E-prod, I-prod, S-time, B-time, E-time, I-time 2023-09-03 20:00:24,956 Results: - F-score (micro) 0.7411 - F-score (macro) 0.6789 - Accuracy 0.6072 By class: precision recall f1-score support loc 0.8114 0.8372 0.8241 596 pers 0.6623 0.7538 0.7051 333 org 0.5285 0.4924 0.5098 132 prod 0.6415 0.5152 0.5714 66 time 0.7547 0.8163 0.7843 49 micro avg 0.7269 0.7560 0.7411 1176 macro avg 0.6797 0.6830 0.6789 1176 weighted avg 0.7255 0.7560 0.7393 1176 2023-09-03 20:00:24,956 ----------------------------------------------------------------------------------------------------