2023-09-03 22:03:37,162 ---------------------------------------------------------------------------------------------------- 2023-09-03 22:03:37,163 Model: "SequenceTagger( (embeddings): TransformerWordEmbeddings( (model): BertModel( (embeddings): BertEmbeddings( (word_embeddings): Embedding(32001, 768) (position_embeddings): Embedding(512, 768) (token_type_embeddings): Embedding(2, 768) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) (encoder): BertEncoder( (layer): ModuleList( (0-11): 12 x BertLayer( (attention): BertAttention( (self): BertSelfAttention( (query): Linear(in_features=768, out_features=768, bias=True) (key): Linear(in_features=768, out_features=768, bias=True) (value): Linear(in_features=768, out_features=768, bias=True) (dropout): Dropout(p=0.1, inplace=False) ) (output): BertSelfOutput( (dense): Linear(in_features=768, out_features=768, bias=True) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) (intermediate): BertIntermediate( (dense): Linear(in_features=768, out_features=3072, bias=True) (intermediate_act_fn): GELUActivation() ) (output): BertOutput( (dense): Linear(in_features=3072, out_features=768, bias=True) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) ) ) (pooler): BertPooler( (dense): Linear(in_features=768, out_features=768, bias=True) (activation): Tanh() ) ) ) (locked_dropout): LockedDropout(p=0.5) (linear): Linear(in_features=768, out_features=21, bias=True) (loss_function): CrossEntropyLoss() )" 2023-09-03 22:03:37,163 ---------------------------------------------------------------------------------------------------- 2023-09-03 22:03:37,163 MultiCorpus: 3575 train + 1235 dev + 1266 test sentences - NER_HIPE_2022 Corpus: 3575 train + 1235 dev + 1266 test sentences - /app/.flair/datasets/ner_hipe_2022/v2.1/hipe2020/de/with_doc_seperator 2023-09-03 22:03:37,163 ---------------------------------------------------------------------------------------------------- 2023-09-03 22:03:37,163 Train: 3575 sentences 2023-09-03 22:03:37,163 (train_with_dev=False, train_with_test=False) 2023-09-03 22:03:37,163 ---------------------------------------------------------------------------------------------------- 2023-09-03 22:03:37,163 Training Params: 2023-09-03 22:03:37,163 - learning_rate: "5e-05" 2023-09-03 22:03:37,163 - mini_batch_size: "8" 2023-09-03 22:03:37,163 - max_epochs: "10" 2023-09-03 22:03:37,163 - shuffle: "True" 2023-09-03 22:03:37,163 ---------------------------------------------------------------------------------------------------- 2023-09-03 22:03:37,163 Plugins: 2023-09-03 22:03:37,163 - LinearScheduler | warmup_fraction: '0.1' 2023-09-03 22:03:37,164 ---------------------------------------------------------------------------------------------------- 2023-09-03 22:03:37,164 Final evaluation on model from best epoch (best-model.pt) 2023-09-03 22:03:37,164 - metric: "('micro avg', 'f1-score')" 2023-09-03 22:03:37,164 ---------------------------------------------------------------------------------------------------- 2023-09-03 22:03:37,164 Computation: 2023-09-03 22:03:37,164 - compute on device: cuda:0 2023-09-03 22:03:37,164 - embedding storage: none 2023-09-03 22:03:37,164 ---------------------------------------------------------------------------------------------------- 2023-09-03 22:03:37,164 Model training base path: "hmbench-hipe2020/de-dbmdz/bert-base-historic-multilingual-cased-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4" 2023-09-03 22:03:37,164 ---------------------------------------------------------------------------------------------------- 2023-09-03 22:03:37,164 ---------------------------------------------------------------------------------------------------- 2023-09-03 22:03:44,616 epoch 1 - iter 44/447 - loss 3.00461982 - time (sec): 7.45 - samples/sec: 1175.42 - lr: 0.000005 - momentum: 0.000000 2023-09-03 22:03:52,433 epoch 1 - iter 88/447 - loss 1.96254236 - time (sec): 15.27 - samples/sec: 1163.70 - lr: 0.000010 - momentum: 0.000000 2023-09-03 22:03:59,439 epoch 1 - iter 132/447 - loss 1.50254678 - time (sec): 22.27 - samples/sec: 1154.90 - lr: 0.000015 - momentum: 0.000000 2023-09-03 22:04:07,711 epoch 1 - iter 176/447 - loss 1.21259910 - time (sec): 30.55 - samples/sec: 1129.89 - lr: 0.000020 - momentum: 0.000000 2023-09-03 22:04:14,819 epoch 1 - iter 220/447 - loss 1.03584482 - time (sec): 37.65 - samples/sec: 1134.34 - lr: 0.000024 - momentum: 0.000000 2023-09-03 22:04:22,049 epoch 1 - iter 264/447 - loss 0.91897569 - time (sec): 44.88 - samples/sec: 1134.71 - lr: 0.000029 - momentum: 0.000000 2023-09-03 22:04:29,426 epoch 1 - iter 308/447 - loss 0.83278018 - time (sec): 52.26 - samples/sec: 1133.34 - lr: 0.000034 - momentum: 0.000000 2023-09-03 22:04:36,847 epoch 1 - iter 352/447 - loss 0.75967852 - time (sec): 59.68 - samples/sec: 1133.18 - lr: 0.000039 - momentum: 0.000000 2023-09-03 22:04:43,829 epoch 1 - iter 396/447 - loss 0.69877256 - time (sec): 66.66 - samples/sec: 1134.73 - lr: 0.000044 - momentum: 0.000000 2023-09-03 22:04:53,046 epoch 1 - iter 440/447 - loss 0.64902061 - time (sec): 75.88 - samples/sec: 1123.32 - lr: 0.000049 - momentum: 0.000000 2023-09-03 22:04:54,158 ---------------------------------------------------------------------------------------------------- 2023-09-03 22:04:54,158 EPOCH 1 done: loss 0.6427 - lr: 0.000049 2023-09-03 22:05:05,059 DEV : loss 0.17456364631652832 - f1-score (micro avg) 0.6213 2023-09-03 22:05:05,086 saving best model 2023-09-03 22:05:05,541 ---------------------------------------------------------------------------------------------------- 2023-09-03 22:05:13,911 epoch 2 - iter 44/447 - loss 0.19617148 - time (sec): 8.37 - samples/sec: 1070.23 - lr: 0.000049 - momentum: 0.000000 2023-09-03 22:05:22,808 epoch 2 - iter 88/447 - loss 0.17967532 - time (sec): 17.27 - samples/sec: 1071.74 - lr: 0.000049 - momentum: 0.000000 2023-09-03 22:05:29,712 epoch 2 - iter 132/447 - loss 0.16966610 - time (sec): 24.17 - samples/sec: 1083.68 - lr: 0.000048 - momentum: 0.000000 2023-09-03 22:05:36,876 epoch 2 - iter 176/447 - loss 0.16937622 - time (sec): 31.33 - samples/sec: 1100.26 - lr: 0.000048 - momentum: 0.000000 2023-09-03 22:05:44,718 epoch 2 - iter 220/447 - loss 0.16592335 - time (sec): 39.18 - samples/sec: 1099.72 - lr: 0.000047 - momentum: 0.000000 2023-09-03 22:05:51,731 epoch 2 - iter 264/447 - loss 0.15644282 - time (sec): 46.19 - samples/sec: 1120.15 - lr: 0.000047 - momentum: 0.000000 2023-09-03 22:05:58,701 epoch 2 - iter 308/447 - loss 0.15370065 - time (sec): 53.16 - samples/sec: 1123.35 - lr: 0.000046 - momentum: 0.000000 2023-09-03 22:06:05,322 epoch 2 - iter 352/447 - loss 0.15345269 - time (sec): 59.78 - samples/sec: 1133.48 - lr: 0.000046 - momentum: 0.000000 2023-09-03 22:06:13,741 epoch 2 - iter 396/447 - loss 0.14938778 - time (sec): 68.20 - samples/sec: 1126.58 - lr: 0.000045 - momentum: 0.000000 2023-09-03 22:06:20,624 epoch 2 - iter 440/447 - loss 0.14932727 - time (sec): 75.08 - samples/sec: 1135.40 - lr: 0.000045 - momentum: 0.000000 2023-09-03 22:06:21,930 ---------------------------------------------------------------------------------------------------- 2023-09-03 22:06:21,930 EPOCH 2 done: loss 0.1485 - lr: 0.000045 2023-09-03 22:06:34,648 DEV : loss 0.1355467289686203 - f1-score (micro avg) 0.6927 2023-09-03 22:06:34,674 saving best model 2023-09-03 22:06:35,991 ---------------------------------------------------------------------------------------------------- 2023-09-03 22:06:43,373 epoch 3 - iter 44/447 - loss 0.11084828 - time (sec): 7.38 - samples/sec: 1159.33 - lr: 0.000044 - momentum: 0.000000 2023-09-03 22:06:51,829 epoch 3 - iter 88/447 - loss 0.09617220 - time (sec): 15.84 - samples/sec: 1127.10 - lr: 0.000043 - momentum: 0.000000 2023-09-03 22:06:59,166 epoch 3 - iter 132/447 - loss 0.08541625 - time (sec): 23.17 - samples/sec: 1131.09 - lr: 0.000043 - momentum: 0.000000 2023-09-03 22:07:06,261 epoch 3 - iter 176/447 - loss 0.08791110 - time (sec): 30.27 - samples/sec: 1138.58 - lr: 0.000042 - momentum: 0.000000 2023-09-03 22:07:12,844 epoch 3 - iter 220/447 - loss 0.08725166 - time (sec): 36.85 - samples/sec: 1141.37 - lr: 0.000042 - momentum: 0.000000 2023-09-03 22:07:20,076 epoch 3 - iter 264/447 - loss 0.08591226 - time (sec): 44.08 - samples/sec: 1146.82 - lr: 0.000041 - momentum: 0.000000 2023-09-03 22:07:27,072 epoch 3 - iter 308/447 - loss 0.08861516 - time (sec): 51.08 - samples/sec: 1149.11 - lr: 0.000041 - momentum: 0.000000 2023-09-03 22:07:34,653 epoch 3 - iter 352/447 - loss 0.08519341 - time (sec): 58.66 - samples/sec: 1151.20 - lr: 0.000040 - momentum: 0.000000 2023-09-03 22:07:41,422 epoch 3 - iter 396/447 - loss 0.08896865 - time (sec): 65.43 - samples/sec: 1159.03 - lr: 0.000040 - momentum: 0.000000 2023-09-03 22:07:49,673 epoch 3 - iter 440/447 - loss 0.08973667 - time (sec): 73.68 - samples/sec: 1157.81 - lr: 0.000039 - momentum: 0.000000 2023-09-03 22:07:50,684 ---------------------------------------------------------------------------------------------------- 2023-09-03 22:07:50,684 EPOCH 3 done: loss 0.0893 - lr: 0.000039 2023-09-03 22:08:03,119 DEV : loss 0.13895265758037567 - f1-score (micro avg) 0.7329 2023-09-03 22:08:03,146 saving best model 2023-09-03 22:08:04,473 ---------------------------------------------------------------------------------------------------- 2023-09-03 22:08:11,591 epoch 4 - iter 44/447 - loss 0.04648237 - time (sec): 7.12 - samples/sec: 1186.01 - lr: 0.000038 - momentum: 0.000000 2023-09-03 22:08:18,309 epoch 4 - iter 88/447 - loss 0.05241541 - time (sec): 13.84 - samples/sec: 1186.27 - lr: 0.000038 - momentum: 0.000000 2023-09-03 22:08:25,668 epoch 4 - iter 132/447 - loss 0.04548737 - time (sec): 21.19 - samples/sec: 1178.24 - lr: 0.000037 - momentum: 0.000000 2023-09-03 22:08:32,467 epoch 4 - iter 176/447 - loss 0.04325888 - time (sec): 27.99 - samples/sec: 1190.52 - lr: 0.000037 - momentum: 0.000000 2023-09-03 22:08:42,149 epoch 4 - iter 220/447 - loss 0.04812558 - time (sec): 37.68 - samples/sec: 1151.18 - lr: 0.000036 - momentum: 0.000000 2023-09-03 22:08:49,472 epoch 4 - iter 264/447 - loss 0.04853272 - time (sec): 45.00 - samples/sec: 1154.30 - lr: 0.000036 - momentum: 0.000000 2023-09-03 22:08:55,986 epoch 4 - iter 308/447 - loss 0.04945678 - time (sec): 51.51 - samples/sec: 1160.71 - lr: 0.000035 - momentum: 0.000000 2023-09-03 22:09:03,030 epoch 4 - iter 352/447 - loss 0.04862237 - time (sec): 58.56 - samples/sec: 1158.25 - lr: 0.000035 - momentum: 0.000000 2023-09-03 22:09:11,999 epoch 4 - iter 396/447 - loss 0.04969455 - time (sec): 67.52 - samples/sec: 1144.81 - lr: 0.000034 - momentum: 0.000000 2023-09-03 22:09:19,277 epoch 4 - iter 440/447 - loss 0.05061967 - time (sec): 74.80 - samples/sec: 1139.39 - lr: 0.000033 - momentum: 0.000000 2023-09-03 22:09:20,415 ---------------------------------------------------------------------------------------------------- 2023-09-03 22:09:20,415 EPOCH 4 done: loss 0.0516 - lr: 0.000033 2023-09-03 22:09:33,207 DEV : loss 0.15090885758399963 - f1-score (micro avg) 0.7371 2023-09-03 22:09:33,233 saving best model 2023-09-03 22:09:34,589 ---------------------------------------------------------------------------------------------------- 2023-09-03 22:09:42,646 epoch 5 - iter 44/447 - loss 0.03586095 - time (sec): 8.06 - samples/sec: 1113.62 - lr: 0.000033 - momentum: 0.000000 2023-09-03 22:09:50,282 epoch 5 - iter 88/447 - loss 0.03374525 - time (sec): 15.69 - samples/sec: 1100.55 - lr: 0.000032 - momentum: 0.000000 2023-09-03 22:09:57,990 epoch 5 - iter 132/447 - loss 0.03495845 - time (sec): 23.40 - samples/sec: 1116.01 - lr: 0.000032 - momentum: 0.000000 2023-09-03 22:10:05,484 epoch 5 - iter 176/447 - loss 0.03476096 - time (sec): 30.89 - samples/sec: 1122.55 - lr: 0.000031 - momentum: 0.000000 2023-09-03 22:10:12,600 epoch 5 - iter 220/447 - loss 0.03837830 - time (sec): 38.01 - samples/sec: 1121.96 - lr: 0.000031 - momentum: 0.000000 2023-09-03 22:10:20,517 epoch 5 - iter 264/447 - loss 0.03833497 - time (sec): 45.93 - samples/sec: 1116.17 - lr: 0.000030 - momentum: 0.000000 2023-09-03 22:10:29,701 epoch 5 - iter 308/447 - loss 0.03847519 - time (sec): 55.11 - samples/sec: 1099.20 - lr: 0.000030 - momentum: 0.000000 2023-09-03 22:10:36,611 epoch 5 - iter 352/447 - loss 0.03810102 - time (sec): 62.02 - samples/sec: 1105.93 - lr: 0.000029 - momentum: 0.000000 2023-09-03 22:10:44,324 epoch 5 - iter 396/447 - loss 0.03738290 - time (sec): 69.73 - samples/sec: 1100.88 - lr: 0.000028 - momentum: 0.000000 2023-09-03 22:10:52,171 epoch 5 - iter 440/447 - loss 0.03626288 - time (sec): 77.58 - samples/sec: 1100.48 - lr: 0.000028 - momentum: 0.000000 2023-09-03 22:10:53,227 ---------------------------------------------------------------------------------------------------- 2023-09-03 22:10:53,227 EPOCH 5 done: loss 0.0358 - lr: 0.000028 2023-09-03 22:11:06,510 DEV : loss 0.18703238666057587 - f1-score (micro avg) 0.7673 2023-09-03 22:11:06,536 saving best model 2023-09-03 22:11:07,864 ---------------------------------------------------------------------------------------------------- 2023-09-03 22:11:15,663 epoch 6 - iter 44/447 - loss 0.01850349 - time (sec): 7.80 - samples/sec: 1103.69 - lr: 0.000027 - momentum: 0.000000 2023-09-03 22:11:23,891 epoch 6 - iter 88/447 - loss 0.01852900 - time (sec): 16.03 - samples/sec: 1099.21 - lr: 0.000027 - momentum: 0.000000 2023-09-03 22:11:31,268 epoch 6 - iter 132/447 - loss 0.01746134 - time (sec): 23.40 - samples/sec: 1109.71 - lr: 0.000026 - momentum: 0.000000 2023-09-03 22:11:40,403 epoch 6 - iter 176/447 - loss 0.01744129 - time (sec): 32.54 - samples/sec: 1101.18 - lr: 0.000026 - momentum: 0.000000 2023-09-03 22:11:47,974 epoch 6 - iter 220/447 - loss 0.01967293 - time (sec): 40.11 - samples/sec: 1081.05 - lr: 0.000025 - momentum: 0.000000 2023-09-03 22:11:55,216 epoch 6 - iter 264/447 - loss 0.01841148 - time (sec): 47.35 - samples/sec: 1087.19 - lr: 0.000025 - momentum: 0.000000 2023-09-03 22:12:03,093 epoch 6 - iter 308/447 - loss 0.01855352 - time (sec): 55.23 - samples/sec: 1085.87 - lr: 0.000024 - momentum: 0.000000 2023-09-03 22:12:10,507 epoch 6 - iter 352/447 - loss 0.02055176 - time (sec): 62.64 - samples/sec: 1086.07 - lr: 0.000023 - momentum: 0.000000 2023-09-03 22:12:18,228 epoch 6 - iter 396/447 - loss 0.02136484 - time (sec): 70.36 - samples/sec: 1093.17 - lr: 0.000023 - momentum: 0.000000 2023-09-03 22:12:26,017 epoch 6 - iter 440/447 - loss 0.02271157 - time (sec): 78.15 - samples/sec: 1091.54 - lr: 0.000022 - momentum: 0.000000 2023-09-03 22:12:27,092 ---------------------------------------------------------------------------------------------------- 2023-09-03 22:12:27,092 EPOCH 6 done: loss 0.0226 - lr: 0.000022 2023-09-03 22:12:40,208 DEV : loss 0.2095835655927658 - f1-score (micro avg) 0.775 2023-09-03 22:12:40,235 saving best model 2023-09-03 22:12:41,848 ---------------------------------------------------------------------------------------------------- 2023-09-03 22:12:51,322 epoch 7 - iter 44/447 - loss 0.02179964 - time (sec): 9.47 - samples/sec: 1048.43 - lr: 0.000022 - momentum: 0.000000 2023-09-03 22:12:58,904 epoch 7 - iter 88/447 - loss 0.01967603 - time (sec): 17.05 - samples/sec: 1046.02 - lr: 0.000021 - momentum: 0.000000 2023-09-03 22:13:06,822 epoch 7 - iter 132/447 - loss 0.01671162 - time (sec): 24.97 - samples/sec: 1064.77 - lr: 0.000021 - momentum: 0.000000 2023-09-03 22:13:14,693 epoch 7 - iter 176/447 - loss 0.01631688 - time (sec): 32.84 - samples/sec: 1078.88 - lr: 0.000020 - momentum: 0.000000 2023-09-03 22:13:22,185 epoch 7 - iter 220/447 - loss 0.01540574 - time (sec): 40.34 - samples/sec: 1089.38 - lr: 0.000020 - momentum: 0.000000 2023-09-03 22:13:29,431 epoch 7 - iter 264/447 - loss 0.01610182 - time (sec): 47.58 - samples/sec: 1085.33 - lr: 0.000019 - momentum: 0.000000 2023-09-03 22:13:36,929 epoch 7 - iter 308/447 - loss 0.01612637 - time (sec): 55.08 - samples/sec: 1091.99 - lr: 0.000018 - momentum: 0.000000 2023-09-03 22:13:44,464 epoch 7 - iter 352/447 - loss 0.01597313 - time (sec): 62.61 - samples/sec: 1091.97 - lr: 0.000018 - momentum: 0.000000 2023-09-03 22:13:51,503 epoch 7 - iter 396/447 - loss 0.01617994 - time (sec): 69.65 - samples/sec: 1096.51 - lr: 0.000017 - momentum: 0.000000 2023-09-03 22:13:59,075 epoch 7 - iter 440/447 - loss 0.01580620 - time (sec): 77.23 - samples/sec: 1106.63 - lr: 0.000017 - momentum: 0.000000 2023-09-03 22:14:00,041 ---------------------------------------------------------------------------------------------------- 2023-09-03 22:14:00,041 EPOCH 7 done: loss 0.0157 - lr: 0.000017 2023-09-03 22:14:12,985 DEV : loss 0.21346184611320496 - f1-score (micro avg) 0.7756 2023-09-03 22:14:13,012 saving best model 2023-09-03 22:14:14,349 ---------------------------------------------------------------------------------------------------- 2023-09-03 22:14:21,624 epoch 8 - iter 44/447 - loss 0.00559374 - time (sec): 7.27 - samples/sec: 1181.34 - lr: 0.000016 - momentum: 0.000000 2023-09-03 22:14:29,176 epoch 8 - iter 88/447 - loss 0.00569671 - time (sec): 14.83 - samples/sec: 1155.86 - lr: 0.000016 - momentum: 0.000000 2023-09-03 22:14:36,035 epoch 8 - iter 132/447 - loss 0.01018177 - time (sec): 21.68 - samples/sec: 1169.06 - lr: 0.000015 - momentum: 0.000000 2023-09-03 22:14:43,018 epoch 8 - iter 176/447 - loss 0.01136583 - time (sec): 28.67 - samples/sec: 1168.77 - lr: 0.000015 - momentum: 0.000000 2023-09-03 22:14:50,415 epoch 8 - iter 220/447 - loss 0.01046024 - time (sec): 36.06 - samples/sec: 1158.72 - lr: 0.000014 - momentum: 0.000000 2023-09-03 22:14:57,393 epoch 8 - iter 264/447 - loss 0.00983952 - time (sec): 43.04 - samples/sec: 1166.38 - lr: 0.000013 - momentum: 0.000000 2023-09-03 22:15:04,599 epoch 8 - iter 308/447 - loss 0.00938640 - time (sec): 50.25 - samples/sec: 1163.21 - lr: 0.000013 - momentum: 0.000000 2023-09-03 22:15:13,018 epoch 8 - iter 352/447 - loss 0.01105031 - time (sec): 58.67 - samples/sec: 1152.82 - lr: 0.000012 - momentum: 0.000000 2023-09-03 22:15:21,211 epoch 8 - iter 396/447 - loss 0.01042212 - time (sec): 66.86 - samples/sec: 1147.29 - lr: 0.000012 - momentum: 0.000000 2023-09-03 22:15:28,131 epoch 8 - iter 440/447 - loss 0.01008377 - time (sec): 73.78 - samples/sec: 1153.04 - lr: 0.000011 - momentum: 0.000000 2023-09-03 22:15:29,423 ---------------------------------------------------------------------------------------------------- 2023-09-03 22:15:29,423 EPOCH 8 done: loss 0.0103 - lr: 0.000011 2023-09-03 22:15:42,125 DEV : loss 0.23662017285823822 - f1-score (micro avg) 0.7796 2023-09-03 22:15:42,152 saving best model 2023-09-03 22:15:43,477 ---------------------------------------------------------------------------------------------------- 2023-09-03 22:15:50,431 epoch 9 - iter 44/447 - loss 0.00145890 - time (sec): 6.95 - samples/sec: 1193.03 - lr: 0.000011 - momentum: 0.000000 2023-09-03 22:15:58,205 epoch 9 - iter 88/447 - loss 0.00495495 - time (sec): 14.73 - samples/sec: 1152.95 - lr: 0.000010 - momentum: 0.000000 2023-09-03 22:16:04,837 epoch 9 - iter 132/447 - loss 0.00690696 - time (sec): 21.36 - samples/sec: 1166.87 - lr: 0.000010 - momentum: 0.000000 2023-09-03 22:16:12,174 epoch 9 - iter 176/447 - loss 0.00870116 - time (sec): 28.70 - samples/sec: 1159.17 - lr: 0.000009 - momentum: 0.000000 2023-09-03 22:16:20,096 epoch 9 - iter 220/447 - loss 0.00803870 - time (sec): 36.62 - samples/sec: 1148.72 - lr: 0.000008 - momentum: 0.000000 2023-09-03 22:16:27,725 epoch 9 - iter 264/447 - loss 0.00678798 - time (sec): 44.25 - samples/sec: 1140.18 - lr: 0.000008 - momentum: 0.000000 2023-09-03 22:16:34,699 epoch 9 - iter 308/447 - loss 0.00678808 - time (sec): 51.22 - samples/sec: 1151.45 - lr: 0.000007 - momentum: 0.000000 2023-09-03 22:16:43,889 epoch 9 - iter 352/447 - loss 0.00678058 - time (sec): 60.41 - samples/sec: 1143.77 - lr: 0.000007 - momentum: 0.000000 2023-09-03 22:16:51,250 epoch 9 - iter 396/447 - loss 0.00610103 - time (sec): 67.77 - samples/sec: 1141.24 - lr: 0.000006 - momentum: 0.000000 2023-09-03 22:16:58,407 epoch 9 - iter 440/447 - loss 0.00581456 - time (sec): 74.93 - samples/sec: 1140.58 - lr: 0.000006 - momentum: 0.000000 2023-09-03 22:16:59,353 ---------------------------------------------------------------------------------------------------- 2023-09-03 22:16:59,354 EPOCH 9 done: loss 0.0058 - lr: 0.000006 2023-09-03 22:17:12,218 DEV : loss 0.23721420764923096 - f1-score (micro avg) 0.7917 2023-09-03 22:17:12,245 saving best model 2023-09-03 22:17:13,563 ---------------------------------------------------------------------------------------------------- 2023-09-03 22:17:22,436 epoch 10 - iter 44/447 - loss 0.00717064 - time (sec): 8.87 - samples/sec: 1114.23 - lr: 0.000005 - momentum: 0.000000 2023-09-03 22:17:30,722 epoch 10 - iter 88/447 - loss 0.00593374 - time (sec): 17.16 - samples/sec: 1081.01 - lr: 0.000005 - momentum: 0.000000 2023-09-03 22:17:38,148 epoch 10 - iter 132/447 - loss 0.00468114 - time (sec): 24.58 - samples/sec: 1090.66 - lr: 0.000004 - momentum: 0.000000 2023-09-03 22:17:45,211 epoch 10 - iter 176/447 - loss 0.00470797 - time (sec): 31.65 - samples/sec: 1099.93 - lr: 0.000003 - momentum: 0.000000 2023-09-03 22:17:52,787 epoch 10 - iter 220/447 - loss 0.00429535 - time (sec): 39.22 - samples/sec: 1104.04 - lr: 0.000003 - momentum: 0.000000 2023-09-03 22:17:59,720 epoch 10 - iter 264/447 - loss 0.00404627 - time (sec): 46.16 - samples/sec: 1111.62 - lr: 0.000002 - momentum: 0.000000 2023-09-03 22:18:07,149 epoch 10 - iter 308/447 - loss 0.00420055 - time (sec): 53.58 - samples/sec: 1110.36 - lr: 0.000002 - momentum: 0.000000 2023-09-03 22:18:15,187 epoch 10 - iter 352/447 - loss 0.00415827 - time (sec): 61.62 - samples/sec: 1105.23 - lr: 0.000001 - momentum: 0.000000 2023-09-03 22:18:22,241 epoch 10 - iter 396/447 - loss 0.00376964 - time (sec): 68.68 - samples/sec: 1113.03 - lr: 0.000001 - momentum: 0.000000 2023-09-03 22:18:30,062 epoch 10 - iter 440/447 - loss 0.00369437 - time (sec): 76.50 - samples/sec: 1118.14 - lr: 0.000000 - momentum: 0.000000 2023-09-03 22:18:31,120 ---------------------------------------------------------------------------------------------------- 2023-09-03 22:18:31,121 EPOCH 10 done: loss 0.0037 - lr: 0.000000 2023-09-03 22:18:44,578 DEV : loss 0.23381954431533813 - f1-score (micro avg) 0.7938 2023-09-03 22:18:44,605 saving best model 2023-09-03 22:18:46,420 ---------------------------------------------------------------------------------------------------- 2023-09-03 22:18:46,422 Loading model from best epoch ... 2023-09-03 22:18:48,216 SequenceTagger predicts: Dictionary with 21 tags: O, S-loc, B-loc, E-loc, I-loc, S-pers, B-pers, E-pers, I-pers, S-org, B-org, E-org, I-org, S-prod, B-prod, E-prod, I-prod, S-time, B-time, E-time, I-time 2023-09-03 22:18:58,912 Results: - F-score (micro) 0.7375 - F-score (macro) 0.6636 - Accuracy 0.6048 By class: precision recall f1-score support loc 0.8358 0.8540 0.8448 596 pers 0.6085 0.7327 0.6649 333 org 0.5500 0.5000 0.5238 132 prod 0.6200 0.4697 0.5345 66 time 0.7091 0.7959 0.7500 49 micro avg 0.7198 0.7560 0.7375 1176 macro avg 0.6647 0.6705 0.6636 1176 weighted avg 0.7220 0.7560 0.7365 1176 2023-09-03 22:18:58,912 ----------------------------------------------------------------------------------------------------