2023-09-03 20:00:50,026 ---------------------------------------------------------------------------------------------------- 2023-09-03 20:00:50,027 Model: "SequenceTagger( (embeddings): TransformerWordEmbeddings( (model): BertModel( (embeddings): BertEmbeddings( (word_embeddings): Embedding(32001, 768) (position_embeddings): Embedding(512, 768) (token_type_embeddings): Embedding(2, 768) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) (encoder): BertEncoder( (layer): ModuleList( (0-11): 12 x BertLayer( (attention): BertAttention( (self): BertSelfAttention( (query): Linear(in_features=768, out_features=768, bias=True) (key): Linear(in_features=768, out_features=768, bias=True) (value): Linear(in_features=768, out_features=768, bias=True) (dropout): Dropout(p=0.1, inplace=False) ) (output): BertSelfOutput( (dense): Linear(in_features=768, out_features=768, bias=True) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) (intermediate): BertIntermediate( (dense): Linear(in_features=768, out_features=3072, bias=True) (intermediate_act_fn): GELUActivation() ) (output): BertOutput( (dense): Linear(in_features=3072, out_features=768, bias=True) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) ) ) (pooler): BertPooler( (dense): Linear(in_features=768, out_features=768, bias=True) (activation): Tanh() ) ) ) (locked_dropout): LockedDropout(p=0.5) (linear): Linear(in_features=768, out_features=21, bias=True) (loss_function): CrossEntropyLoss() )" 2023-09-03 20:00:50,027 ---------------------------------------------------------------------------------------------------- 2023-09-03 20:00:50,027 MultiCorpus: 3575 train + 1235 dev + 1266 test sentences - NER_HIPE_2022 Corpus: 3575 train + 1235 dev + 1266 test sentences - /app/.flair/datasets/ner_hipe_2022/v2.1/hipe2020/de/with_doc_seperator 2023-09-03 20:00:50,027 ---------------------------------------------------------------------------------------------------- 2023-09-03 20:00:50,027 Train: 3575 sentences 2023-09-03 20:00:50,027 (train_with_dev=False, train_with_test=False) 2023-09-03 20:00:50,028 ---------------------------------------------------------------------------------------------------- 2023-09-03 20:00:50,028 Training Params: 2023-09-03 20:00:50,028 - learning_rate: "3e-05" 2023-09-03 20:00:50,028 - mini_batch_size: "4" 2023-09-03 20:00:50,028 - max_epochs: "10" 2023-09-03 20:00:50,028 - shuffle: "True" 2023-09-03 20:00:50,028 ---------------------------------------------------------------------------------------------------- 2023-09-03 20:00:50,028 Plugins: 2023-09-03 20:00:50,028 - LinearScheduler | warmup_fraction: '0.1' 2023-09-03 20:00:50,028 ---------------------------------------------------------------------------------------------------- 2023-09-03 20:00:50,028 Final evaluation on model from best epoch (best-model.pt) 2023-09-03 20:00:50,028 - metric: "('micro avg', 'f1-score')" 2023-09-03 20:00:50,028 ---------------------------------------------------------------------------------------------------- 2023-09-03 20:00:50,028 Computation: 2023-09-03 20:00:50,028 - compute on device: cuda:0 2023-09-03 20:00:50,028 - embedding storage: none 2023-09-03 20:00:50,028 ---------------------------------------------------------------------------------------------------- 2023-09-03 20:00:50,028 Model training base path: "hmbench-hipe2020/de-dbmdz/bert-base-historic-multilingual-cased-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2" 2023-09-03 20:00:50,029 ---------------------------------------------------------------------------------------------------- 2023-09-03 20:00:50,029 ---------------------------------------------------------------------------------------------------- 2023-09-03 20:00:58,521 epoch 1 - iter 89/894 - loss 3.11851080 - time (sec): 8.49 - samples/sec: 943.73 - lr: 0.000003 - momentum: 0.000000 2023-09-03 20:01:07,144 epoch 1 - iter 178/894 - loss 2.08316776 - time (sec): 17.11 - samples/sec: 938.27 - lr: 0.000006 - momentum: 0.000000 2023-09-03 20:01:16,041 epoch 1 - iter 267/894 - loss 1.49514732 - time (sec): 26.01 - samples/sec: 958.60 - lr: 0.000009 - momentum: 0.000000 2023-09-03 20:01:24,740 epoch 1 - iter 356/894 - loss 1.23073638 - time (sec): 34.71 - samples/sec: 951.73 - lr: 0.000012 - momentum: 0.000000 2023-09-03 20:01:33,715 epoch 1 - iter 445/894 - loss 1.04071512 - time (sec): 43.69 - samples/sec: 958.86 - lr: 0.000015 - momentum: 0.000000 2023-09-03 20:01:43,916 epoch 1 - iter 534/894 - loss 0.90265949 - time (sec): 53.89 - samples/sec: 968.58 - lr: 0.000018 - momentum: 0.000000 2023-09-03 20:01:53,021 epoch 1 - iter 623/894 - loss 0.81910891 - time (sec): 62.99 - samples/sec: 960.05 - lr: 0.000021 - momentum: 0.000000 2023-09-03 20:02:02,012 epoch 1 - iter 712/894 - loss 0.74839847 - time (sec): 71.98 - samples/sec: 961.89 - lr: 0.000024 - momentum: 0.000000 2023-09-03 20:02:10,769 epoch 1 - iter 801/894 - loss 0.69749666 - time (sec): 80.74 - samples/sec: 956.43 - lr: 0.000027 - momentum: 0.000000 2023-09-03 20:02:20,027 epoch 1 - iter 890/894 - loss 0.64658706 - time (sec): 90.00 - samples/sec: 956.03 - lr: 0.000030 - momentum: 0.000000 2023-09-03 20:02:20,448 ---------------------------------------------------------------------------------------------------- 2023-09-03 20:02:20,448 EPOCH 1 done: loss 0.6437 - lr: 0.000030 2023-09-03 20:02:31,359 DEV : loss 0.19128236174583435 - f1-score (micro avg) 0.5819 2023-09-03 20:02:31,389 saving best model 2023-09-03 20:02:31,854 ---------------------------------------------------------------------------------------------------- 2023-09-03 20:02:40,979 epoch 2 - iter 89/894 - loss 0.22375762 - time (sec): 9.12 - samples/sec: 942.97 - lr: 0.000030 - momentum: 0.000000 2023-09-03 20:02:50,306 epoch 2 - iter 178/894 - loss 0.20586503 - time (sec): 18.45 - samples/sec: 923.13 - lr: 0.000029 - momentum: 0.000000 2023-09-03 20:02:59,128 epoch 2 - iter 267/894 - loss 0.19298164 - time (sec): 27.27 - samples/sec: 924.96 - lr: 0.000029 - momentum: 0.000000 2023-09-03 20:03:08,378 epoch 2 - iter 356/894 - loss 0.18768150 - time (sec): 36.52 - samples/sec: 932.60 - lr: 0.000029 - momentum: 0.000000 2023-09-03 20:03:17,225 epoch 2 - iter 445/894 - loss 0.17916969 - time (sec): 45.37 - samples/sec: 929.52 - lr: 0.000028 - momentum: 0.000000 2023-09-03 20:03:26,962 epoch 2 - iter 534/894 - loss 0.17513122 - time (sec): 55.11 - samples/sec: 934.07 - lr: 0.000028 - momentum: 0.000000 2023-09-03 20:03:35,795 epoch 2 - iter 623/894 - loss 0.16785798 - time (sec): 63.94 - samples/sec: 935.39 - lr: 0.000028 - momentum: 0.000000 2023-09-03 20:03:45,615 epoch 2 - iter 712/894 - loss 0.16499300 - time (sec): 73.76 - samples/sec: 937.30 - lr: 0.000027 - momentum: 0.000000 2023-09-03 20:03:55,283 epoch 2 - iter 801/894 - loss 0.16353301 - time (sec): 83.43 - samples/sec: 933.55 - lr: 0.000027 - momentum: 0.000000 2023-09-03 20:04:04,298 epoch 2 - iter 890/894 - loss 0.16254544 - time (sec): 92.44 - samples/sec: 931.93 - lr: 0.000027 - momentum: 0.000000 2023-09-03 20:04:04,696 ---------------------------------------------------------------------------------------------------- 2023-09-03 20:04:04,696 EPOCH 2 done: loss 0.1622 - lr: 0.000027 2023-09-03 20:04:18,263 DEV : loss 0.13599510490894318 - f1-score (micro avg) 0.6873 2023-09-03 20:04:18,290 saving best model 2023-09-03 20:04:19,610 ---------------------------------------------------------------------------------------------------- 2023-09-03 20:04:29,061 epoch 3 - iter 89/894 - loss 0.08706196 - time (sec): 9.45 - samples/sec: 913.08 - lr: 0.000026 - momentum: 0.000000 2023-09-03 20:04:38,966 epoch 3 - iter 178/894 - loss 0.07931150 - time (sec): 19.35 - samples/sec: 943.85 - lr: 0.000026 - momentum: 0.000000 2023-09-03 20:04:48,571 epoch 3 - iter 267/894 - loss 0.08634813 - time (sec): 28.96 - samples/sec: 949.99 - lr: 0.000026 - momentum: 0.000000 2023-09-03 20:04:58,032 epoch 3 - iter 356/894 - loss 0.08190028 - time (sec): 38.42 - samples/sec: 949.48 - lr: 0.000025 - momentum: 0.000000 2023-09-03 20:05:07,602 epoch 3 - iter 445/894 - loss 0.08993317 - time (sec): 47.99 - samples/sec: 947.59 - lr: 0.000025 - momentum: 0.000000 2023-09-03 20:05:16,437 epoch 3 - iter 534/894 - loss 0.09358812 - time (sec): 56.83 - samples/sec: 935.41 - lr: 0.000025 - momentum: 0.000000 2023-09-03 20:05:25,291 epoch 3 - iter 623/894 - loss 0.09173455 - time (sec): 65.68 - samples/sec: 936.92 - lr: 0.000024 - momentum: 0.000000 2023-09-03 20:05:34,095 epoch 3 - iter 712/894 - loss 0.09180758 - time (sec): 74.48 - samples/sec: 933.17 - lr: 0.000024 - momentum: 0.000000 2023-09-03 20:05:43,327 epoch 3 - iter 801/894 - loss 0.09299434 - time (sec): 83.71 - samples/sec: 930.35 - lr: 0.000024 - momentum: 0.000000 2023-09-03 20:05:52,294 epoch 3 - iter 890/894 - loss 0.09212889 - time (sec): 92.68 - samples/sec: 929.32 - lr: 0.000023 - momentum: 0.000000 2023-09-03 20:05:52,755 ---------------------------------------------------------------------------------------------------- 2023-09-03 20:05:52,755 EPOCH 3 done: loss 0.0917 - lr: 0.000023 2023-09-03 20:06:06,532 DEV : loss 0.1533261090517044 - f1-score (micro avg) 0.739 2023-09-03 20:06:06,558 saving best model 2023-09-03 20:06:07,888 ---------------------------------------------------------------------------------------------------- 2023-09-03 20:06:16,539 epoch 4 - iter 89/894 - loss 0.05568495 - time (sec): 8.65 - samples/sec: 881.27 - lr: 0.000023 - momentum: 0.000000 2023-09-03 20:06:26,449 epoch 4 - iter 178/894 - loss 0.05265981 - time (sec): 18.56 - samples/sec: 914.74 - lr: 0.000023 - momentum: 0.000000 2023-09-03 20:06:35,557 epoch 4 - iter 267/894 - loss 0.06012918 - time (sec): 27.67 - samples/sec: 914.68 - lr: 0.000022 - momentum: 0.000000 2023-09-03 20:06:44,626 epoch 4 - iter 356/894 - loss 0.06063329 - time (sec): 36.74 - samples/sec: 924.20 - lr: 0.000022 - momentum: 0.000000 2023-09-03 20:06:53,287 epoch 4 - iter 445/894 - loss 0.06192230 - time (sec): 45.40 - samples/sec: 915.79 - lr: 0.000022 - momentum: 0.000000 2023-09-03 20:07:03,572 epoch 4 - iter 534/894 - loss 0.05840812 - time (sec): 55.68 - samples/sec: 932.72 - lr: 0.000021 - momentum: 0.000000 2023-09-03 20:07:12,832 epoch 4 - iter 623/894 - loss 0.05596147 - time (sec): 64.94 - samples/sec: 931.43 - lr: 0.000021 - momentum: 0.000000 2023-09-03 20:07:21,523 epoch 4 - iter 712/894 - loss 0.05656731 - time (sec): 73.63 - samples/sec: 931.66 - lr: 0.000021 - momentum: 0.000000 2023-09-03 20:07:30,668 epoch 4 - iter 801/894 - loss 0.05657801 - time (sec): 82.78 - samples/sec: 939.65 - lr: 0.000020 - momentum: 0.000000 2023-09-03 20:07:39,471 epoch 4 - iter 890/894 - loss 0.05608795 - time (sec): 91.58 - samples/sec: 941.83 - lr: 0.000020 - momentum: 0.000000 2023-09-03 20:07:39,842 ---------------------------------------------------------------------------------------------------- 2023-09-03 20:07:39,842 EPOCH 4 done: loss 0.0560 - lr: 0.000020 2023-09-03 20:07:52,581 DEV : loss 0.18926754593849182 - f1-score (micro avg) 0.7655 2023-09-03 20:07:52,608 saving best model 2023-09-03 20:07:53,942 ---------------------------------------------------------------------------------------------------- 2023-09-03 20:08:02,799 epoch 5 - iter 89/894 - loss 0.05861320 - time (sec): 8.86 - samples/sec: 918.71 - lr: 0.000020 - momentum: 0.000000 2023-09-03 20:08:11,444 epoch 5 - iter 178/894 - loss 0.04567469 - time (sec): 17.50 - samples/sec: 916.80 - lr: 0.000019 - momentum: 0.000000 2023-09-03 20:08:20,508 epoch 5 - iter 267/894 - loss 0.04306743 - time (sec): 26.56 - samples/sec: 931.58 - lr: 0.000019 - momentum: 0.000000 2023-09-03 20:08:30,195 epoch 5 - iter 356/894 - loss 0.04255572 - time (sec): 36.25 - samples/sec: 940.70 - lr: 0.000019 - momentum: 0.000000 2023-09-03 20:08:39,048 epoch 5 - iter 445/894 - loss 0.03995375 - time (sec): 45.10 - samples/sec: 953.32 - lr: 0.000018 - momentum: 0.000000 2023-09-03 20:08:47,607 epoch 5 - iter 534/894 - loss 0.03930735 - time (sec): 53.66 - samples/sec: 958.07 - lr: 0.000018 - momentum: 0.000000 2023-09-03 20:08:56,976 epoch 5 - iter 623/894 - loss 0.03752091 - time (sec): 63.03 - samples/sec: 959.33 - lr: 0.000018 - momentum: 0.000000 2023-09-03 20:09:06,688 epoch 5 - iter 712/894 - loss 0.03698791 - time (sec): 72.74 - samples/sec: 959.71 - lr: 0.000017 - momentum: 0.000000 2023-09-03 20:09:15,510 epoch 5 - iter 801/894 - loss 0.03588804 - time (sec): 81.57 - samples/sec: 961.66 - lr: 0.000017 - momentum: 0.000000 2023-09-03 20:09:24,037 epoch 5 - iter 890/894 - loss 0.03634887 - time (sec): 90.09 - samples/sec: 956.82 - lr: 0.000017 - momentum: 0.000000 2023-09-03 20:09:24,392 ---------------------------------------------------------------------------------------------------- 2023-09-03 20:09:24,393 EPOCH 5 done: loss 0.0365 - lr: 0.000017 2023-09-03 20:09:37,245 DEV : loss 0.20267988741397858 - f1-score (micro avg) 0.7533 2023-09-03 20:09:37,271 ---------------------------------------------------------------------------------------------------- 2023-09-03 20:09:46,219 epoch 6 - iter 89/894 - loss 0.03095029 - time (sec): 8.95 - samples/sec: 970.06 - lr: 0.000016 - momentum: 0.000000 2023-09-03 20:09:54,982 epoch 6 - iter 178/894 - loss 0.02722403 - time (sec): 17.71 - samples/sec: 956.34 - lr: 0.000016 - momentum: 0.000000 2023-09-03 20:10:03,718 epoch 6 - iter 267/894 - loss 0.02513090 - time (sec): 26.45 - samples/sec: 948.52 - lr: 0.000016 - momentum: 0.000000 2023-09-03 20:10:12,687 epoch 6 - iter 356/894 - loss 0.02334869 - time (sec): 35.41 - samples/sec: 952.61 - lr: 0.000015 - momentum: 0.000000 2023-09-03 20:10:21,633 epoch 6 - iter 445/894 - loss 0.02369827 - time (sec): 44.36 - samples/sec: 946.44 - lr: 0.000015 - momentum: 0.000000 2023-09-03 20:10:30,370 epoch 6 - iter 534/894 - loss 0.02301427 - time (sec): 53.10 - samples/sec: 949.91 - lr: 0.000015 - momentum: 0.000000 2023-09-03 20:10:39,144 epoch 6 - iter 623/894 - loss 0.02362530 - time (sec): 61.87 - samples/sec: 946.65 - lr: 0.000014 - momentum: 0.000000 2023-09-03 20:10:48,318 epoch 6 - iter 712/894 - loss 0.02570622 - time (sec): 71.05 - samples/sec: 942.81 - lr: 0.000014 - momentum: 0.000000 2023-09-03 20:10:58,080 epoch 6 - iter 801/894 - loss 0.02593093 - time (sec): 80.81 - samples/sec: 939.92 - lr: 0.000014 - momentum: 0.000000 2023-09-03 20:11:08,282 epoch 6 - iter 890/894 - loss 0.02550216 - time (sec): 91.01 - samples/sec: 944.89 - lr: 0.000013 - momentum: 0.000000 2023-09-03 20:11:08,787 ---------------------------------------------------------------------------------------------------- 2023-09-03 20:11:08,787 EPOCH 6 done: loss 0.0256 - lr: 0.000013 2023-09-03 20:11:22,117 DEV : loss 0.21390819549560547 - f1-score (micro avg) 0.7688 2023-09-03 20:11:22,144 saving best model 2023-09-03 20:11:23,484 ---------------------------------------------------------------------------------------------------- 2023-09-03 20:11:32,539 epoch 7 - iter 89/894 - loss 0.02358594 - time (sec): 9.05 - samples/sec: 959.67 - lr: 0.000013 - momentum: 0.000000 2023-09-03 20:11:41,614 epoch 7 - iter 178/894 - loss 0.02018242 - time (sec): 18.13 - samples/sec: 951.83 - lr: 0.000013 - momentum: 0.000000 2023-09-03 20:11:50,578 epoch 7 - iter 267/894 - loss 0.01855891 - time (sec): 27.09 - samples/sec: 970.83 - lr: 0.000012 - momentum: 0.000000 2023-09-03 20:12:00,093 epoch 7 - iter 356/894 - loss 0.01796381 - time (sec): 36.61 - samples/sec: 958.74 - lr: 0.000012 - momentum: 0.000000 2023-09-03 20:12:09,251 epoch 7 - iter 445/894 - loss 0.01543157 - time (sec): 45.77 - samples/sec: 944.04 - lr: 0.000012 - momentum: 0.000000 2023-09-03 20:12:18,564 epoch 7 - iter 534/894 - loss 0.01541795 - time (sec): 55.08 - samples/sec: 940.59 - lr: 0.000011 - momentum: 0.000000 2023-09-03 20:12:27,674 epoch 7 - iter 623/894 - loss 0.01583522 - time (sec): 64.19 - samples/sec: 935.79 - lr: 0.000011 - momentum: 0.000000 2023-09-03 20:12:36,956 epoch 7 - iter 712/894 - loss 0.01637177 - time (sec): 73.47 - samples/sec: 931.78 - lr: 0.000011 - momentum: 0.000000 2023-09-03 20:12:45,869 epoch 7 - iter 801/894 - loss 0.01638907 - time (sec): 82.38 - samples/sec: 925.24 - lr: 0.000010 - momentum: 0.000000 2023-09-03 20:12:56,566 epoch 7 - iter 890/894 - loss 0.01589087 - time (sec): 93.08 - samples/sec: 924.56 - lr: 0.000010 - momentum: 0.000000 2023-09-03 20:12:57,013 ---------------------------------------------------------------------------------------------------- 2023-09-03 20:12:57,014 EPOCH 7 done: loss 0.0158 - lr: 0.000010 2023-09-03 20:13:10,562 DEV : loss 0.2357018142938614 - f1-score (micro avg) 0.7773 2023-09-03 20:13:10,590 saving best model 2023-09-03 20:13:11,916 ---------------------------------------------------------------------------------------------------- 2023-09-03 20:13:20,796 epoch 8 - iter 89/894 - loss 0.01168538 - time (sec): 8.88 - samples/sec: 945.49 - lr: 0.000010 - momentum: 0.000000 2023-09-03 20:13:31,458 epoch 8 - iter 178/894 - loss 0.01122629 - time (sec): 19.54 - samples/sec: 925.43 - lr: 0.000009 - momentum: 0.000000 2023-09-03 20:13:40,609 epoch 8 - iter 267/894 - loss 0.01210043 - time (sec): 28.69 - samples/sec: 919.98 - lr: 0.000009 - momentum: 0.000000 2023-09-03 20:13:49,786 epoch 8 - iter 356/894 - loss 0.01094018 - time (sec): 37.87 - samples/sec: 924.94 - lr: 0.000009 - momentum: 0.000000 2023-09-03 20:13:58,653 epoch 8 - iter 445/894 - loss 0.01076425 - time (sec): 46.74 - samples/sec: 915.81 - lr: 0.000008 - momentum: 0.000000 2023-09-03 20:14:08,387 epoch 8 - iter 534/894 - loss 0.01045307 - time (sec): 56.47 - samples/sec: 916.66 - lr: 0.000008 - momentum: 0.000000 2023-09-03 20:14:17,535 epoch 8 - iter 623/894 - loss 0.01021745 - time (sec): 65.62 - samples/sec: 923.75 - lr: 0.000008 - momentum: 0.000000 2023-09-03 20:14:26,697 epoch 8 - iter 712/894 - loss 0.01172481 - time (sec): 74.78 - samples/sec: 921.17 - lr: 0.000007 - momentum: 0.000000 2023-09-03 20:14:35,900 epoch 8 - iter 801/894 - loss 0.01208878 - time (sec): 83.98 - samples/sec: 922.74 - lr: 0.000007 - momentum: 0.000000 2023-09-03 20:14:45,183 epoch 8 - iter 890/894 - loss 0.01172491 - time (sec): 93.27 - samples/sec: 924.22 - lr: 0.000007 - momentum: 0.000000 2023-09-03 20:14:45,566 ---------------------------------------------------------------------------------------------------- 2023-09-03 20:14:45,566 EPOCH 8 done: loss 0.0117 - lr: 0.000007 2023-09-03 20:14:59,155 DEV : loss 0.2376643270254135 - f1-score (micro avg) 0.7778 2023-09-03 20:14:59,181 saving best model 2023-09-03 20:15:00,503 ---------------------------------------------------------------------------------------------------- 2023-09-03 20:15:09,698 epoch 9 - iter 89/894 - loss 0.00658409 - time (sec): 9.19 - samples/sec: 941.04 - lr: 0.000006 - momentum: 0.000000 2023-09-03 20:15:18,535 epoch 9 - iter 178/894 - loss 0.00659844 - time (sec): 18.03 - samples/sec: 945.85 - lr: 0.000006 - momentum: 0.000000 2023-09-03 20:15:27,665 epoch 9 - iter 267/894 - loss 0.00935523 - time (sec): 27.16 - samples/sec: 932.87 - lr: 0.000006 - momentum: 0.000000 2023-09-03 20:15:36,752 epoch 9 - iter 356/894 - loss 0.00888493 - time (sec): 36.25 - samples/sec: 939.41 - lr: 0.000005 - momentum: 0.000000 2023-09-03 20:15:47,156 epoch 9 - iter 445/894 - loss 0.00905866 - time (sec): 46.65 - samples/sec: 939.24 - lr: 0.000005 - momentum: 0.000000 2023-09-03 20:15:56,230 epoch 9 - iter 534/894 - loss 0.00892902 - time (sec): 55.73 - samples/sec: 937.12 - lr: 0.000005 - momentum: 0.000000 2023-09-03 20:16:05,440 epoch 9 - iter 623/894 - loss 0.00921909 - time (sec): 64.94 - samples/sec: 932.93 - lr: 0.000004 - momentum: 0.000000 2023-09-03 20:16:14,937 epoch 9 - iter 712/894 - loss 0.00903307 - time (sec): 74.43 - samples/sec: 933.31 - lr: 0.000004 - momentum: 0.000000 2023-09-03 20:16:23,744 epoch 9 - iter 801/894 - loss 0.00922263 - time (sec): 83.24 - samples/sec: 931.39 - lr: 0.000004 - momentum: 0.000000 2023-09-03 20:16:33,239 epoch 9 - iter 890/894 - loss 0.00914557 - time (sec): 92.74 - samples/sec: 929.37 - lr: 0.000003 - momentum: 0.000000 2023-09-03 20:16:33,641 ---------------------------------------------------------------------------------------------------- 2023-09-03 20:16:33,642 EPOCH 9 done: loss 0.0093 - lr: 0.000003 2023-09-03 20:16:47,247 DEV : loss 0.2397419661283493 - f1-score (micro avg) 0.7773 2023-09-03 20:16:47,274 ---------------------------------------------------------------------------------------------------- 2023-09-03 20:16:56,973 epoch 10 - iter 89/894 - loss 0.00098514 - time (sec): 9.70 - samples/sec: 953.14 - lr: 0.000003 - momentum: 0.000000 2023-09-03 20:17:06,027 epoch 10 - iter 178/894 - loss 0.00223991 - time (sec): 18.75 - samples/sec: 924.58 - lr: 0.000003 - momentum: 0.000000 2023-09-03 20:17:15,258 epoch 10 - iter 267/894 - loss 0.00432898 - time (sec): 27.98 - samples/sec: 920.50 - lr: 0.000002 - momentum: 0.000000 2023-09-03 20:17:25,436 epoch 10 - iter 356/894 - loss 0.00405978 - time (sec): 38.16 - samples/sec: 931.25 - lr: 0.000002 - momentum: 0.000000 2023-09-03 20:17:34,526 epoch 10 - iter 445/894 - loss 0.00424425 - time (sec): 47.25 - samples/sec: 929.10 - lr: 0.000002 - momentum: 0.000000 2023-09-03 20:17:43,508 epoch 10 - iter 534/894 - loss 0.00505153 - time (sec): 56.23 - samples/sec: 931.94 - lr: 0.000001 - momentum: 0.000000 2023-09-03 20:17:52,376 epoch 10 - iter 623/894 - loss 0.00504540 - time (sec): 65.10 - samples/sec: 923.65 - lr: 0.000001 - momentum: 0.000000 2023-09-03 20:18:01,937 epoch 10 - iter 712/894 - loss 0.00501811 - time (sec): 74.66 - samples/sec: 921.08 - lr: 0.000001 - momentum: 0.000000 2023-09-03 20:18:10,996 epoch 10 - iter 801/894 - loss 0.00563425 - time (sec): 83.72 - samples/sec: 919.02 - lr: 0.000000 - momentum: 0.000000 2023-09-03 20:18:20,743 epoch 10 - iter 890/894 - loss 0.00575244 - time (sec): 93.47 - samples/sec: 922.76 - lr: 0.000000 - momentum: 0.000000 2023-09-03 20:18:21,147 ---------------------------------------------------------------------------------------------------- 2023-09-03 20:18:21,147 EPOCH 10 done: loss 0.0059 - lr: 0.000000 2023-09-03 20:18:34,886 DEV : loss 0.23916852474212646 - f1-score (micro avg) 0.7865 2023-09-03 20:18:34,913 saving best model 2023-09-03 20:18:36,753 ---------------------------------------------------------------------------------------------------- 2023-09-03 20:18:36,754 Loading model from best epoch ... 2023-09-03 20:18:38,576 SequenceTagger predicts: Dictionary with 21 tags: O, S-loc, B-loc, E-loc, I-loc, S-pers, B-pers, E-pers, I-pers, S-org, B-org, E-org, I-org, S-prod, B-prod, E-prod, I-prod, S-time, B-time, E-time, I-time 2023-09-03 20:18:49,344 Results: - F-score (micro) 0.7454 - F-score (macro) 0.6684 - Accuracy 0.6184 By class: precision recall f1-score support loc 0.8366 0.8507 0.8436 596 pers 0.6684 0.7568 0.7099 333 org 0.4752 0.5076 0.4908 132 prod 0.5962 0.4697 0.5254 66 time 0.7500 0.7959 0.7723 49 micro avg 0.7296 0.7619 0.7454 1176 macro avg 0.6653 0.6761 0.6684 1176 weighted avg 0.7313 0.7619 0.7453 1176 2023-09-03 20:18:49,344 ----------------------------------------------------------------------------------------------------