2023-09-03 19:29:16,528 ---------------------------------------------------------------------------------------------------- 2023-09-03 19:29:16,529 Model: "SequenceTagger( (embeddings): TransformerWordEmbeddings( (model): BertModel( (embeddings): BertEmbeddings( (word_embeddings): Embedding(32001, 768) (position_embeddings): Embedding(512, 768) (token_type_embeddings): Embedding(2, 768) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) (encoder): BertEncoder( (layer): ModuleList( (0-11): 12 x BertLayer( (attention): BertAttention( (self): BertSelfAttention( (query): Linear(in_features=768, out_features=768, bias=True) (key): Linear(in_features=768, out_features=768, bias=True) (value): Linear(in_features=768, out_features=768, bias=True) (dropout): Dropout(p=0.1, inplace=False) ) (output): BertSelfOutput( (dense): Linear(in_features=768, out_features=768, bias=True) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) (intermediate): BertIntermediate( (dense): Linear(in_features=768, out_features=3072, bias=True) (intermediate_act_fn): GELUActivation() ) (output): BertOutput( (dense): Linear(in_features=3072, out_features=768, bias=True) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) ) ) (pooler): BertPooler( (dense): Linear(in_features=768, out_features=768, bias=True) (activation): Tanh() ) ) ) (locked_dropout): LockedDropout(p=0.5) (linear): Linear(in_features=768, out_features=21, bias=True) (loss_function): CrossEntropyLoss() )" 2023-09-03 19:29:16,529 ---------------------------------------------------------------------------------------------------- 2023-09-03 19:29:16,529 MultiCorpus: 3575 train + 1235 dev + 1266 test sentences - NER_HIPE_2022 Corpus: 3575 train + 1235 dev + 1266 test sentences - /app/.flair/datasets/ner_hipe_2022/v2.1/hipe2020/de/with_doc_seperator 2023-09-03 19:29:16,529 ---------------------------------------------------------------------------------------------------- 2023-09-03 19:29:16,529 Train: 3575 sentences 2023-09-03 19:29:16,530 (train_with_dev=False, train_with_test=False) 2023-09-03 19:29:16,530 ---------------------------------------------------------------------------------------------------- 2023-09-03 19:29:16,530 Training Params: 2023-09-03 19:29:16,530 - learning_rate: "3e-05" 2023-09-03 19:29:16,530 - mini_batch_size: "8" 2023-09-03 19:29:16,530 - max_epochs: "10" 2023-09-03 19:29:16,530 - shuffle: "True" 2023-09-03 19:29:16,530 ---------------------------------------------------------------------------------------------------- 2023-09-03 19:29:16,530 Plugins: 2023-09-03 19:29:16,530 - LinearScheduler | warmup_fraction: '0.1' 2023-09-03 19:29:16,530 ---------------------------------------------------------------------------------------------------- 2023-09-03 19:29:16,530 Final evaluation on model from best epoch (best-model.pt) 2023-09-03 19:29:16,530 - metric: "('micro avg', 'f1-score')" 2023-09-03 19:29:16,530 ---------------------------------------------------------------------------------------------------- 2023-09-03 19:29:16,530 Computation: 2023-09-03 19:29:16,530 - compute on device: cuda:0 2023-09-03 19:29:16,530 - embedding storage: none 2023-09-03 19:29:16,530 ---------------------------------------------------------------------------------------------------- 2023-09-03 19:29:16,530 Model training base path: "hmbench-hipe2020/de-dbmdz/bert-base-historic-multilingual-cased-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2" 2023-09-03 19:29:16,530 ---------------------------------------------------------------------------------------------------- 2023-09-03 19:29:16,530 ---------------------------------------------------------------------------------------------------- 2023-09-03 19:29:23,448 epoch 1 - iter 44/447 - loss 3.19007209 - time (sec): 6.92 - samples/sec: 1152.59 - lr: 0.000003 - momentum: 0.000000 2023-09-03 19:29:30,626 epoch 1 - iter 88/447 - loss 2.53442556 - time (sec): 14.09 - samples/sec: 1130.73 - lr: 0.000006 - momentum: 0.000000 2023-09-03 19:29:38,072 epoch 1 - iter 132/447 - loss 1.80646532 - time (sec): 21.54 - samples/sec: 1146.61 - lr: 0.000009 - momentum: 0.000000 2023-09-03 19:29:45,084 epoch 1 - iter 176/447 - loss 1.48740869 - time (sec): 28.55 - samples/sec: 1142.99 - lr: 0.000012 - momentum: 0.000000 2023-09-03 19:29:52,496 epoch 1 - iter 220/447 - loss 1.25877196 - time (sec): 35.96 - samples/sec: 1147.28 - lr: 0.000015 - momentum: 0.000000 2023-09-03 19:30:01,853 epoch 1 - iter 264/447 - loss 1.07980864 - time (sec): 45.32 - samples/sec: 1138.90 - lr: 0.000018 - momentum: 0.000000 2023-09-03 19:30:09,492 epoch 1 - iter 308/447 - loss 0.97748992 - time (sec): 52.96 - samples/sec: 1125.74 - lr: 0.000021 - momentum: 0.000000 2023-09-03 19:30:16,350 epoch 1 - iter 352/447 - loss 0.88943186 - time (sec): 59.82 - samples/sec: 1137.59 - lr: 0.000024 - momentum: 0.000000 2023-09-03 19:30:23,843 epoch 1 - iter 396/447 - loss 0.82223418 - time (sec): 67.31 - samples/sec: 1135.66 - lr: 0.000027 - momentum: 0.000000 2023-09-03 19:30:30,904 epoch 1 - iter 440/447 - loss 0.76505808 - time (sec): 74.37 - samples/sec: 1138.13 - lr: 0.000029 - momentum: 0.000000 2023-09-03 19:30:32,376 ---------------------------------------------------------------------------------------------------- 2023-09-03 19:30:32,376 EPOCH 1 done: loss 0.7533 - lr: 0.000029 2023-09-03 19:30:42,710 DEV : loss 0.2009868174791336 - f1-score (micro avg) 0.55 2023-09-03 19:30:42,736 saving best model 2023-09-03 19:30:43,196 ---------------------------------------------------------------------------------------------------- 2023-09-03 19:30:50,362 epoch 2 - iter 44/447 - loss 0.24012949 - time (sec): 7.16 - samples/sec: 1189.44 - lr: 0.000030 - momentum: 0.000000 2023-09-03 19:30:57,854 epoch 2 - iter 88/447 - loss 0.22293035 - time (sec): 14.66 - samples/sec: 1151.20 - lr: 0.000029 - momentum: 0.000000 2023-09-03 19:31:04,563 epoch 2 - iter 132/447 - loss 0.20286926 - time (sec): 21.37 - samples/sec: 1170.63 - lr: 0.000029 - momentum: 0.000000 2023-09-03 19:31:11,883 epoch 2 - iter 176/447 - loss 0.19655009 - time (sec): 28.69 - samples/sec: 1177.57 - lr: 0.000029 - momentum: 0.000000 2023-09-03 19:31:18,584 epoch 2 - iter 220/447 - loss 0.18797064 - time (sec): 35.39 - samples/sec: 1174.86 - lr: 0.000028 - momentum: 0.000000 2023-09-03 19:31:26,678 epoch 2 - iter 264/447 - loss 0.18041665 - time (sec): 43.48 - samples/sec: 1170.98 - lr: 0.000028 - momentum: 0.000000 2023-09-03 19:31:33,651 epoch 2 - iter 308/447 - loss 0.17434352 - time (sec): 50.45 - samples/sec: 1174.62 - lr: 0.000028 - momentum: 0.000000 2023-09-03 19:31:41,504 epoch 2 - iter 352/447 - loss 0.17006885 - time (sec): 58.31 - samples/sec: 1176.33 - lr: 0.000027 - momentum: 0.000000 2023-09-03 19:31:49,385 epoch 2 - iter 396/447 - loss 0.16869020 - time (sec): 66.19 - samples/sec: 1162.87 - lr: 0.000027 - momentum: 0.000000 2023-09-03 19:31:56,494 epoch 2 - iter 440/447 - loss 0.16625334 - time (sec): 73.30 - samples/sec: 1162.89 - lr: 0.000027 - momentum: 0.000000 2023-09-03 19:31:57,490 ---------------------------------------------------------------------------------------------------- 2023-09-03 19:31:57,490 EPOCH 2 done: loss 0.1657 - lr: 0.000027 2023-09-03 19:32:10,118 DEV : loss 0.12543398141860962 - f1-score (micro avg) 0.6997 2023-09-03 19:32:10,144 saving best model 2023-09-03 19:32:11,458 ---------------------------------------------------------------------------------------------------- 2023-09-03 19:32:19,222 epoch 3 - iter 44/447 - loss 0.09271356 - time (sec): 7.76 - samples/sec: 1097.05 - lr: 0.000026 - momentum: 0.000000 2023-09-03 19:32:27,280 epoch 3 - iter 88/447 - loss 0.08576467 - time (sec): 15.82 - samples/sec: 1144.61 - lr: 0.000026 - momentum: 0.000000 2023-09-03 19:32:35,115 epoch 3 - iter 132/447 - loss 0.08869787 - time (sec): 23.65 - samples/sec: 1151.56 - lr: 0.000026 - momentum: 0.000000 2023-09-03 19:32:42,719 epoch 3 - iter 176/447 - loss 0.08093044 - time (sec): 31.26 - samples/sec: 1156.06 - lr: 0.000025 - momentum: 0.000000 2023-09-03 19:32:50,458 epoch 3 - iter 220/447 - loss 0.09036291 - time (sec): 39.00 - samples/sec: 1154.21 - lr: 0.000025 - momentum: 0.000000 2023-09-03 19:32:57,257 epoch 3 - iter 264/447 - loss 0.09249644 - time (sec): 45.80 - samples/sec: 1148.73 - lr: 0.000025 - momentum: 0.000000 2023-09-03 19:33:03,973 epoch 3 - iter 308/447 - loss 0.08893785 - time (sec): 52.51 - samples/sec: 1158.07 - lr: 0.000024 - momentum: 0.000000 2023-09-03 19:33:10,650 epoch 3 - iter 352/447 - loss 0.08855651 - time (sec): 59.19 - samples/sec: 1162.75 - lr: 0.000024 - momentum: 0.000000 2023-09-03 19:33:18,009 epoch 3 - iter 396/447 - loss 0.08761760 - time (sec): 66.55 - samples/sec: 1158.54 - lr: 0.000024 - momentum: 0.000000 2023-09-03 19:33:24,853 epoch 3 - iter 440/447 - loss 0.08937895 - time (sec): 73.39 - samples/sec: 1161.78 - lr: 0.000023 - momentum: 0.000000 2023-09-03 19:33:25,879 ---------------------------------------------------------------------------------------------------- 2023-09-03 19:33:25,879 EPOCH 3 done: loss 0.0896 - lr: 0.000023 2023-09-03 19:33:38,507 DEV : loss 0.11516160517930984 - f1-score (micro avg) 0.7475 2023-09-03 19:33:38,533 saving best model 2023-09-03 19:33:39,852 ---------------------------------------------------------------------------------------------------- 2023-09-03 19:33:46,198 epoch 4 - iter 44/447 - loss 0.05182455 - time (sec): 6.34 - samples/sec: 1190.63 - lr: 0.000023 - momentum: 0.000000 2023-09-03 19:33:54,167 epoch 4 - iter 88/447 - loss 0.04665842 - time (sec): 14.31 - samples/sec: 1175.05 - lr: 0.000023 - momentum: 0.000000 2023-09-03 19:34:01,223 epoch 4 - iter 132/447 - loss 0.05436150 - time (sec): 21.37 - samples/sec: 1173.70 - lr: 0.000022 - momentum: 0.000000 2023-09-03 19:34:08,302 epoch 4 - iter 176/447 - loss 0.05361792 - time (sec): 28.45 - samples/sec: 1182.21 - lr: 0.000022 - momentum: 0.000000 2023-09-03 19:34:14,821 epoch 4 - iter 220/447 - loss 0.05472694 - time (sec): 34.97 - samples/sec: 1174.09 - lr: 0.000022 - momentum: 0.000000 2023-09-03 19:34:23,348 epoch 4 - iter 264/447 - loss 0.05132701 - time (sec): 43.50 - samples/sec: 1172.89 - lr: 0.000021 - momentum: 0.000000 2023-09-03 19:34:31,640 epoch 4 - iter 308/447 - loss 0.05098314 - time (sec): 51.79 - samples/sec: 1154.36 - lr: 0.000021 - momentum: 0.000000 2023-09-03 19:34:38,448 epoch 4 - iter 352/447 - loss 0.05076573 - time (sec): 58.60 - samples/sec: 1157.75 - lr: 0.000021 - momentum: 0.000000 2023-09-03 19:34:46,013 epoch 4 - iter 396/447 - loss 0.04989549 - time (sec): 66.16 - samples/sec: 1165.38 - lr: 0.000020 - momentum: 0.000000 2023-09-03 19:34:52,977 epoch 4 - iter 440/447 - loss 0.04980707 - time (sec): 73.12 - samples/sec: 1167.43 - lr: 0.000020 - momentum: 0.000000 2023-09-03 19:34:53,997 ---------------------------------------------------------------------------------------------------- 2023-09-03 19:34:53,997 EPOCH 4 done: loss 0.0495 - lr: 0.000020 2023-09-03 19:35:06,658 DEV : loss 0.14562876522541046 - f1-score (micro avg) 0.7768 2023-09-03 19:35:06,684 saving best model 2023-09-03 19:35:08,033 ---------------------------------------------------------------------------------------------------- 2023-09-03 19:35:15,237 epoch 5 - iter 44/447 - loss 0.04532975 - time (sec): 7.20 - samples/sec: 1122.51 - lr: 0.000020 - momentum: 0.000000 2023-09-03 19:35:22,154 epoch 5 - iter 88/447 - loss 0.03636320 - time (sec): 14.12 - samples/sec: 1125.32 - lr: 0.000019 - momentum: 0.000000 2023-09-03 19:35:29,738 epoch 5 - iter 132/447 - loss 0.03369699 - time (sec): 21.70 - samples/sec: 1129.49 - lr: 0.000019 - momentum: 0.000000 2023-09-03 19:35:36,874 epoch 5 - iter 176/447 - loss 0.03420293 - time (sec): 28.84 - samples/sec: 1132.14 - lr: 0.000019 - momentum: 0.000000 2023-09-03 19:35:45,113 epoch 5 - iter 220/447 - loss 0.03139251 - time (sec): 37.08 - samples/sec: 1146.34 - lr: 0.000018 - momentum: 0.000000 2023-09-03 19:35:51,745 epoch 5 - iter 264/447 - loss 0.03132039 - time (sec): 43.71 - samples/sec: 1162.95 - lr: 0.000018 - momentum: 0.000000 2023-09-03 19:35:59,757 epoch 5 - iter 308/447 - loss 0.03075044 - time (sec): 51.72 - samples/sec: 1155.52 - lr: 0.000018 - momentum: 0.000000 2023-09-03 19:36:08,207 epoch 5 - iter 352/447 - loss 0.03108055 - time (sec): 60.17 - samples/sec: 1147.45 - lr: 0.000017 - momentum: 0.000000 2023-09-03 19:36:15,447 epoch 5 - iter 396/447 - loss 0.03125927 - time (sec): 67.41 - samples/sec: 1153.15 - lr: 0.000017 - momentum: 0.000000 2023-09-03 19:36:21,846 epoch 5 - iter 440/447 - loss 0.03113833 - time (sec): 73.81 - samples/sec: 1154.74 - lr: 0.000017 - momentum: 0.000000 2023-09-03 19:36:22,896 ---------------------------------------------------------------------------------------------------- 2023-09-03 19:36:22,896 EPOCH 5 done: loss 0.0309 - lr: 0.000017 2023-09-03 19:36:35,956 DEV : loss 0.16441383957862854 - f1-score (micro avg) 0.7662 2023-09-03 19:36:35,983 ---------------------------------------------------------------------------------------------------- 2023-09-03 19:36:43,439 epoch 6 - iter 44/447 - loss 0.02358977 - time (sec): 7.45 - samples/sec: 1151.83 - lr: 0.000016 - momentum: 0.000000 2023-09-03 19:36:50,732 epoch 6 - iter 88/447 - loss 0.02454260 - time (sec): 14.75 - samples/sec: 1137.84 - lr: 0.000016 - momentum: 0.000000 2023-09-03 19:36:57,815 epoch 6 - iter 132/447 - loss 0.02258539 - time (sec): 21.83 - samples/sec: 1136.93 - lr: 0.000016 - momentum: 0.000000 2023-09-03 19:37:05,179 epoch 6 - iter 176/447 - loss 0.02114354 - time (sec): 29.19 - samples/sec: 1136.33 - lr: 0.000015 - momentum: 0.000000 2023-09-03 19:37:13,071 epoch 6 - iter 220/447 - loss 0.02077686 - time (sec): 37.09 - samples/sec: 1122.22 - lr: 0.000015 - momentum: 0.000000 2023-09-03 19:37:20,210 epoch 6 - iter 264/447 - loss 0.02015972 - time (sec): 44.23 - samples/sec: 1129.70 - lr: 0.000015 - momentum: 0.000000 2023-09-03 19:37:27,081 epoch 6 - iter 308/447 - loss 0.02051455 - time (sec): 51.10 - samples/sec: 1131.68 - lr: 0.000014 - momentum: 0.000000 2023-09-03 19:37:34,883 epoch 6 - iter 352/447 - loss 0.02170789 - time (sec): 58.90 - samples/sec: 1127.99 - lr: 0.000014 - momentum: 0.000000 2023-09-03 19:37:43,150 epoch 6 - iter 396/447 - loss 0.02174907 - time (sec): 67.17 - samples/sec: 1117.14 - lr: 0.000014 - momentum: 0.000000 2023-09-03 19:37:52,285 epoch 6 - iter 440/447 - loss 0.02109897 - time (sec): 76.30 - samples/sec: 1114.19 - lr: 0.000013 - momentum: 0.000000 2023-09-03 19:37:53,648 ---------------------------------------------------------------------------------------------------- 2023-09-03 19:37:53,648 EPOCH 6 done: loss 0.0209 - lr: 0.000013 2023-09-03 19:38:07,077 DEV : loss 0.1834675371646881 - f1-score (micro avg) 0.7753 2023-09-03 19:38:07,104 ---------------------------------------------------------------------------------------------------- 2023-09-03 19:38:14,678 epoch 7 - iter 44/447 - loss 0.01475716 - time (sec): 7.57 - samples/sec: 1136.15 - lr: 0.000013 - momentum: 0.000000 2023-09-03 19:38:22,372 epoch 7 - iter 88/447 - loss 0.01538235 - time (sec): 15.27 - samples/sec: 1119.97 - lr: 0.000013 - momentum: 0.000000 2023-09-03 19:38:29,614 epoch 7 - iter 132/447 - loss 0.01281823 - time (sec): 22.51 - samples/sec: 1160.39 - lr: 0.000012 - momentum: 0.000000 2023-09-03 19:38:37,545 epoch 7 - iter 176/447 - loss 0.01584858 - time (sec): 30.44 - samples/sec: 1142.64 - lr: 0.000012 - momentum: 0.000000 2023-09-03 19:38:45,043 epoch 7 - iter 220/447 - loss 0.01466873 - time (sec): 37.94 - samples/sec: 1125.94 - lr: 0.000012 - momentum: 0.000000 2023-09-03 19:38:52,900 epoch 7 - iter 264/447 - loss 0.01357460 - time (sec): 45.79 - samples/sec: 1122.50 - lr: 0.000011 - momentum: 0.000000 2023-09-03 19:39:00,331 epoch 7 - iter 308/447 - loss 0.01390915 - time (sec): 53.23 - samples/sec: 1116.71 - lr: 0.000011 - momentum: 0.000000 2023-09-03 19:39:07,962 epoch 7 - iter 352/447 - loss 0.01346994 - time (sec): 60.86 - samples/sec: 1115.27 - lr: 0.000011 - momentum: 0.000000 2023-09-03 19:39:15,066 epoch 7 - iter 396/447 - loss 0.01405975 - time (sec): 67.96 - samples/sec: 1110.49 - lr: 0.000010 - momentum: 0.000000 2023-09-03 19:39:23,740 epoch 7 - iter 440/447 - loss 0.01354116 - time (sec): 76.63 - samples/sec: 1104.22 - lr: 0.000010 - momentum: 0.000000 2023-09-03 19:39:25,807 ---------------------------------------------------------------------------------------------------- 2023-09-03 19:39:25,807 EPOCH 7 done: loss 0.0137 - lr: 0.000010 2023-09-03 19:39:38,952 DEV : loss 0.19323676824569702 - f1-score (micro avg) 0.7833 2023-09-03 19:39:38,979 saving best model 2023-09-03 19:39:40,323 ---------------------------------------------------------------------------------------------------- 2023-09-03 19:39:47,391 epoch 8 - iter 44/447 - loss 0.00788687 - time (sec): 7.07 - samples/sec: 1181.25 - lr: 0.000010 - momentum: 0.000000 2023-09-03 19:39:57,517 epoch 8 - iter 88/447 - loss 0.00844500 - time (sec): 17.19 - samples/sec: 1038.49 - lr: 0.000009 - momentum: 0.000000 2023-09-03 19:40:05,024 epoch 8 - iter 132/447 - loss 0.00996625 - time (sec): 24.70 - samples/sec: 1056.67 - lr: 0.000009 - momentum: 0.000000 2023-09-03 19:40:12,354 epoch 8 - iter 176/447 - loss 0.00894889 - time (sec): 32.03 - samples/sec: 1078.01 - lr: 0.000009 - momentum: 0.000000 2023-09-03 19:40:19,563 epoch 8 - iter 220/447 - loss 0.00890931 - time (sec): 39.24 - samples/sec: 1080.80 - lr: 0.000008 - momentum: 0.000000 2023-09-03 19:40:28,021 epoch 8 - iter 264/447 - loss 0.00897967 - time (sec): 47.70 - samples/sec: 1073.69 - lr: 0.000008 - momentum: 0.000000 2023-09-03 19:40:35,717 epoch 8 - iter 308/447 - loss 0.00944563 - time (sec): 55.39 - samples/sec: 1084.63 - lr: 0.000008 - momentum: 0.000000 2023-09-03 19:40:43,176 epoch 8 - iter 352/447 - loss 0.01053706 - time (sec): 62.85 - samples/sec: 1085.21 - lr: 0.000007 - momentum: 0.000000 2023-09-03 19:40:50,859 epoch 8 - iter 396/447 - loss 0.01097928 - time (sec): 70.53 - samples/sec: 1088.35 - lr: 0.000007 - momentum: 0.000000 2023-09-03 19:40:58,497 epoch 8 - iter 440/447 - loss 0.01105219 - time (sec): 78.17 - samples/sec: 1090.57 - lr: 0.000007 - momentum: 0.000000 2023-09-03 19:40:59,655 ---------------------------------------------------------------------------------------------------- 2023-09-03 19:40:59,656 EPOCH 8 done: loss 0.0111 - lr: 0.000007 2023-09-03 19:41:12,783 DEV : loss 0.21089980006217957 - f1-score (micro avg) 0.7903 2023-09-03 19:41:12,811 saving best model 2023-09-03 19:41:14,132 ---------------------------------------------------------------------------------------------------- 2023-09-03 19:41:21,736 epoch 9 - iter 44/447 - loss 0.00372544 - time (sec): 7.60 - samples/sec: 1125.59 - lr: 0.000006 - momentum: 0.000000 2023-09-03 19:41:28,680 epoch 9 - iter 88/447 - loss 0.00446647 - time (sec): 14.55 - samples/sec: 1156.86 - lr: 0.000006 - momentum: 0.000000 2023-09-03 19:41:36,360 epoch 9 - iter 132/447 - loss 0.00581485 - time (sec): 22.23 - samples/sec: 1126.69 - lr: 0.000006 - momentum: 0.000000 2023-09-03 19:41:43,841 epoch 9 - iter 176/447 - loss 0.00668476 - time (sec): 29.71 - samples/sec: 1133.31 - lr: 0.000005 - momentum: 0.000000 2023-09-03 19:41:53,294 epoch 9 - iter 220/447 - loss 0.00663822 - time (sec): 39.16 - samples/sec: 1106.30 - lr: 0.000005 - momentum: 0.000000 2023-09-03 19:42:00,743 epoch 9 - iter 264/447 - loss 0.00613799 - time (sec): 46.61 - samples/sec: 1110.05 - lr: 0.000005 - momentum: 0.000000 2023-09-03 19:42:08,618 epoch 9 - iter 308/447 - loss 0.00629927 - time (sec): 54.49 - samples/sec: 1097.29 - lr: 0.000004 - momentum: 0.000000 2023-09-03 19:42:16,780 epoch 9 - iter 352/447 - loss 0.00623439 - time (sec): 62.65 - samples/sec: 1097.60 - lr: 0.000004 - momentum: 0.000000 2023-09-03 19:42:23,837 epoch 9 - iter 396/447 - loss 0.00632364 - time (sec): 69.70 - samples/sec: 1099.34 - lr: 0.000004 - momentum: 0.000000 2023-09-03 19:42:31,296 epoch 9 - iter 440/447 - loss 0.00680502 - time (sec): 77.16 - samples/sec: 1102.51 - lr: 0.000003 - momentum: 0.000000 2023-09-03 19:42:33,153 ---------------------------------------------------------------------------------------------------- 2023-09-03 19:42:33,153 EPOCH 9 done: loss 0.0069 - lr: 0.000003 2023-09-03 19:42:46,375 DEV : loss 0.2204572707414627 - f1-score (micro avg) 0.7901 2023-09-03 19:42:46,401 ---------------------------------------------------------------------------------------------------- 2023-09-03 19:42:54,639 epoch 10 - iter 44/447 - loss 0.00107852 - time (sec): 8.24 - samples/sec: 1110.82 - lr: 0.000003 - momentum: 0.000000 2023-09-03 19:43:01,983 epoch 10 - iter 88/447 - loss 0.00398631 - time (sec): 15.58 - samples/sec: 1101.53 - lr: 0.000003 - momentum: 0.000000 2023-09-03 19:43:09,675 epoch 10 - iter 132/447 - loss 0.00549052 - time (sec): 23.27 - samples/sec: 1089.55 - lr: 0.000002 - momentum: 0.000000 2023-09-03 19:43:18,909 epoch 10 - iter 176/447 - loss 0.00432581 - time (sec): 32.51 - samples/sec: 1084.96 - lr: 0.000002 - momentum: 0.000000 2023-09-03 19:43:26,150 epoch 10 - iter 220/447 - loss 0.00450331 - time (sec): 39.75 - samples/sec: 1094.80 - lr: 0.000002 - momentum: 0.000000 2023-09-03 19:43:33,036 epoch 10 - iter 264/447 - loss 0.00464585 - time (sec): 46.63 - samples/sec: 1110.24 - lr: 0.000001 - momentum: 0.000000 2023-09-03 19:43:40,136 epoch 10 - iter 308/447 - loss 0.00514209 - time (sec): 53.73 - samples/sec: 1108.01 - lr: 0.000001 - momentum: 0.000000 2023-09-03 19:43:48,593 epoch 10 - iter 352/447 - loss 0.00509009 - time (sec): 62.19 - samples/sec: 1096.76 - lr: 0.000001 - momentum: 0.000000 2023-09-03 19:43:56,066 epoch 10 - iter 396/447 - loss 0.00495633 - time (sec): 69.66 - samples/sec: 1095.69 - lr: 0.000000 - momentum: 0.000000 2023-09-03 19:44:04,386 epoch 10 - iter 440/447 - loss 0.00505250 - time (sec): 77.98 - samples/sec: 1095.08 - lr: 0.000000 - momentum: 0.000000 2023-09-03 19:44:05,515 ---------------------------------------------------------------------------------------------------- 2023-09-03 19:44:05,515 EPOCH 10 done: loss 0.0050 - lr: 0.000000 2023-09-03 19:44:18,984 DEV : loss 0.22151651978492737 - f1-score (micro avg) 0.7885 2023-09-03 19:44:19,474 ---------------------------------------------------------------------------------------------------- 2023-09-03 19:44:19,476 Loading model from best epoch ... 2023-09-03 19:44:21,229 SequenceTagger predicts: Dictionary with 21 tags: O, S-loc, B-loc, E-loc, I-loc, S-pers, B-pers, E-pers, I-pers, S-org, B-org, E-org, I-org, S-prod, B-prod, E-prod, I-prod, S-time, B-time, E-time, I-time 2023-09-03 19:44:31,874 Results: - F-score (micro) 0.7482 - F-score (macro) 0.6664 - Accuracy 0.6188 By class: precision recall f1-score support loc 0.8476 0.8490 0.8483 596 pers 0.6667 0.7508 0.7062 333 org 0.5038 0.5076 0.5057 132 prod 0.6800 0.5152 0.5862 66 time 0.6429 0.7347 0.6857 49 micro avg 0.7374 0.7594 0.7482 1176 macro avg 0.6682 0.6714 0.6664 1176 weighted avg 0.7398 0.7594 0.7481 1176 2023-09-03 19:44:31,874 ----------------------------------------------------------------------------------------------------