Upload folder using huggingface_hub
Browse files- hmbench-hipe2020/de-dbmdz/bert-base-historic-multilingual-cased-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3/best-model.pt +3 -0
- hmbench-hipe2020/de-dbmdz/bert-base-historic-multilingual-cased-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3/dev.tsv +0 -0
- hmbench-hipe2020/de-dbmdz/bert-base-historic-multilingual-cased-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3/final-model.pt +3 -0
- hmbench-hipe2020/de-dbmdz/bert-base-historic-multilingual-cased-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3/loss.tsv +11 -0
- hmbench-hipe2020/de-dbmdz/bert-base-historic-multilingual-cased-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3/test.tsv +0 -0
- hmbench-hipe2020/de-dbmdz/bert-base-historic-multilingual-cased-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3/training.log +242 -0
hmbench-hipe2020/de-dbmdz/bert-base-historic-multilingual-cased-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3/best-model.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:271a7afdd24f641734798f1cfb28a79547457f8ff816618bc0e1fff2e2ffaf30
|
3 |
+
size 443334288
|
hmbench-hipe2020/de-dbmdz/bert-base-historic-multilingual-cased-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3/dev.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
hmbench-hipe2020/de-dbmdz/bert-base-historic-multilingual-cased-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3/final-model.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6697b6b1cab96d673b7a6bc55e7cb731a3f80c21d61d875ed84c3353dc4f5ac4
|
3 |
+
size 443334491
|
hmbench-hipe2020/de-dbmdz/bert-base-historic-multilingual-cased-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3/loss.tsv
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
EPOCH TIMESTAMP LEARNING_RATE TRAIN_LOSS DEV_LOSS DEV_PRECISION DEV_RECALL DEV_F1 DEV_ACCURACY
|
2 |
+
1 20:55:45 0.0000 0.5998 0.1752 0.6209 0.5801 0.5998 0.4398
|
3 |
+
2 20:57:14 0.0000 0.1545 0.1319 0.6967 0.7490 0.7219 0.5856
|
4 |
+
3 20:58:46 0.0000 0.0860 0.1338 0.7029 0.7326 0.7175 0.5788
|
5 |
+
4 21:00:19 0.0000 0.0521 0.1692 0.7810 0.7584 0.7695 0.6390
|
6 |
+
5 21:01:52 0.0000 0.0374 0.1798 0.7332 0.7780 0.7549 0.6203
|
7 |
+
6 21:03:24 0.0000 0.0231 0.1903 0.7798 0.7725 0.7761 0.6496
|
8 |
+
7 21:04:58 0.0000 0.0131 0.2086 0.7754 0.8045 0.7897 0.6660
|
9 |
+
8 21:06:31 0.0000 0.0092 0.2286 0.7591 0.7959 0.7771 0.6496
|
10 |
+
9 21:08:04 0.0000 0.0052 0.2226 0.7540 0.8030 0.7777 0.6525
|
11 |
+
10 21:09:32 0.0000 0.0031 0.2275 0.7791 0.7967 0.7878 0.6647
|
hmbench-hipe2020/de-dbmdz/bert-base-historic-multilingual-cased-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3/test.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
hmbench-hipe2020/de-dbmdz/bert-base-historic-multilingual-cased-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3/training.log
ADDED
@@ -0,0 +1,242 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-09-03 20:54:20,902 ----------------------------------------------------------------------------------------------------
|
2 |
+
2023-09-03 20:54:20,903 Model: "SequenceTagger(
|
3 |
+
(embeddings): TransformerWordEmbeddings(
|
4 |
+
(model): BertModel(
|
5 |
+
(embeddings): BertEmbeddings(
|
6 |
+
(word_embeddings): Embedding(32001, 768)
|
7 |
+
(position_embeddings): Embedding(512, 768)
|
8 |
+
(token_type_embeddings): Embedding(2, 768)
|
9 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
10 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
11 |
+
)
|
12 |
+
(encoder): BertEncoder(
|
13 |
+
(layer): ModuleList(
|
14 |
+
(0-11): 12 x BertLayer(
|
15 |
+
(attention): BertAttention(
|
16 |
+
(self): BertSelfAttention(
|
17 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
18 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
19 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
21 |
+
)
|
22 |
+
(output): BertSelfOutput(
|
23 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
24 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
25 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
26 |
+
)
|
27 |
+
)
|
28 |
+
(intermediate): BertIntermediate(
|
29 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
30 |
+
(intermediate_act_fn): GELUActivation()
|
31 |
+
)
|
32 |
+
(output): BertOutput(
|
33 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
34 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
35 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
36 |
+
)
|
37 |
+
)
|
38 |
+
)
|
39 |
+
)
|
40 |
+
(pooler): BertPooler(
|
41 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
42 |
+
(activation): Tanh()
|
43 |
+
)
|
44 |
+
)
|
45 |
+
)
|
46 |
+
(locked_dropout): LockedDropout(p=0.5)
|
47 |
+
(linear): Linear(in_features=768, out_features=21, bias=True)
|
48 |
+
(loss_function): CrossEntropyLoss()
|
49 |
+
)"
|
50 |
+
2023-09-03 20:54:20,903 ----------------------------------------------------------------------------------------------------
|
51 |
+
2023-09-03 20:54:20,903 MultiCorpus: 3575 train + 1235 dev + 1266 test sentences
|
52 |
+
- NER_HIPE_2022 Corpus: 3575 train + 1235 dev + 1266 test sentences - /app/.flair/datasets/ner_hipe_2022/v2.1/hipe2020/de/with_doc_seperator
|
53 |
+
2023-09-03 20:54:20,903 ----------------------------------------------------------------------------------------------------
|
54 |
+
2023-09-03 20:54:20,903 Train: 3575 sentences
|
55 |
+
2023-09-03 20:54:20,903 (train_with_dev=False, train_with_test=False)
|
56 |
+
2023-09-03 20:54:20,903 ----------------------------------------------------------------------------------------------------
|
57 |
+
2023-09-03 20:54:20,904 Training Params:
|
58 |
+
2023-09-03 20:54:20,904 - learning_rate: "5e-05"
|
59 |
+
2023-09-03 20:54:20,904 - mini_batch_size: "8"
|
60 |
+
2023-09-03 20:54:20,904 - max_epochs: "10"
|
61 |
+
2023-09-03 20:54:20,904 - shuffle: "True"
|
62 |
+
2023-09-03 20:54:20,904 ----------------------------------------------------------------------------------------------------
|
63 |
+
2023-09-03 20:54:20,904 Plugins:
|
64 |
+
2023-09-03 20:54:20,904 - LinearScheduler | warmup_fraction: '0.1'
|
65 |
+
2023-09-03 20:54:20,904 ----------------------------------------------------------------------------------------------------
|
66 |
+
2023-09-03 20:54:20,904 Final evaluation on model from best epoch (best-model.pt)
|
67 |
+
2023-09-03 20:54:20,904 - metric: "('micro avg', 'f1-score')"
|
68 |
+
2023-09-03 20:54:20,904 ----------------------------------------------------------------------------------------------------
|
69 |
+
2023-09-03 20:54:20,904 Computation:
|
70 |
+
2023-09-03 20:54:20,904 - compute on device: cuda:0
|
71 |
+
2023-09-03 20:54:20,904 - embedding storage: none
|
72 |
+
2023-09-03 20:54:20,904 ----------------------------------------------------------------------------------------------------
|
73 |
+
2023-09-03 20:54:20,904 Model training base path: "hmbench-hipe2020/de-dbmdz/bert-base-historic-multilingual-cased-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3"
|
74 |
+
2023-09-03 20:54:20,904 ----------------------------------------------------------------------------------------------------
|
75 |
+
2023-09-03 20:54:20,904 ----------------------------------------------------------------------------------------------------
|
76 |
+
2023-09-03 20:54:27,726 epoch 1 - iter 44/447 - loss 2.73716447 - time (sec): 6.82 - samples/sec: 1209.49 - lr: 0.000005 - momentum: 0.000000
|
77 |
+
2023-09-03 20:54:35,545 epoch 1 - iter 88/447 - loss 1.76275074 - time (sec): 14.64 - samples/sec: 1168.40 - lr: 0.000010 - momentum: 0.000000
|
78 |
+
2023-09-03 20:54:42,402 epoch 1 - iter 132/447 - loss 1.36332375 - time (sec): 21.50 - samples/sec: 1163.62 - lr: 0.000015 - momentum: 0.000000
|
79 |
+
2023-09-03 20:54:50,104 epoch 1 - iter 176/447 - loss 1.09517221 - time (sec): 29.20 - samples/sec: 1184.11 - lr: 0.000020 - momentum: 0.000000
|
80 |
+
2023-09-03 20:54:57,824 epoch 1 - iter 220/447 - loss 0.93311472 - time (sec): 36.92 - samples/sec: 1173.15 - lr: 0.000024 - momentum: 0.000000
|
81 |
+
2023-09-03 20:55:05,310 epoch 1 - iter 264/447 - loss 0.82310200 - time (sec): 44.40 - samples/sec: 1170.57 - lr: 0.000029 - momentum: 0.000000
|
82 |
+
2023-09-03 20:55:12,130 epoch 1 - iter 308/447 - loss 0.75010593 - time (sec): 51.22 - samples/sec: 1171.28 - lr: 0.000034 - momentum: 0.000000
|
83 |
+
2023-09-03 20:55:19,673 epoch 1 - iter 352/447 - loss 0.69595179 - time (sec): 58.77 - samples/sec: 1158.62 - lr: 0.000039 - momentum: 0.000000
|
84 |
+
2023-09-03 20:55:27,711 epoch 1 - iter 396/447 - loss 0.64348224 - time (sec): 66.81 - samples/sec: 1154.79 - lr: 0.000044 - momentum: 0.000000
|
85 |
+
2023-09-03 20:55:34,411 epoch 1 - iter 440/447 - loss 0.60334405 - time (sec): 73.51 - samples/sec: 1161.93 - lr: 0.000049 - momentum: 0.000000
|
86 |
+
2023-09-03 20:55:35,425 ----------------------------------------------------------------------------------------------------
|
87 |
+
2023-09-03 20:55:35,426 EPOCH 1 done: loss 0.5998 - lr: 0.000049
|
88 |
+
2023-09-03 20:55:45,844 DEV : loss 0.17524564266204834 - f1-score (micro avg) 0.5998
|
89 |
+
2023-09-03 20:55:45,870 saving best model
|
90 |
+
2023-09-03 20:55:46,360 ----------------------------------------------------------------------------------------------------
|
91 |
+
2023-09-03 20:55:53,314 epoch 2 - iter 44/447 - loss 0.18708094 - time (sec): 6.95 - samples/sec: 1168.87 - lr: 0.000049 - momentum: 0.000000
|
92 |
+
2023-09-03 20:56:00,420 epoch 2 - iter 88/447 - loss 0.17901121 - time (sec): 14.06 - samples/sec: 1169.74 - lr: 0.000049 - momentum: 0.000000
|
93 |
+
2023-09-03 20:56:07,576 epoch 2 - iter 132/447 - loss 0.17257848 - time (sec): 21.21 - samples/sec: 1171.26 - lr: 0.000048 - momentum: 0.000000
|
94 |
+
2023-09-03 20:56:15,224 epoch 2 - iter 176/447 - loss 0.16490695 - time (sec): 28.86 - samples/sec: 1152.42 - lr: 0.000048 - momentum: 0.000000
|
95 |
+
2023-09-03 20:56:22,217 epoch 2 - iter 220/447 - loss 0.16421404 - time (sec): 35.85 - samples/sec: 1156.16 - lr: 0.000047 - momentum: 0.000000
|
96 |
+
2023-09-03 20:56:29,655 epoch 2 - iter 264/447 - loss 0.15964720 - time (sec): 43.29 - samples/sec: 1151.14 - lr: 0.000047 - momentum: 0.000000
|
97 |
+
2023-09-03 20:56:36,715 epoch 2 - iter 308/447 - loss 0.16020622 - time (sec): 50.35 - samples/sec: 1151.99 - lr: 0.000046 - momentum: 0.000000
|
98 |
+
2023-09-03 20:56:45,118 epoch 2 - iter 352/447 - loss 0.15440493 - time (sec): 58.76 - samples/sec: 1141.39 - lr: 0.000046 - momentum: 0.000000
|
99 |
+
2023-09-03 20:56:52,814 epoch 2 - iter 396/447 - loss 0.15684350 - time (sec): 66.45 - samples/sec: 1154.44 - lr: 0.000045 - momentum: 0.000000
|
100 |
+
2023-09-03 20:57:00,179 epoch 2 - iter 440/447 - loss 0.15425075 - time (sec): 73.82 - samples/sec: 1155.31 - lr: 0.000045 - momentum: 0.000000
|
101 |
+
2023-09-03 20:57:01,430 ----------------------------------------------------------------------------------------------------
|
102 |
+
2023-09-03 20:57:01,430 EPOCH 2 done: loss 0.1545 - lr: 0.000045
|
103 |
+
2023-09-03 20:57:14,374 DEV : loss 0.1318657249212265 - f1-score (micro avg) 0.7219
|
104 |
+
2023-09-03 20:57:14,401 saving best model
|
105 |
+
2023-09-03 20:57:15,722 ----------------------------------------------------------------------------------------------------
|
106 |
+
2023-09-03 20:57:22,857 epoch 3 - iter 44/447 - loss 0.09910014 - time (sec): 7.13 - samples/sec: 1142.88 - lr: 0.000044 - momentum: 0.000000
|
107 |
+
2023-09-03 20:57:29,811 epoch 3 - iter 88/447 - loss 0.09095220 - time (sec): 14.09 - samples/sec: 1136.57 - lr: 0.000043 - momentum: 0.000000
|
108 |
+
2023-09-03 20:57:37,844 epoch 3 - iter 132/447 - loss 0.09474706 - time (sec): 22.12 - samples/sec: 1119.14 - lr: 0.000043 - momentum: 0.000000
|
109 |
+
2023-09-03 20:57:44,926 epoch 3 - iter 176/447 - loss 0.09662773 - time (sec): 29.20 - samples/sec: 1132.33 - lr: 0.000042 - momentum: 0.000000
|
110 |
+
2023-09-03 20:57:52,164 epoch 3 - iter 220/447 - loss 0.09890834 - time (sec): 36.44 - samples/sec: 1126.96 - lr: 0.000042 - momentum: 0.000000
|
111 |
+
2023-09-03 20:57:59,695 epoch 3 - iter 264/447 - loss 0.09257574 - time (sec): 43.97 - samples/sec: 1133.04 - lr: 0.000041 - momentum: 0.000000
|
112 |
+
2023-09-03 20:58:07,414 epoch 3 - iter 308/447 - loss 0.09156175 - time (sec): 51.69 - samples/sec: 1127.34 - lr: 0.000041 - momentum: 0.000000
|
113 |
+
2023-09-03 20:58:15,315 epoch 3 - iter 352/447 - loss 0.09061217 - time (sec): 59.59 - samples/sec: 1119.14 - lr: 0.000040 - momentum: 0.000000
|
114 |
+
2023-09-03 20:58:23,229 epoch 3 - iter 396/447 - loss 0.08784546 - time (sec): 67.51 - samples/sec: 1118.91 - lr: 0.000040 - momentum: 0.000000
|
115 |
+
2023-09-03 20:58:30,739 epoch 3 - iter 440/447 - loss 0.08704201 - time (sec): 75.02 - samples/sec: 1121.66 - lr: 0.000039 - momentum: 0.000000
|
116 |
+
2023-09-03 20:58:33,106 ----------------------------------------------------------------------------------------------------
|
117 |
+
2023-09-03 20:58:33,107 EPOCH 3 done: loss 0.0860 - lr: 0.000039
|
118 |
+
2023-09-03 20:58:46,618 DEV : loss 0.13379663228988647 - f1-score (micro avg) 0.7175
|
119 |
+
2023-09-03 20:58:46,645 ----------------------------------------------------------------------------------------------------
|
120 |
+
2023-09-03 20:58:54,615 epoch 4 - iter 44/447 - loss 0.06277073 - time (sec): 7.97 - samples/sec: 1022.51 - lr: 0.000038 - momentum: 0.000000
|
121 |
+
2023-09-03 20:59:02,152 epoch 4 - iter 88/447 - loss 0.05648163 - time (sec): 15.51 - samples/sec: 1068.96 - lr: 0.000038 - momentum: 0.000000
|
122 |
+
2023-09-03 20:59:09,377 epoch 4 - iter 132/447 - loss 0.05312505 - time (sec): 22.73 - samples/sec: 1090.33 - lr: 0.000037 - momentum: 0.000000
|
123 |
+
2023-09-03 20:59:18,549 epoch 4 - iter 176/447 - loss 0.05349326 - time (sec): 31.90 - samples/sec: 1091.10 - lr: 0.000037 - momentum: 0.000000
|
124 |
+
2023-09-03 20:59:26,198 epoch 4 - iter 220/447 - loss 0.04992607 - time (sec): 39.55 - samples/sec: 1092.82 - lr: 0.000036 - momentum: 0.000000
|
125 |
+
2023-09-03 20:59:33,971 epoch 4 - iter 264/447 - loss 0.05119766 - time (sec): 47.33 - samples/sec: 1091.28 - lr: 0.000036 - momentum: 0.000000
|
126 |
+
2023-09-03 20:59:41,433 epoch 4 - iter 308/447 - loss 0.05149054 - time (sec): 54.79 - samples/sec: 1096.95 - lr: 0.000035 - momentum: 0.000000
|
127 |
+
2023-09-03 20:59:48,965 epoch 4 - iter 352/447 - loss 0.05063399 - time (sec): 62.32 - samples/sec: 1097.67 - lr: 0.000035 - momentum: 0.000000
|
128 |
+
2023-09-03 20:59:57,322 epoch 4 - iter 396/447 - loss 0.05013942 - time (sec): 70.68 - samples/sec: 1094.04 - lr: 0.000034 - momentum: 0.000000
|
129 |
+
2023-09-03 21:00:04,533 epoch 4 - iter 440/447 - loss 0.05169724 - time (sec): 77.89 - samples/sec: 1096.02 - lr: 0.000033 - momentum: 0.000000
|
130 |
+
2023-09-03 21:00:05,636 ----------------------------------------------------------------------------------------------------
|
131 |
+
2023-09-03 21:00:05,636 EPOCH 4 done: loss 0.0521 - lr: 0.000033
|
132 |
+
2023-09-03 21:00:19,119 DEV : loss 0.1692018061876297 - f1-score (micro avg) 0.7695
|
133 |
+
2023-09-03 21:00:19,153 saving best model
|
134 |
+
2023-09-03 21:00:20,479 ----------------------------------------------------------------------------------------------------
|
135 |
+
2023-09-03 21:00:28,391 epoch 5 - iter 44/447 - loss 0.03984379 - time (sec): 7.91 - samples/sec: 1069.76 - lr: 0.000033 - momentum: 0.000000
|
136 |
+
2023-09-03 21:00:35,671 epoch 5 - iter 88/447 - loss 0.03527843 - time (sec): 15.19 - samples/sec: 1089.96 - lr: 0.000032 - momentum: 0.000000
|
137 |
+
2023-09-03 21:00:43,033 epoch 5 - iter 132/447 - loss 0.03633554 - time (sec): 22.55 - samples/sec: 1107.96 - lr: 0.000032 - momentum: 0.000000
|
138 |
+
2023-09-03 21:00:50,223 epoch 5 - iter 176/447 - loss 0.03854755 - time (sec): 29.74 - samples/sec: 1107.05 - lr: 0.000031 - momentum: 0.000000
|
139 |
+
2023-09-03 21:00:58,991 epoch 5 - iter 220/447 - loss 0.03856388 - time (sec): 38.51 - samples/sec: 1094.62 - lr: 0.000031 - momentum: 0.000000
|
140 |
+
2023-09-03 21:01:06,149 epoch 5 - iter 264/447 - loss 0.03879315 - time (sec): 45.67 - samples/sec: 1098.02 - lr: 0.000030 - momentum: 0.000000
|
141 |
+
2023-09-03 21:01:13,548 epoch 5 - iter 308/447 - loss 0.03806475 - time (sec): 53.07 - samples/sec: 1100.83 - lr: 0.000030 - momentum: 0.000000
|
142 |
+
2023-09-03 21:01:22,543 epoch 5 - iter 352/447 - loss 0.03944462 - time (sec): 62.06 - samples/sec: 1097.56 - lr: 0.000029 - momentum: 0.000000
|
143 |
+
2023-09-03 21:01:30,581 epoch 5 - iter 396/447 - loss 0.03814469 - time (sec): 70.10 - samples/sec: 1101.77 - lr: 0.000028 - momentum: 0.000000
|
144 |
+
2023-09-03 21:01:38,343 epoch 5 - iter 440/447 - loss 0.03774412 - time (sec): 77.86 - samples/sec: 1096.09 - lr: 0.000028 - momentum: 0.000000
|
145 |
+
2023-09-03 21:01:39,351 ----------------------------------------------------------------------------------------------------
|
146 |
+
2023-09-03 21:01:39,351 EPOCH 5 done: loss 0.0374 - lr: 0.000028
|
147 |
+
2023-09-03 21:01:52,412 DEV : loss 0.17978209257125854 - f1-score (micro avg) 0.7549
|
148 |
+
2023-09-03 21:01:52,439 ----------------------------------------------------------------------------------------------------
|
149 |
+
2023-09-03 21:02:01,732 epoch 6 - iter 44/447 - loss 0.02980735 - time (sec): 9.29 - samples/sec: 1035.64 - lr: 0.000027 - momentum: 0.000000
|
150 |
+
2023-09-03 21:02:09,110 epoch 6 - iter 88/447 - loss 0.02423965 - time (sec): 16.67 - samples/sec: 1069.15 - lr: 0.000027 - momentum: 0.000000
|
151 |
+
2023-09-03 21:02:17,431 epoch 6 - iter 132/447 - loss 0.02298144 - time (sec): 24.99 - samples/sec: 1065.88 - lr: 0.000026 - momentum: 0.000000
|
152 |
+
2023-09-03 21:02:25,242 epoch 6 - iter 176/447 - loss 0.02273349 - time (sec): 32.80 - samples/sec: 1079.58 - lr: 0.000026 - momentum: 0.000000
|
153 |
+
2023-09-03 21:02:33,012 epoch 6 - iter 220/447 - loss 0.02157790 - time (sec): 40.57 - samples/sec: 1094.10 - lr: 0.000025 - momentum: 0.000000
|
154 |
+
2023-09-03 21:02:40,172 epoch 6 - iter 264/447 - loss 0.02048096 - time (sec): 47.73 - samples/sec: 1096.13 - lr: 0.000025 - momentum: 0.000000
|
155 |
+
2023-09-03 21:02:47,619 epoch 6 - iter 308/447 - loss 0.02034238 - time (sec): 55.18 - samples/sec: 1092.41 - lr: 0.000024 - momentum: 0.000000
|
156 |
+
2023-09-03 21:02:54,850 epoch 6 - iter 352/447 - loss 0.02168193 - time (sec): 62.41 - samples/sec: 1093.46 - lr: 0.000023 - momentum: 0.000000
|
157 |
+
2023-09-03 21:03:02,551 epoch 6 - iter 396/447 - loss 0.02256137 - time (sec): 70.11 - samples/sec: 1097.72 - lr: 0.000023 - momentum: 0.000000
|
158 |
+
2023-09-03 21:03:09,393 epoch 6 - iter 440/447 - loss 0.02303606 - time (sec): 76.95 - samples/sec: 1102.62 - lr: 0.000022 - momentum: 0.000000
|
159 |
+
2023-09-03 21:03:11,217 ----------------------------------------------------------------------------------------------------
|
160 |
+
2023-09-03 21:03:11,217 EPOCH 6 done: loss 0.0231 - lr: 0.000022
|
161 |
+
2023-09-03 21:03:24,374 DEV : loss 0.19026526808738708 - f1-score (micro avg) 0.7761
|
162 |
+
2023-09-03 21:03:24,400 saving best model
|
163 |
+
2023-09-03 21:03:25,705 ----------------------------------------------------------------------------------------------------
|
164 |
+
2023-09-03 21:03:33,900 epoch 7 - iter 44/447 - loss 0.01327631 - time (sec): 8.19 - samples/sec: 1122.36 - lr: 0.000022 - momentum: 0.000000
|
165 |
+
2023-09-03 21:03:43,494 epoch 7 - iter 88/447 - loss 0.01391578 - time (sec): 17.79 - samples/sec: 1066.78 - lr: 0.000021 - momentum: 0.000000
|
166 |
+
2023-09-03 21:03:51,315 epoch 7 - iter 132/447 - loss 0.01429568 - time (sec): 25.61 - samples/sec: 1079.50 - lr: 0.000021 - momentum: 0.000000
|
167 |
+
2023-09-03 21:03:59,158 epoch 7 - iter 176/447 - loss 0.01322758 - time (sec): 33.45 - samples/sec: 1099.43 - lr: 0.000020 - momentum: 0.000000
|
168 |
+
2023-09-03 21:04:07,980 epoch 7 - iter 220/447 - loss 0.01222787 - time (sec): 42.27 - samples/sec: 1080.35 - lr: 0.000020 - momentum: 0.000000
|
169 |
+
2023-09-03 21:04:15,077 epoch 7 - iter 264/447 - loss 0.01097556 - time (sec): 49.37 - samples/sec: 1079.67 - lr: 0.000019 - momentum: 0.000000
|
170 |
+
2023-09-03 21:04:21,966 epoch 7 - iter 308/447 - loss 0.01200888 - time (sec): 56.26 - samples/sec: 1085.28 - lr: 0.000018 - momentum: 0.000000
|
171 |
+
2023-09-03 21:04:29,651 epoch 7 - iter 352/447 - loss 0.01374890 - time (sec): 63.94 - samples/sec: 1083.72 - lr: 0.000018 - momentum: 0.000000
|
172 |
+
2023-09-03 21:04:36,475 epoch 7 - iter 396/447 - loss 0.01349475 - time (sec): 70.77 - samples/sec: 1089.46 - lr: 0.000017 - momentum: 0.000000
|
173 |
+
2023-09-03 21:04:43,497 epoch 7 - iter 440/447 - loss 0.01326615 - time (sec): 77.79 - samples/sec: 1093.14 - lr: 0.000017 - momentum: 0.000000
|
174 |
+
2023-09-03 21:04:44,921 ----------------------------------------------------------------------------------------------------
|
175 |
+
2023-09-03 21:04:44,921 EPOCH 7 done: loss 0.0131 - lr: 0.000017
|
176 |
+
2023-09-03 21:04:58,031 DEV : loss 0.20857642590999603 - f1-score (micro avg) 0.7897
|
177 |
+
2023-09-03 21:04:58,060 saving best model
|
178 |
+
2023-09-03 21:04:59,399 ----------------------------------------------------------------------------------------------------
|
179 |
+
2023-09-03 21:05:06,891 epoch 8 - iter 44/447 - loss 0.00956675 - time (sec): 7.49 - samples/sec: 1153.98 - lr: 0.000016 - momentum: 0.000000
|
180 |
+
2023-09-03 21:05:14,219 epoch 8 - iter 88/447 - loss 0.00759491 - time (sec): 14.82 - samples/sec: 1132.50 - lr: 0.000016 - momentum: 0.000000
|
181 |
+
2023-09-03 21:05:23,510 epoch 8 - iter 132/447 - loss 0.00798829 - time (sec): 24.11 - samples/sec: 1110.17 - lr: 0.000015 - momentum: 0.000000
|
182 |
+
2023-09-03 21:05:31,762 epoch 8 - iter 176/447 - loss 0.00858372 - time (sec): 32.36 - samples/sec: 1087.71 - lr: 0.000015 - momentum: 0.000000
|
183 |
+
2023-09-03 21:05:39,184 epoch 8 - iter 220/447 - loss 0.00883033 - time (sec): 39.78 - samples/sec: 1095.55 - lr: 0.000014 - momentum: 0.000000
|
184 |
+
2023-09-03 21:05:47,717 epoch 8 - iter 264/447 - loss 0.00944911 - time (sec): 48.32 - samples/sec: 1083.50 - lr: 0.000013 - momentum: 0.000000
|
185 |
+
2023-09-03 21:05:55,417 epoch 8 - iter 308/447 - loss 0.00948601 - time (sec): 56.02 - samples/sec: 1087.55 - lr: 0.000013 - momentum: 0.000000
|
186 |
+
2023-09-03 21:06:02,467 epoch 8 - iter 352/447 - loss 0.00892223 - time (sec): 63.07 - samples/sec: 1092.67 - lr: 0.000012 - momentum: 0.000000
|
187 |
+
2023-09-03 21:06:10,154 epoch 8 - iter 396/447 - loss 0.00886820 - time (sec): 70.75 - samples/sec: 1094.43 - lr: 0.000012 - momentum: 0.000000
|
188 |
+
2023-09-03 21:06:16,959 epoch 8 - iter 440/447 - loss 0.00915381 - time (sec): 77.56 - samples/sec: 1100.56 - lr: 0.000011 - momentum: 0.000000
|
189 |
+
2023-09-03 21:06:17,966 ----------------------------------------------------------------------------------------------------
|
190 |
+
2023-09-03 21:06:17,967 EPOCH 8 done: loss 0.0092 - lr: 0.000011
|
191 |
+
2023-09-03 21:06:31,579 DEV : loss 0.2286161482334137 - f1-score (micro avg) 0.7771
|
192 |
+
2023-09-03 21:06:31,605 ----------------------------------------------------------------------------------------------------
|
193 |
+
2023-09-03 21:06:39,659 epoch 9 - iter 44/447 - loss 0.00534548 - time (sec): 8.05 - samples/sec: 1015.04 - lr: 0.000011 - momentum: 0.000000
|
194 |
+
2023-09-03 21:06:48,777 epoch 9 - iter 88/447 - loss 0.00425359 - time (sec): 17.17 - samples/sec: 1019.60 - lr: 0.000010 - momentum: 0.000000
|
195 |
+
2023-09-03 21:06:56,849 epoch 9 - iter 132/447 - loss 0.00444618 - time (sec): 25.24 - samples/sec: 1032.27 - lr: 0.000010 - momentum: 0.000000
|
196 |
+
2023-09-03 21:07:04,488 epoch 9 - iter 176/447 - loss 0.00461089 - time (sec): 32.88 - samples/sec: 1047.40 - lr: 0.000009 - momentum: 0.000000
|
197 |
+
2023-09-03 21:07:11,516 epoch 9 - iter 220/447 - loss 0.00539607 - time (sec): 39.91 - samples/sec: 1071.49 - lr: 0.000008 - momentum: 0.000000
|
198 |
+
2023-09-03 21:07:18,585 epoch 9 - iter 264/447 - loss 0.00492824 - time (sec): 46.98 - samples/sec: 1083.02 - lr: 0.000008 - momentum: 0.000000
|
199 |
+
2023-09-03 21:07:25,897 epoch 9 - iter 308/447 - loss 0.00432453 - time (sec): 54.29 - samples/sec: 1086.25 - lr: 0.000007 - momentum: 0.000000
|
200 |
+
2023-09-03 21:07:33,042 epoch 9 - iter 352/447 - loss 0.00427809 - time (sec): 61.44 - samples/sec: 1093.30 - lr: 0.000007 - momentum: 0.000000
|
201 |
+
2023-09-03 21:07:41,918 epoch 9 - iter 396/447 - loss 0.00449438 - time (sec): 70.31 - samples/sec: 1095.67 - lr: 0.000006 - momentum: 0.000000
|
202 |
+
2023-09-03 21:07:49,889 epoch 9 - iter 440/447 - loss 0.00470024 - time (sec): 78.28 - samples/sec: 1089.96 - lr: 0.000006 - momentum: 0.000000
|
203 |
+
2023-09-03 21:07:50,912 ----------------------------------------------------------------------------------------------------
|
204 |
+
2023-09-03 21:07:50,913 EPOCH 9 done: loss 0.0052 - lr: 0.000006
|
205 |
+
2023-09-03 21:08:04,501 DEV : loss 0.22261452674865723 - f1-score (micro avg) 0.7777
|
206 |
+
2023-09-03 21:08:04,528 ----------------------------------------------------------------------------------------------------
|
207 |
+
2023-09-03 21:08:12,555 epoch 10 - iter 44/447 - loss 0.00479591 - time (sec): 8.03 - samples/sec: 1123.45 - lr: 0.000005 - momentum: 0.000000
|
208 |
+
2023-09-03 21:08:19,833 epoch 10 - iter 88/447 - loss 0.00658392 - time (sec): 15.30 - samples/sec: 1130.43 - lr: 0.000005 - momentum: 0.000000
|
209 |
+
2023-09-03 21:08:27,230 epoch 10 - iter 132/447 - loss 0.00460342 - time (sec): 22.70 - samples/sec: 1133.81 - lr: 0.000004 - momentum: 0.000000
|
210 |
+
2023-09-03 21:08:35,120 epoch 10 - iter 176/447 - loss 0.00429682 - time (sec): 30.59 - samples/sec: 1132.08 - lr: 0.000003 - momentum: 0.000000
|
211 |
+
2023-09-03 21:08:41,797 epoch 10 - iter 220/447 - loss 0.00420025 - time (sec): 37.27 - samples/sec: 1144.52 - lr: 0.000003 - momentum: 0.000000
|
212 |
+
2023-09-03 21:08:48,910 epoch 10 - iter 264/447 - loss 0.00362146 - time (sec): 44.38 - samples/sec: 1144.62 - lr: 0.000002 - momentum: 0.000000
|
213 |
+
2023-09-03 21:08:56,331 epoch 10 - iter 308/447 - loss 0.00361059 - time (sec): 51.80 - samples/sec: 1147.07 - lr: 0.000002 - momentum: 0.000000
|
214 |
+
2023-09-03 21:09:05,620 epoch 10 - iter 352/447 - loss 0.00336808 - time (sec): 61.09 - samples/sec: 1140.21 - lr: 0.000001 - momentum: 0.000000
|
215 |
+
2023-09-03 21:09:12,495 epoch 10 - iter 396/447 - loss 0.00329159 - time (sec): 67.97 - samples/sec: 1140.42 - lr: 0.000001 - momentum: 0.000000
|
216 |
+
2023-09-03 21:09:19,057 epoch 10 - iter 440/447 - loss 0.00311645 - time (sec): 74.53 - samples/sec: 1144.22 - lr: 0.000000 - momentum: 0.000000
|
217 |
+
2023-09-03 21:09:20,071 ----------------------------------------------------------------------------------------------------
|
218 |
+
2023-09-03 21:09:20,072 EPOCH 10 done: loss 0.0031 - lr: 0.000000
|
219 |
+
2023-09-03 21:09:32,827 DEV : loss 0.2274623066186905 - f1-score (micro avg) 0.7878
|
220 |
+
2023-09-03 21:09:33,320 ----------------------------------------------------------------------------------------------------
|
221 |
+
2023-09-03 21:09:33,321 Loading model from best epoch ...
|
222 |
+
2023-09-03 21:09:35,181 SequenceTagger predicts: Dictionary with 21 tags: O, S-loc, B-loc, E-loc, I-loc, S-pers, B-pers, E-pers, I-pers, S-org, B-org, E-org, I-org, S-prod, B-prod, E-prod, I-prod, S-time, B-time, E-time, I-time
|
223 |
+
2023-09-03 21:09:45,092
|
224 |
+
Results:
|
225 |
+
- F-score (micro) 0.7335
|
226 |
+
- F-score (macro) 0.6578
|
227 |
+
- Accuracy 0.5978
|
228 |
+
|
229 |
+
By class:
|
230 |
+
precision recall f1-score support
|
231 |
+
|
232 |
+
loc 0.8115 0.8523 0.8314 596
|
233 |
+
pers 0.6434 0.7477 0.6917 333
|
234 |
+
org 0.4839 0.4545 0.4687 132
|
235 |
+
prod 0.5690 0.5000 0.5323 66
|
236 |
+
time 0.7358 0.7959 0.7647 49
|
237 |
+
|
238 |
+
micro avg 0.7123 0.7560 0.7335 1176
|
239 |
+
macro avg 0.6487 0.6701 0.6578 1176
|
240 |
+
weighted avg 0.7104 0.7560 0.7316 1176
|
241 |
+
|
242 |
+
2023-09-03 21:09:45,092 ----------------------------------------------------------------------------------------------------
|