Upload folder using huggingface_hub
Browse files- __pycache__/flair-fine-tuner.cpython-39.pyc +0 -0
- __pycache__/utils.cpython-39.pyc +0 -0
- hmbench-hipe2020/de-dbmdz/bert-base-historic-multilingual-cased-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1/best-model.pt +3 -0
- hmbench-hipe2020/de-dbmdz/bert-base-historic-multilingual-cased-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1/dev.tsv +0 -0
- hmbench-hipe2020/de-dbmdz/bert-base-historic-multilingual-cased-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1/final-model.pt +3 -0
- hmbench-hipe2020/de-dbmdz/bert-base-historic-multilingual-cased-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1/loss.tsv +11 -0
- hmbench-hipe2020/de-dbmdz/bert-base-historic-multilingual-cased-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1/test.tsv +0 -0
- hmbench-hipe2020/de-dbmdz/bert-base-historic-multilingual-cased-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1/training.log +247 -0
- training_params.json +8 -0
__pycache__/flair-fine-tuner.cpython-39.pyc
ADDED
Binary file (3.26 kB). View file
|
|
__pycache__/utils.cpython-39.pyc
ADDED
Binary file (4.6 kB). View file
|
|
hmbench-hipe2020/de-dbmdz/bert-base-historic-multilingual-cased-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1/best-model.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:839cdc42fe525586c0f33cffd65cabce1a1be4b488b7c7b31810bd5a172c6bf8
|
3 |
+
size 443334288
|
hmbench-hipe2020/de-dbmdz/bert-base-historic-multilingual-cased-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1/dev.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
hmbench-hipe2020/de-dbmdz/bert-base-historic-multilingual-cased-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1/final-model.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bdf2956b3088973ddfe60232c9ebb76da40a7f9f49599ff897f787ec154429ca
|
3 |
+
size 443334491
|
hmbench-hipe2020/de-dbmdz/bert-base-historic-multilingual-cased-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1/loss.tsv
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
EPOCH TIMESTAMP LEARNING_RATE TRAIN_LOSS DEV_LOSS DEV_PRECISION DEV_RECALL DEV_F1 DEV_ACCURACY
|
2 |
+
1 18:22:55 0.0000 0.7743 0.1859 0.5822 0.6200 0.6005 0.4473
|
3 |
+
2 18:24:26 0.0000 0.1697 0.1287 0.7198 0.7131 0.7164 0.5761
|
4 |
+
3 18:25:58 0.0000 0.0894 0.1226 0.7012 0.7725 0.7351 0.6010
|
5 |
+
4 18:27:26 0.0000 0.0514 0.1439 0.7045 0.7959 0.7474 0.6207
|
6 |
+
5 18:28:56 0.0000 0.0329 0.1667 0.7652 0.7568 0.7610 0.6290
|
7 |
+
6 18:30:29 0.0000 0.0217 0.1837 0.7663 0.7920 0.7789 0.6552
|
8 |
+
7 18:32:03 0.0000 0.0142 0.1973 0.7626 0.8061 0.7837 0.6609
|
9 |
+
8 18:33:36 0.0000 0.0096 0.2098 0.7632 0.8139 0.7877 0.6665
|
10 |
+
9 18:35:09 0.0000 0.0076 0.2160 0.7704 0.8108 0.7901 0.6682
|
11 |
+
10 18:36:42 0.0000 0.0051 0.2176 0.7818 0.8069 0.7942 0.6754
|
hmbench-hipe2020/de-dbmdz/bert-base-historic-multilingual-cased-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1/test.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
hmbench-hipe2020/de-dbmdz/bert-base-historic-multilingual-cased-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1/training.log
ADDED
@@ -0,0 +1,247 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-09-03 18:21:28,781 ----------------------------------------------------------------------------------------------------
|
2 |
+
2023-09-03 18:21:28,782 Model: "SequenceTagger(
|
3 |
+
(embeddings): TransformerWordEmbeddings(
|
4 |
+
(model): BertModel(
|
5 |
+
(embeddings): BertEmbeddings(
|
6 |
+
(word_embeddings): Embedding(32001, 768)
|
7 |
+
(position_embeddings): Embedding(512, 768)
|
8 |
+
(token_type_embeddings): Embedding(2, 768)
|
9 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
10 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
11 |
+
)
|
12 |
+
(encoder): BertEncoder(
|
13 |
+
(layer): ModuleList(
|
14 |
+
(0-11): 12 x BertLayer(
|
15 |
+
(attention): BertAttention(
|
16 |
+
(self): BertSelfAttention(
|
17 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
18 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
19 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
21 |
+
)
|
22 |
+
(output): BertSelfOutput(
|
23 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
24 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
25 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
26 |
+
)
|
27 |
+
)
|
28 |
+
(intermediate): BertIntermediate(
|
29 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
30 |
+
(intermediate_act_fn): GELUActivation()
|
31 |
+
)
|
32 |
+
(output): BertOutput(
|
33 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
34 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
35 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
36 |
+
)
|
37 |
+
)
|
38 |
+
)
|
39 |
+
)
|
40 |
+
(pooler): BertPooler(
|
41 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
42 |
+
(activation): Tanh()
|
43 |
+
)
|
44 |
+
)
|
45 |
+
)
|
46 |
+
(locked_dropout): LockedDropout(p=0.5)
|
47 |
+
(linear): Linear(in_features=768, out_features=21, bias=True)
|
48 |
+
(loss_function): CrossEntropyLoss()
|
49 |
+
)"
|
50 |
+
2023-09-03 18:21:28,782 ----------------------------------------------------------------------------------------------------
|
51 |
+
2023-09-03 18:21:28,783 MultiCorpus: 3575 train + 1235 dev + 1266 test sentences
|
52 |
+
- NER_HIPE_2022 Corpus: 3575 train + 1235 dev + 1266 test sentences - /app/.flair/datasets/ner_hipe_2022/v2.1/hipe2020/de/with_doc_seperator
|
53 |
+
2023-09-03 18:21:28,783 ----------------------------------------------------------------------------------------------------
|
54 |
+
2023-09-03 18:21:28,783 Train: 3575 sentences
|
55 |
+
2023-09-03 18:21:28,783 (train_with_dev=False, train_with_test=False)
|
56 |
+
2023-09-03 18:21:28,783 ----------------------------------------------------------------------------------------------------
|
57 |
+
2023-09-03 18:21:28,783 Training Params:
|
58 |
+
2023-09-03 18:21:28,783 - learning_rate: "3e-05"
|
59 |
+
2023-09-03 18:21:28,783 - mini_batch_size: "8"
|
60 |
+
2023-09-03 18:21:28,783 - max_epochs: "10"
|
61 |
+
2023-09-03 18:21:28,783 - shuffle: "True"
|
62 |
+
2023-09-03 18:21:28,783 ----------------------------------------------------------------------------------------------------
|
63 |
+
2023-09-03 18:21:28,783 Plugins:
|
64 |
+
2023-09-03 18:21:28,783 - LinearScheduler | warmup_fraction: '0.1'
|
65 |
+
2023-09-03 18:21:28,783 ----------------------------------------------------------------------------------------------------
|
66 |
+
2023-09-03 18:21:28,783 Final evaluation on model from best epoch (best-model.pt)
|
67 |
+
2023-09-03 18:21:28,783 - metric: "('micro avg', 'f1-score')"
|
68 |
+
2023-09-03 18:21:28,783 ----------------------------------------------------------------------------------------------------
|
69 |
+
2023-09-03 18:21:28,783 Computation:
|
70 |
+
2023-09-03 18:21:28,783 - compute on device: cuda:0
|
71 |
+
2023-09-03 18:21:28,783 - embedding storage: none
|
72 |
+
2023-09-03 18:21:28,783 ----------------------------------------------------------------------------------------------------
|
73 |
+
2023-09-03 18:21:28,784 Model training base path: "hmbench-hipe2020/de-dbmdz/bert-base-historic-multilingual-cased-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1"
|
74 |
+
2023-09-03 18:21:28,784 ----------------------------------------------------------------------------------------------------
|
75 |
+
2023-09-03 18:21:28,784 ----------------------------------------------------------------------------------------------------
|
76 |
+
2023-09-03 18:21:37,415 epoch 1 - iter 44/447 - loss 3.11470317 - time (sec): 8.63 - samples/sec: 1101.62 - lr: 0.000003 - momentum: 0.000000
|
77 |
+
2023-09-03 18:21:44,132 epoch 1 - iter 88/447 - loss 2.46591154 - time (sec): 15.35 - samples/sec: 1132.48 - lr: 0.000006 - momentum: 0.000000
|
78 |
+
2023-09-03 18:21:50,463 epoch 1 - iter 132/447 - loss 1.86942740 - time (sec): 21.68 - samples/sec: 1154.71 - lr: 0.000009 - momentum: 0.000000
|
79 |
+
2023-09-03 18:21:57,523 epoch 1 - iter 176/447 - loss 1.51187376 - time (sec): 28.74 - samples/sec: 1163.96 - lr: 0.000012 - momentum: 0.000000
|
80 |
+
2023-09-03 18:22:04,676 epoch 1 - iter 220/447 - loss 1.29508937 - time (sec): 35.89 - samples/sec: 1158.01 - lr: 0.000015 - momentum: 0.000000
|
81 |
+
2023-09-03 18:22:12,403 epoch 1 - iter 264/447 - loss 1.12696614 - time (sec): 43.62 - samples/sec: 1155.38 - lr: 0.000018 - momentum: 0.000000
|
82 |
+
2023-09-03 18:22:19,810 epoch 1 - iter 308/447 - loss 1.00970315 - time (sec): 51.03 - samples/sec: 1156.00 - lr: 0.000021 - momentum: 0.000000
|
83 |
+
2023-09-03 18:22:27,968 epoch 1 - iter 352/447 - loss 0.91037509 - time (sec): 59.18 - samples/sec: 1149.49 - lr: 0.000024 - momentum: 0.000000
|
84 |
+
2023-09-03 18:22:35,226 epoch 1 - iter 396/447 - loss 0.83951962 - time (sec): 66.44 - samples/sec: 1148.53 - lr: 0.000027 - momentum: 0.000000
|
85 |
+
2023-09-03 18:22:43,504 epoch 1 - iter 440/447 - loss 0.78127074 - time (sec): 74.72 - samples/sec: 1143.13 - lr: 0.000029 - momentum: 0.000000
|
86 |
+
2023-09-03 18:22:44,641 ----------------------------------------------------------------------------------------------------
|
87 |
+
2023-09-03 18:22:44,641 EPOCH 1 done: loss 0.7743 - lr: 0.000029
|
88 |
+
2023-09-03 18:22:55,295 DEV : loss 0.18594643473625183 - f1-score (micro avg) 0.6005
|
89 |
+
2023-09-03 18:22:55,320 saving best model
|
90 |
+
2023-09-03 18:22:55,824 ----------------------------------------------------------------------------------------------------
|
91 |
+
2023-09-03 18:23:02,965 epoch 2 - iter 44/447 - loss 0.18936146 - time (sec): 7.14 - samples/sec: 1197.29 - lr: 0.000030 - momentum: 0.000000
|
92 |
+
2023-09-03 18:23:10,629 epoch 2 - iter 88/447 - loss 0.20698027 - time (sec): 14.80 - samples/sec: 1151.07 - lr: 0.000029 - momentum: 0.000000
|
93 |
+
2023-09-03 18:23:18,076 epoch 2 - iter 132/447 - loss 0.20176059 - time (sec): 22.25 - samples/sec: 1154.89 - lr: 0.000029 - momentum: 0.000000
|
94 |
+
2023-09-03 18:23:26,066 epoch 2 - iter 176/447 - loss 0.19297787 - time (sec): 30.24 - samples/sec: 1127.24 - lr: 0.000029 - momentum: 0.000000
|
95 |
+
2023-09-03 18:23:33,176 epoch 2 - iter 220/447 - loss 0.18884083 - time (sec): 37.35 - samples/sec: 1123.49 - lr: 0.000028 - momentum: 0.000000
|
96 |
+
2023-09-03 18:23:41,142 epoch 2 - iter 264/447 - loss 0.17774497 - time (sec): 45.32 - samples/sec: 1115.72 - lr: 0.000028 - momentum: 0.000000
|
97 |
+
2023-09-03 18:23:49,190 epoch 2 - iter 308/447 - loss 0.17609029 - time (sec): 53.36 - samples/sec: 1121.18 - lr: 0.000028 - momentum: 0.000000
|
98 |
+
2023-09-03 18:23:56,535 epoch 2 - iter 352/447 - loss 0.17573283 - time (sec): 60.71 - samples/sec: 1117.53 - lr: 0.000027 - momentum: 0.000000
|
99 |
+
2023-09-03 18:24:03,661 epoch 2 - iter 396/447 - loss 0.17493628 - time (sec): 67.84 - samples/sec: 1118.95 - lr: 0.000027 - momentum: 0.000000
|
100 |
+
2023-09-03 18:24:12,041 epoch 2 - iter 440/447 - loss 0.17070290 - time (sec): 76.22 - samples/sec: 1119.71 - lr: 0.000027 - momentum: 0.000000
|
101 |
+
2023-09-03 18:24:13,175 ----------------------------------------------------------------------------------------------------
|
102 |
+
2023-09-03 18:24:13,175 EPOCH 2 done: loss 0.1697 - lr: 0.000027
|
103 |
+
2023-09-03 18:24:26,624 DEV : loss 0.1287333220243454 - f1-score (micro avg) 0.7164
|
104 |
+
2023-09-03 18:24:26,650 saving best model
|
105 |
+
2023-09-03 18:24:28,027 ----------------------------------------------------------------------------------------------------
|
106 |
+
2023-09-03 18:24:34,995 epoch 3 - iter 44/447 - loss 0.09495783 - time (sec): 6.97 - samples/sec: 1107.10 - lr: 0.000026 - momentum: 0.000000
|
107 |
+
2023-09-03 18:24:42,160 epoch 3 - iter 88/447 - loss 0.09050438 - time (sec): 14.13 - samples/sec: 1129.37 - lr: 0.000026 - momentum: 0.000000
|
108 |
+
2023-09-03 18:24:49,492 epoch 3 - iter 132/447 - loss 0.09851004 - time (sec): 21.46 - samples/sec: 1118.88 - lr: 0.000026 - momentum: 0.000000
|
109 |
+
2023-09-03 18:24:57,792 epoch 3 - iter 176/447 - loss 0.09053540 - time (sec): 29.76 - samples/sec: 1104.37 - lr: 0.000025 - momentum: 0.000000
|
110 |
+
2023-09-03 18:25:06,412 epoch 3 - iter 220/447 - loss 0.09334204 - time (sec): 38.38 - samples/sec: 1092.60 - lr: 0.000025 - momentum: 0.000000
|
111 |
+
2023-09-03 18:25:13,477 epoch 3 - iter 264/447 - loss 0.08944533 - time (sec): 45.45 - samples/sec: 1111.97 - lr: 0.000025 - momentum: 0.000000
|
112 |
+
2023-09-03 18:25:20,942 epoch 3 - iter 308/447 - loss 0.08936581 - time (sec): 52.91 - samples/sec: 1117.84 - lr: 0.000024 - momentum: 0.000000
|
113 |
+
2023-09-03 18:25:28,640 epoch 3 - iter 352/447 - loss 0.08872997 - time (sec): 60.61 - samples/sec: 1118.60 - lr: 0.000024 - momentum: 0.000000
|
114 |
+
2023-09-03 18:25:35,687 epoch 3 - iter 396/447 - loss 0.09035623 - time (sec): 67.66 - samples/sec: 1125.10 - lr: 0.000024 - momentum: 0.000000
|
115 |
+
2023-09-03 18:25:44,366 epoch 3 - iter 440/447 - loss 0.08953185 - time (sec): 76.34 - samples/sec: 1119.46 - lr: 0.000023 - momentum: 0.000000
|
116 |
+
2023-09-03 18:25:45,340 ----------------------------------------------------------------------------------------------------
|
117 |
+
2023-09-03 18:25:45,340 EPOCH 3 done: loss 0.0894 - lr: 0.000023
|
118 |
+
2023-09-03 18:25:58,086 DEV : loss 0.1225898340344429 - f1-score (micro avg) 0.7351
|
119 |
+
2023-09-03 18:25:58,112 saving best model
|
120 |
+
2023-09-03 18:25:59,469 ----------------------------------------------------------------------------------------------------
|
121 |
+
2023-09-03 18:26:06,724 epoch 4 - iter 44/447 - loss 0.06395735 - time (sec): 7.25 - samples/sec: 1236.05 - lr: 0.000023 - momentum: 0.000000
|
122 |
+
2023-09-03 18:26:13,500 epoch 4 - iter 88/447 - loss 0.05982834 - time (sec): 14.03 - samples/sec: 1212.04 - lr: 0.000023 - momentum: 0.000000
|
123 |
+
2023-09-03 18:26:21,427 epoch 4 - iter 132/447 - loss 0.05652974 - time (sec): 21.96 - samples/sec: 1186.41 - lr: 0.000022 - momentum: 0.000000
|
124 |
+
2023-09-03 18:26:29,661 epoch 4 - iter 176/447 - loss 0.05525616 - time (sec): 30.19 - samples/sec: 1181.96 - lr: 0.000022 - momentum: 0.000000
|
125 |
+
2023-09-03 18:26:37,306 epoch 4 - iter 220/447 - loss 0.05254340 - time (sec): 37.84 - samples/sec: 1172.27 - lr: 0.000022 - momentum: 0.000000
|
126 |
+
2023-09-03 18:26:44,944 epoch 4 - iter 264/447 - loss 0.05385835 - time (sec): 45.47 - samples/sec: 1165.24 - lr: 0.000021 - momentum: 0.000000
|
127 |
+
2023-09-03 18:26:51,760 epoch 4 - iter 308/447 - loss 0.05369138 - time (sec): 52.29 - samples/sec: 1172.55 - lr: 0.000021 - momentum: 0.000000
|
128 |
+
2023-09-03 18:26:58,807 epoch 4 - iter 352/447 - loss 0.05338970 - time (sec): 59.34 - samples/sec: 1174.43 - lr: 0.000021 - momentum: 0.000000
|
129 |
+
2023-09-03 18:27:05,146 epoch 4 - iter 396/447 - loss 0.05132492 - time (sec): 65.68 - samples/sec: 1170.43 - lr: 0.000020 - momentum: 0.000000
|
130 |
+
2023-09-03 18:27:12,845 epoch 4 - iter 440/447 - loss 0.05151521 - time (sec): 73.37 - samples/sec: 1163.44 - lr: 0.000020 - momentum: 0.000000
|
131 |
+
2023-09-03 18:27:13,894 ----------------------------------------------------------------------------------------------------
|
132 |
+
2023-09-03 18:27:13,894 EPOCH 4 done: loss 0.0514 - lr: 0.000020
|
133 |
+
2023-09-03 18:27:26,856 DEV : loss 0.1438855081796646 - f1-score (micro avg) 0.7474
|
134 |
+
2023-09-03 18:27:26,893 saving best model
|
135 |
+
2023-09-03 18:27:28,273 ----------------------------------------------------------------------------------------------------
|
136 |
+
2023-09-03 18:27:37,200 epoch 5 - iter 44/447 - loss 0.04007260 - time (sec): 8.93 - samples/sec: 1080.28 - lr: 0.000020 - momentum: 0.000000
|
137 |
+
2023-09-03 18:27:44,006 epoch 5 - iter 88/447 - loss 0.03678430 - time (sec): 15.73 - samples/sec: 1120.83 - lr: 0.000019 - momentum: 0.000000
|
138 |
+
2023-09-03 18:27:51,611 epoch 5 - iter 132/447 - loss 0.03344633 - time (sec): 23.34 - samples/sec: 1124.95 - lr: 0.000019 - momentum: 0.000000
|
139 |
+
2023-09-03 18:27:58,422 epoch 5 - iter 176/447 - loss 0.03311853 - time (sec): 30.15 - samples/sec: 1140.02 - lr: 0.000019 - momentum: 0.000000
|
140 |
+
2023-09-03 18:28:06,463 epoch 5 - iter 220/447 - loss 0.03289270 - time (sec): 38.19 - samples/sec: 1136.03 - lr: 0.000018 - momentum: 0.000000
|
141 |
+
2023-09-03 18:28:13,614 epoch 5 - iter 264/447 - loss 0.03272367 - time (sec): 45.34 - samples/sec: 1147.21 - lr: 0.000018 - momentum: 0.000000
|
142 |
+
2023-09-03 18:28:20,716 epoch 5 - iter 308/447 - loss 0.03211904 - time (sec): 52.44 - samples/sec: 1145.62 - lr: 0.000018 - momentum: 0.000000
|
143 |
+
2023-09-03 18:28:28,282 epoch 5 - iter 352/447 - loss 0.03099804 - time (sec): 60.01 - samples/sec: 1145.99 - lr: 0.000017 - momentum: 0.000000
|
144 |
+
2023-09-03 18:28:35,561 epoch 5 - iter 396/447 - loss 0.03134117 - time (sec): 67.29 - samples/sec: 1139.40 - lr: 0.000017 - momentum: 0.000000
|
145 |
+
2023-09-03 18:28:42,759 epoch 5 - iter 440/447 - loss 0.03292082 - time (sec): 74.48 - samples/sec: 1144.88 - lr: 0.000017 - momentum: 0.000000
|
146 |
+
2023-09-03 18:28:43,886 ----------------------------------------------------------------------------------------------------
|
147 |
+
2023-09-03 18:28:43,887 EPOCH 5 done: loss 0.0329 - lr: 0.000017
|
148 |
+
2023-09-03 18:28:56,796 DEV : loss 0.16667184233665466 - f1-score (micro avg) 0.761
|
149 |
+
2023-09-03 18:28:56,822 saving best model
|
150 |
+
2023-09-03 18:28:58,193 ----------------------------------------------------------------------------------------------------
|
151 |
+
2023-09-03 18:29:06,052 epoch 6 - iter 44/447 - loss 0.02307461 - time (sec): 7.86 - samples/sec: 1093.56 - lr: 0.000016 - momentum: 0.000000
|
152 |
+
2023-09-03 18:29:12,868 epoch 6 - iter 88/447 - loss 0.01945012 - time (sec): 14.67 - samples/sec: 1103.26 - lr: 0.000016 - momentum: 0.000000
|
153 |
+
2023-09-03 18:29:20,967 epoch 6 - iter 132/447 - loss 0.01718198 - time (sec): 22.77 - samples/sec: 1099.68 - lr: 0.000016 - momentum: 0.000000
|
154 |
+
2023-09-03 18:29:28,847 epoch 6 - iter 176/447 - loss 0.01824429 - time (sec): 30.65 - samples/sec: 1108.00 - lr: 0.000015 - momentum: 0.000000
|
155 |
+
2023-09-03 18:29:35,589 epoch 6 - iter 220/447 - loss 0.01838533 - time (sec): 37.39 - samples/sec: 1111.07 - lr: 0.000015 - momentum: 0.000000
|
156 |
+
2023-09-03 18:29:43,043 epoch 6 - iter 264/447 - loss 0.01877602 - time (sec): 44.85 - samples/sec: 1105.93 - lr: 0.000015 - momentum: 0.000000
|
157 |
+
2023-09-03 18:29:50,277 epoch 6 - iter 308/447 - loss 0.02057658 - time (sec): 52.08 - samples/sec: 1101.92 - lr: 0.000014 - momentum: 0.000000
|
158 |
+
2023-09-03 18:29:57,389 epoch 6 - iter 352/447 - loss 0.02153178 - time (sec): 59.19 - samples/sec: 1114.71 - lr: 0.000014 - momentum: 0.000000
|
159 |
+
2023-09-03 18:30:06,767 epoch 6 - iter 396/447 - loss 0.02220110 - time (sec): 68.57 - samples/sec: 1110.88 - lr: 0.000014 - momentum: 0.000000
|
160 |
+
2023-09-03 18:30:15,051 epoch 6 - iter 440/447 - loss 0.02172317 - time (sec): 76.86 - samples/sec: 1108.89 - lr: 0.000013 - momentum: 0.000000
|
161 |
+
2023-09-03 18:30:16,130 ----------------------------------------------------------------------------------------------------
|
162 |
+
2023-09-03 18:30:16,130 EPOCH 6 done: loss 0.0217 - lr: 0.000013
|
163 |
+
2023-09-03 18:30:29,605 DEV : loss 0.1836623251438141 - f1-score (micro avg) 0.7789
|
164 |
+
2023-09-03 18:30:29,632 saving best model
|
165 |
+
2023-09-03 18:30:31,501 ----------------------------------------------------------------------------------------------------
|
166 |
+
2023-09-03 18:30:38,866 epoch 7 - iter 44/447 - loss 0.01419595 - time (sec): 7.36 - samples/sec: 1187.09 - lr: 0.000013 - momentum: 0.000000
|
167 |
+
2023-09-03 18:30:46,088 epoch 7 - iter 88/447 - loss 0.01603520 - time (sec): 14.59 - samples/sec: 1157.28 - lr: 0.000013 - momentum: 0.000000
|
168 |
+
2023-09-03 18:30:55,966 epoch 7 - iter 132/447 - loss 0.01574985 - time (sec): 24.46 - samples/sec: 1102.88 - lr: 0.000012 - momentum: 0.000000
|
169 |
+
2023-09-03 18:31:03,653 epoch 7 - iter 176/447 - loss 0.01383093 - time (sec): 32.15 - samples/sec: 1098.70 - lr: 0.000012 - momentum: 0.000000
|
170 |
+
2023-09-03 18:31:11,583 epoch 7 - iter 220/447 - loss 0.01544671 - time (sec): 40.08 - samples/sec: 1099.46 - lr: 0.000012 - momentum: 0.000000
|
171 |
+
2023-09-03 18:31:18,562 epoch 7 - iter 264/447 - loss 0.01556334 - time (sec): 47.06 - samples/sec: 1105.80 - lr: 0.000011 - momentum: 0.000000
|
172 |
+
2023-09-03 18:31:25,934 epoch 7 - iter 308/447 - loss 0.01431665 - time (sec): 54.43 - samples/sec: 1105.32 - lr: 0.000011 - momentum: 0.000000
|
173 |
+
2023-09-03 18:31:33,925 epoch 7 - iter 352/447 - loss 0.01409783 - time (sec): 62.42 - samples/sec: 1097.26 - lr: 0.000011 - momentum: 0.000000
|
174 |
+
2023-09-03 18:31:41,095 epoch 7 - iter 396/447 - loss 0.01484694 - time (sec): 69.59 - samples/sec: 1094.28 - lr: 0.000010 - momentum: 0.000000
|
175 |
+
2023-09-03 18:31:48,109 epoch 7 - iter 440/447 - loss 0.01446960 - time (sec): 76.61 - samples/sec: 1100.22 - lr: 0.000010 - momentum: 0.000000
|
176 |
+
2023-09-03 18:31:50,291 ----------------------------------------------------------------------------------------------------
|
177 |
+
2023-09-03 18:31:50,291 EPOCH 7 done: loss 0.0142 - lr: 0.000010
|
178 |
+
2023-09-03 18:32:03,818 DEV : loss 0.1973269134759903 - f1-score (micro avg) 0.7837
|
179 |
+
2023-09-03 18:32:03,845 saving best model
|
180 |
+
2023-09-03 18:32:05,222 ----------------------------------------------------------------------------------------------------
|
181 |
+
2023-09-03 18:32:13,220 epoch 8 - iter 44/447 - loss 0.01029987 - time (sec): 8.00 - samples/sec: 1071.49 - lr: 0.000010 - momentum: 0.000000
|
182 |
+
2023-09-03 18:32:21,316 epoch 8 - iter 88/447 - loss 0.00934919 - time (sec): 16.09 - samples/sec: 1093.03 - lr: 0.000009 - momentum: 0.000000
|
183 |
+
2023-09-03 18:32:29,012 epoch 8 - iter 132/447 - loss 0.00805343 - time (sec): 23.79 - samples/sec: 1120.87 - lr: 0.000009 - momentum: 0.000000
|
184 |
+
2023-09-03 18:32:37,827 epoch 8 - iter 176/447 - loss 0.00742876 - time (sec): 32.60 - samples/sec: 1107.86 - lr: 0.000009 - momentum: 0.000000
|
185 |
+
2023-09-03 18:32:45,039 epoch 8 - iter 220/447 - loss 0.00944281 - time (sec): 39.82 - samples/sec: 1102.57 - lr: 0.000008 - momentum: 0.000000
|
186 |
+
2023-09-03 18:32:52,908 epoch 8 - iter 264/447 - loss 0.01021476 - time (sec): 47.68 - samples/sec: 1090.24 - lr: 0.000008 - momentum: 0.000000
|
187 |
+
2023-09-03 18:33:00,532 epoch 8 - iter 308/447 - loss 0.00971741 - time (sec): 55.31 - samples/sec: 1101.87 - lr: 0.000008 - momentum: 0.000000
|
188 |
+
2023-09-03 18:33:07,723 epoch 8 - iter 352/447 - loss 0.00925926 - time (sec): 62.50 - samples/sec: 1108.00 - lr: 0.000007 - momentum: 0.000000
|
189 |
+
2023-09-03 18:33:14,970 epoch 8 - iter 396/447 - loss 0.01013440 - time (sec): 69.75 - samples/sec: 1109.62 - lr: 0.000007 - momentum: 0.000000
|
190 |
+
2023-09-03 18:33:22,431 epoch 8 - iter 440/447 - loss 0.00973599 - time (sec): 77.21 - samples/sec: 1104.79 - lr: 0.000007 - momentum: 0.000000
|
191 |
+
2023-09-03 18:33:23,503 ----------------------------------------------------------------------------------------------------
|
192 |
+
2023-09-03 18:33:23,503 EPOCH 8 done: loss 0.0096 - lr: 0.000007
|
193 |
+
2023-09-03 18:33:36,556 DEV : loss 0.20980410277843475 - f1-score (micro avg) 0.7877
|
194 |
+
2023-09-03 18:33:36,582 saving best model
|
195 |
+
2023-09-03 18:33:38,290 ----------------------------------------------------------------------------------------------------
|
196 |
+
2023-09-03 18:33:45,638 epoch 9 - iter 44/447 - loss 0.00992836 - time (sec): 7.35 - samples/sec: 1108.84 - lr: 0.000006 - momentum: 0.000000
|
197 |
+
2023-09-03 18:33:53,704 epoch 9 - iter 88/447 - loss 0.00727258 - time (sec): 15.41 - samples/sec: 1127.51 - lr: 0.000006 - momentum: 0.000000
|
198 |
+
2023-09-03 18:34:01,989 epoch 9 - iter 132/447 - loss 0.00686773 - time (sec): 23.70 - samples/sec: 1085.59 - lr: 0.000006 - momentum: 0.000000
|
199 |
+
2023-09-03 18:34:10,168 epoch 9 - iter 176/447 - loss 0.00593792 - time (sec): 31.88 - samples/sec: 1093.36 - lr: 0.000005 - momentum: 0.000000
|
200 |
+
2023-09-03 18:34:18,970 epoch 9 - iter 220/447 - loss 0.00648321 - time (sec): 40.68 - samples/sec: 1073.40 - lr: 0.000005 - momentum: 0.000000
|
201 |
+
2023-09-03 18:34:26,084 epoch 9 - iter 264/447 - loss 0.00789765 - time (sec): 47.79 - samples/sec: 1085.54 - lr: 0.000005 - momentum: 0.000000
|
202 |
+
2023-09-03 18:34:34,436 epoch 9 - iter 308/447 - loss 0.00712320 - time (sec): 56.14 - samples/sec: 1094.59 - lr: 0.000004 - momentum: 0.000000
|
203 |
+
2023-09-03 18:34:41,491 epoch 9 - iter 352/447 - loss 0.00662608 - time (sec): 63.20 - samples/sec: 1099.33 - lr: 0.000004 - momentum: 0.000000
|
204 |
+
2023-09-03 18:34:48,326 epoch 9 - iter 396/447 - loss 0.00674970 - time (sec): 70.03 - samples/sec: 1105.13 - lr: 0.000004 - momentum: 0.000000
|
205 |
+
2023-09-03 18:34:55,784 epoch 9 - iter 440/447 - loss 0.00751222 - time (sec): 77.49 - samples/sec: 1101.10 - lr: 0.000003 - momentum: 0.000000
|
206 |
+
2023-09-03 18:34:56,819 ----------------------------------------------------------------------------------------------------
|
207 |
+
2023-09-03 18:34:56,819 EPOCH 9 done: loss 0.0076 - lr: 0.000003
|
208 |
+
2023-09-03 18:35:09,955 DEV : loss 0.2160281091928482 - f1-score (micro avg) 0.7901
|
209 |
+
2023-09-03 18:35:09,982 saving best model
|
210 |
+
2023-09-03 18:35:11,346 ----------------------------------------------------------------------------------------------------
|
211 |
+
2023-09-03 18:35:19,098 epoch 10 - iter 44/447 - loss 0.00476283 - time (sec): 7.75 - samples/sec: 1121.94 - lr: 0.000003 - momentum: 0.000000
|
212 |
+
2023-09-03 18:35:25,973 epoch 10 - iter 88/447 - loss 0.00479459 - time (sec): 14.63 - samples/sec: 1131.01 - lr: 0.000003 - momentum: 0.000000
|
213 |
+
2023-09-03 18:35:33,160 epoch 10 - iter 132/447 - loss 0.00414159 - time (sec): 21.81 - samples/sec: 1147.93 - lr: 0.000002 - momentum: 0.000000
|
214 |
+
2023-09-03 18:35:40,912 epoch 10 - iter 176/447 - loss 0.00424893 - time (sec): 29.56 - samples/sec: 1138.91 - lr: 0.000002 - momentum: 0.000000
|
215 |
+
2023-09-03 18:35:49,645 epoch 10 - iter 220/447 - loss 0.00517905 - time (sec): 38.30 - samples/sec: 1117.89 - lr: 0.000002 - momentum: 0.000000
|
216 |
+
2023-09-03 18:35:58,183 epoch 10 - iter 264/447 - loss 0.00508760 - time (sec): 46.84 - samples/sec: 1100.36 - lr: 0.000001 - momentum: 0.000000
|
217 |
+
2023-09-03 18:36:06,411 epoch 10 - iter 308/447 - loss 0.00478898 - time (sec): 55.06 - samples/sec: 1096.34 - lr: 0.000001 - momentum: 0.000000
|
218 |
+
2023-09-03 18:36:13,313 epoch 10 - iter 352/447 - loss 0.00492933 - time (sec): 61.96 - samples/sec: 1103.01 - lr: 0.000001 - momentum: 0.000000
|
219 |
+
2023-09-03 18:36:20,461 epoch 10 - iter 396/447 - loss 0.00523232 - time (sec): 69.11 - samples/sec: 1105.83 - lr: 0.000000 - momentum: 0.000000
|
220 |
+
2023-09-03 18:36:28,541 epoch 10 - iter 440/447 - loss 0.00518352 - time (sec): 77.19 - samples/sec: 1100.36 - lr: 0.000000 - momentum: 0.000000
|
221 |
+
2023-09-03 18:36:29,888 ----------------------------------------------------------------------------------------------------
|
222 |
+
2023-09-03 18:36:29,889 EPOCH 10 done: loss 0.0051 - lr: 0.000000
|
223 |
+
2023-09-03 18:36:42,963 DEV : loss 0.21760693192481995 - f1-score (micro avg) 0.7942
|
224 |
+
2023-09-03 18:36:42,989 saving best model
|
225 |
+
2023-09-03 18:36:44,882 ----------------------------------------------------------------------------------------------------
|
226 |
+
2023-09-03 18:36:44,883 Loading model from best epoch ...
|
227 |
+
2023-09-03 18:36:47,178 SequenceTagger predicts: Dictionary with 21 tags: O, S-loc, B-loc, E-loc, I-loc, S-pers, B-pers, E-pers, I-pers, S-org, B-org, E-org, I-org, S-prod, B-prod, E-prod, I-prod, S-time, B-time, E-time, I-time
|
228 |
+
2023-09-03 18:36:58,110
|
229 |
+
Results:
|
230 |
+
- F-score (micro) 0.7599
|
231 |
+
- F-score (macro) 0.7005
|
232 |
+
- Accuracy 0.632
|
233 |
+
|
234 |
+
By class:
|
235 |
+
precision recall f1-score support
|
236 |
+
|
237 |
+
loc 0.8386 0.8540 0.8462 596
|
238 |
+
pers 0.6746 0.7658 0.7173 333
|
239 |
+
org 0.5328 0.4924 0.5118 132
|
240 |
+
prod 0.7872 0.5606 0.6549 66
|
241 |
+
time 0.7500 0.7959 0.7723 49
|
242 |
+
|
243 |
+
micro avg 0.7504 0.7696 0.7599 1176
|
244 |
+
macro avg 0.7166 0.6937 0.7005 1176
|
245 |
+
weighted avg 0.7512 0.7696 0.7584 1176
|
246 |
+
|
247 |
+
2023-09-03 18:36:58,110 ----------------------------------------------------------------------------------------------------
|
training_params.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"username": "stefan-it",
|
3 |
+
"project_name": "/tmp/model",
|
4 |
+
"data_path": "stefan-it/autotrain-flair-hipe2022-de-hmbert",
|
5 |
+
"token": "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",
|
6 |
+
"script_path": "/home/stefan/Repositories/hmTEAMS/bench",
|
7 |
+
"env": {}
|
8 |
+
}
|