Upload folder using huggingface_hub
Browse files- hmbench-hipe2020/de-dbmdz/bert-base-historic-multilingual-cased-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5/best-model.pt +3 -0
- hmbench-hipe2020/de-dbmdz/bert-base-historic-multilingual-cased-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5/dev.tsv +0 -0
- hmbench-hipe2020/de-dbmdz/bert-base-historic-multilingual-cased-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5/final-model.pt +3 -0
- hmbench-hipe2020/de-dbmdz/bert-base-historic-multilingual-cased-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5/loss.tsv +11 -0
- hmbench-hipe2020/de-dbmdz/bert-base-historic-multilingual-cased-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5/test.tsv +0 -0
- hmbench-hipe2020/de-dbmdz/bert-base-historic-multilingual-cased-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5/training.log +245 -0
hmbench-hipe2020/de-dbmdz/bert-base-historic-multilingual-cased-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5/best-model.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:434e9054ca28183572ff635acd4ee702103613597fc293fb1ab786c5caa91074
|
3 |
+
size 443334288
|
hmbench-hipe2020/de-dbmdz/bert-base-historic-multilingual-cased-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5/dev.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
hmbench-hipe2020/de-dbmdz/bert-base-historic-multilingual-cased-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5/final-model.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:713dbbcf3ee24dd3d8d8c2b3a1c67c9ea23dd6c65059a468da7275f656ed55cf
|
3 |
+
size 443334491
|
hmbench-hipe2020/de-dbmdz/bert-base-historic-multilingual-cased-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5/loss.tsv
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
EPOCH TIMESTAMP LEARNING_RATE TRAIN_LOSS DEV_LOSS DEV_PRECISION DEV_RECALL DEV_F1 DEV_ACCURACY
|
2 |
+
1 23:32:31 0.0000 0.6444 0.2032 0.4155 0.5575 0.4761 0.3192
|
3 |
+
2 23:34:19 0.0000 0.1618 0.1588 0.7193 0.7154 0.7174 0.5795
|
4 |
+
3 23:36:08 0.0000 0.0940 0.1649 0.7295 0.7443 0.7368 0.5987
|
5 |
+
4 23:37:56 0.0000 0.0568 0.1610 0.7525 0.7678 0.7601 0.6295
|
6 |
+
5 23:39:44 0.0000 0.0361 0.1914 0.7275 0.7952 0.7598 0.6333
|
7 |
+
6 23:41:31 0.0000 0.0239 0.2092 0.7523 0.7834 0.7675 0.6431
|
8 |
+
7 23:43:17 0.0000 0.0156 0.2316 0.7682 0.7826 0.7754 0.6487
|
9 |
+
8 23:45:01 0.0000 0.0099 0.2163 0.7601 0.8124 0.7853 0.6643
|
10 |
+
9 23:46:48 0.0000 0.0067 0.2261 0.7784 0.8100 0.7939 0.6749
|
11 |
+
10 23:48:33 0.0000 0.0042 0.2306 0.7764 0.8061 0.7909 0.6717
|
hmbench-hipe2020/de-dbmdz/bert-base-historic-multilingual-cased-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5/test.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
hmbench-hipe2020/de-dbmdz/bert-base-historic-multilingual-cased-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5/training.log
ADDED
@@ -0,0 +1,245 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-09-03 23:30:48,661 ----------------------------------------------------------------------------------------------------
|
2 |
+
2023-09-03 23:30:48,662 Model: "SequenceTagger(
|
3 |
+
(embeddings): TransformerWordEmbeddings(
|
4 |
+
(model): BertModel(
|
5 |
+
(embeddings): BertEmbeddings(
|
6 |
+
(word_embeddings): Embedding(32001, 768)
|
7 |
+
(position_embeddings): Embedding(512, 768)
|
8 |
+
(token_type_embeddings): Embedding(2, 768)
|
9 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
10 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
11 |
+
)
|
12 |
+
(encoder): BertEncoder(
|
13 |
+
(layer): ModuleList(
|
14 |
+
(0-11): 12 x BertLayer(
|
15 |
+
(attention): BertAttention(
|
16 |
+
(self): BertSelfAttention(
|
17 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
18 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
19 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
21 |
+
)
|
22 |
+
(output): BertSelfOutput(
|
23 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
24 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
25 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
26 |
+
)
|
27 |
+
)
|
28 |
+
(intermediate): BertIntermediate(
|
29 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
30 |
+
(intermediate_act_fn): GELUActivation()
|
31 |
+
)
|
32 |
+
(output): BertOutput(
|
33 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
34 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
35 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
36 |
+
)
|
37 |
+
)
|
38 |
+
)
|
39 |
+
)
|
40 |
+
(pooler): BertPooler(
|
41 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
42 |
+
(activation): Tanh()
|
43 |
+
)
|
44 |
+
)
|
45 |
+
)
|
46 |
+
(locked_dropout): LockedDropout(p=0.5)
|
47 |
+
(linear): Linear(in_features=768, out_features=21, bias=True)
|
48 |
+
(loss_function): CrossEntropyLoss()
|
49 |
+
)"
|
50 |
+
2023-09-03 23:30:48,662 ----------------------------------------------------------------------------------------------------
|
51 |
+
2023-09-03 23:30:48,662 MultiCorpus: 3575 train + 1235 dev + 1266 test sentences
|
52 |
+
- NER_HIPE_2022 Corpus: 3575 train + 1235 dev + 1266 test sentences - /app/.flair/datasets/ner_hipe_2022/v2.1/hipe2020/de/with_doc_seperator
|
53 |
+
2023-09-03 23:30:48,662 ----------------------------------------------------------------------------------------------------
|
54 |
+
2023-09-03 23:30:48,663 Train: 3575 sentences
|
55 |
+
2023-09-03 23:30:48,663 (train_with_dev=False, train_with_test=False)
|
56 |
+
2023-09-03 23:30:48,663 ----------------------------------------------------------------------------------------------------
|
57 |
+
2023-09-03 23:30:48,663 Training Params:
|
58 |
+
2023-09-03 23:30:48,663 - learning_rate: "3e-05"
|
59 |
+
2023-09-03 23:30:48,663 - mini_batch_size: "4"
|
60 |
+
2023-09-03 23:30:48,663 - max_epochs: "10"
|
61 |
+
2023-09-03 23:30:48,663 - shuffle: "True"
|
62 |
+
2023-09-03 23:30:48,663 ----------------------------------------------------------------------------------------------------
|
63 |
+
2023-09-03 23:30:48,663 Plugins:
|
64 |
+
2023-09-03 23:30:48,663 - LinearScheduler | warmup_fraction: '0.1'
|
65 |
+
2023-09-03 23:30:48,663 ----------------------------------------------------------------------------------------------------
|
66 |
+
2023-09-03 23:30:48,663 Final evaluation on model from best epoch (best-model.pt)
|
67 |
+
2023-09-03 23:30:48,663 - metric: "('micro avg', 'f1-score')"
|
68 |
+
2023-09-03 23:30:48,663 ----------------------------------------------------------------------------------------------------
|
69 |
+
2023-09-03 23:30:48,663 Computation:
|
70 |
+
2023-09-03 23:30:48,663 - compute on device: cuda:0
|
71 |
+
2023-09-03 23:30:48,663 - embedding storage: none
|
72 |
+
2023-09-03 23:30:48,663 ----------------------------------------------------------------------------------------------------
|
73 |
+
2023-09-03 23:30:48,663 Model training base path: "hmbench-hipe2020/de-dbmdz/bert-base-historic-multilingual-cased-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5"
|
74 |
+
2023-09-03 23:30:48,664 ----------------------------------------------------------------------------------------------------
|
75 |
+
2023-09-03 23:30:48,664 ----------------------------------------------------------------------------------------------------
|
76 |
+
2023-09-03 23:30:58,989 epoch 1 - iter 89/894 - loss 2.74311561 - time (sec): 10.32 - samples/sec: 955.50 - lr: 0.000003 - momentum: 0.000000
|
77 |
+
2023-09-03 23:31:08,172 epoch 1 - iter 178/894 - loss 1.81044363 - time (sec): 19.51 - samples/sec: 977.05 - lr: 0.000006 - momentum: 0.000000
|
78 |
+
2023-09-03 23:31:17,157 epoch 1 - iter 267/894 - loss 1.41836922 - time (sec): 28.49 - samples/sec: 961.79 - lr: 0.000009 - momentum: 0.000000
|
79 |
+
2023-09-03 23:31:26,621 epoch 1 - iter 356/894 - loss 1.16298770 - time (sec): 37.96 - samples/sec: 953.98 - lr: 0.000012 - momentum: 0.000000
|
80 |
+
2023-09-03 23:31:35,482 epoch 1 - iter 445/894 - loss 0.99950668 - time (sec): 46.82 - samples/sec: 958.72 - lr: 0.000015 - momentum: 0.000000
|
81 |
+
2023-09-03 23:31:44,475 epoch 1 - iter 534/894 - loss 0.88532676 - time (sec): 55.81 - samples/sec: 954.46 - lr: 0.000018 - momentum: 0.000000
|
82 |
+
2023-09-03 23:31:53,559 epoch 1 - iter 623/894 - loss 0.80230519 - time (sec): 64.89 - samples/sec: 952.79 - lr: 0.000021 - momentum: 0.000000
|
83 |
+
2023-09-03 23:32:02,315 epoch 1 - iter 712/894 - loss 0.73704514 - time (sec): 73.65 - samples/sec: 950.17 - lr: 0.000024 - momentum: 0.000000
|
84 |
+
2023-09-03 23:32:11,028 epoch 1 - iter 801/894 - loss 0.68927269 - time (sec): 82.36 - samples/sec: 946.58 - lr: 0.000027 - momentum: 0.000000
|
85 |
+
2023-09-03 23:32:19,927 epoch 1 - iter 890/894 - loss 0.64616785 - time (sec): 91.26 - samples/sec: 944.78 - lr: 0.000030 - momentum: 0.000000
|
86 |
+
2023-09-03 23:32:20,319 ----------------------------------------------------------------------------------------------------
|
87 |
+
2023-09-03 23:32:20,319 EPOCH 1 done: loss 0.6444 - lr: 0.000030
|
88 |
+
2023-09-03 23:32:31,409 DEV : loss 0.20319941639900208 - f1-score (micro avg) 0.4761
|
89 |
+
2023-09-03 23:32:31,436 saving best model
|
90 |
+
2023-09-03 23:32:31,891 ----------------------------------------------------------------------------------------------------
|
91 |
+
2023-09-03 23:32:41,596 epoch 2 - iter 89/894 - loss 0.21499267 - time (sec): 9.70 - samples/sec: 952.60 - lr: 0.000030 - momentum: 0.000000
|
92 |
+
2023-09-03 23:32:51,096 epoch 2 - iter 178/894 - loss 0.20265125 - time (sec): 19.20 - samples/sec: 923.85 - lr: 0.000029 - momentum: 0.000000
|
93 |
+
2023-09-03 23:33:00,247 epoch 2 - iter 267/894 - loss 0.18434207 - time (sec): 28.36 - samples/sec: 915.14 - lr: 0.000029 - momentum: 0.000000
|
94 |
+
2023-09-03 23:33:09,056 epoch 2 - iter 356/894 - loss 0.18344703 - time (sec): 37.16 - samples/sec: 902.95 - lr: 0.000029 - momentum: 0.000000
|
95 |
+
2023-09-03 23:33:18,307 epoch 2 - iter 445/894 - loss 0.17751486 - time (sec): 46.41 - samples/sec: 907.39 - lr: 0.000028 - momentum: 0.000000
|
96 |
+
2023-09-03 23:33:27,595 epoch 2 - iter 534/894 - loss 0.17722887 - time (sec): 55.70 - samples/sec: 909.92 - lr: 0.000028 - momentum: 0.000000
|
97 |
+
2023-09-03 23:33:36,865 epoch 2 - iter 623/894 - loss 0.17577434 - time (sec): 64.97 - samples/sec: 913.79 - lr: 0.000028 - momentum: 0.000000
|
98 |
+
2023-09-03 23:33:46,352 epoch 2 - iter 712/894 - loss 0.17072853 - time (sec): 74.46 - samples/sec: 915.30 - lr: 0.000027 - momentum: 0.000000
|
99 |
+
2023-09-03 23:33:56,140 epoch 2 - iter 801/894 - loss 0.16591060 - time (sec): 84.25 - samples/sec: 915.37 - lr: 0.000027 - momentum: 0.000000
|
100 |
+
2023-09-03 23:34:05,723 epoch 2 - iter 890/894 - loss 0.16170980 - time (sec): 93.83 - samples/sec: 916.81 - lr: 0.000027 - momentum: 0.000000
|
101 |
+
2023-09-03 23:34:06,167 ----------------------------------------------------------------------------------------------------
|
102 |
+
2023-09-03 23:34:06,167 EPOCH 2 done: loss 0.1618 - lr: 0.000027
|
103 |
+
2023-09-03 23:34:19,317 DEV : loss 0.1587580442428589 - f1-score (micro avg) 0.7174
|
104 |
+
2023-09-03 23:34:19,343 saving best model
|
105 |
+
2023-09-03 23:34:20,654 ----------------------------------------------------------------------------------------------------
|
106 |
+
2023-09-03 23:34:29,750 epoch 3 - iter 89/894 - loss 0.09211103 - time (sec): 9.10 - samples/sec: 1010.60 - lr: 0.000026 - momentum: 0.000000
|
107 |
+
2023-09-03 23:34:38,880 epoch 3 - iter 178/894 - loss 0.08964218 - time (sec): 18.23 - samples/sec: 983.85 - lr: 0.000026 - momentum: 0.000000
|
108 |
+
2023-09-03 23:34:49,364 epoch 3 - iter 267/894 - loss 0.09340800 - time (sec): 28.71 - samples/sec: 949.92 - lr: 0.000026 - momentum: 0.000000
|
109 |
+
2023-09-03 23:34:58,874 epoch 3 - iter 356/894 - loss 0.09572858 - time (sec): 38.22 - samples/sec: 949.71 - lr: 0.000025 - momentum: 0.000000
|
110 |
+
2023-09-03 23:35:08,189 epoch 3 - iter 445/894 - loss 0.09520323 - time (sec): 47.53 - samples/sec: 934.60 - lr: 0.000025 - momentum: 0.000000
|
111 |
+
2023-09-03 23:35:17,175 epoch 3 - iter 534/894 - loss 0.09332333 - time (sec): 56.52 - samples/sec: 934.15 - lr: 0.000025 - momentum: 0.000000
|
112 |
+
2023-09-03 23:35:26,360 epoch 3 - iter 623/894 - loss 0.09366015 - time (sec): 65.70 - samples/sec: 924.15 - lr: 0.000024 - momentum: 0.000000
|
113 |
+
2023-09-03 23:35:35,978 epoch 3 - iter 712/894 - loss 0.09376044 - time (sec): 75.32 - samples/sec: 919.53 - lr: 0.000024 - momentum: 0.000000
|
114 |
+
2023-09-03 23:35:45,082 epoch 3 - iter 801/894 - loss 0.09398189 - time (sec): 84.43 - samples/sec: 923.80 - lr: 0.000024 - momentum: 0.000000
|
115 |
+
2023-09-03 23:35:54,172 epoch 3 - iter 890/894 - loss 0.09338918 - time (sec): 93.52 - samples/sec: 921.91 - lr: 0.000023 - momentum: 0.000000
|
116 |
+
2023-09-03 23:35:54,583 ----------------------------------------------------------------------------------------------------
|
117 |
+
2023-09-03 23:35:54,583 EPOCH 3 done: loss 0.0940 - lr: 0.000023
|
118 |
+
2023-09-03 23:36:08,494 DEV : loss 0.16491389274597168 - f1-score (micro avg) 0.7368
|
119 |
+
2023-09-03 23:36:08,520 saving best model
|
120 |
+
2023-09-03 23:36:09,849 ----------------------------------------------------------------------------------------------------
|
121 |
+
2023-09-03 23:36:19,396 epoch 4 - iter 89/894 - loss 0.06002206 - time (sec): 9.55 - samples/sec: 973.70 - lr: 0.000023 - momentum: 0.000000
|
122 |
+
2023-09-03 23:36:28,236 epoch 4 - iter 178/894 - loss 0.05670894 - time (sec): 18.39 - samples/sec: 951.51 - lr: 0.000023 - momentum: 0.000000
|
123 |
+
2023-09-03 23:36:38,929 epoch 4 - iter 267/894 - loss 0.05584137 - time (sec): 29.08 - samples/sec: 950.62 - lr: 0.000022 - momentum: 0.000000
|
124 |
+
2023-09-03 23:36:47,859 epoch 4 - iter 356/894 - loss 0.05527686 - time (sec): 38.01 - samples/sec: 939.19 - lr: 0.000022 - momentum: 0.000000
|
125 |
+
2023-09-03 23:36:57,012 epoch 4 - iter 445/894 - loss 0.05568304 - time (sec): 47.16 - samples/sec: 936.11 - lr: 0.000022 - momentum: 0.000000
|
126 |
+
2023-09-03 23:37:06,694 epoch 4 - iter 534/894 - loss 0.05670899 - time (sec): 56.84 - samples/sec: 941.39 - lr: 0.000021 - momentum: 0.000000
|
127 |
+
2023-09-03 23:37:15,687 epoch 4 - iter 623/894 - loss 0.05689945 - time (sec): 65.84 - samples/sec: 936.89 - lr: 0.000021 - momentum: 0.000000
|
128 |
+
2023-09-03 23:37:24,648 epoch 4 - iter 712/894 - loss 0.05695848 - time (sec): 74.80 - samples/sec: 934.31 - lr: 0.000021 - momentum: 0.000000
|
129 |
+
2023-09-03 23:37:33,640 epoch 4 - iter 801/894 - loss 0.05762958 - time (sec): 83.79 - samples/sec: 930.98 - lr: 0.000020 - momentum: 0.000000
|
130 |
+
2023-09-03 23:37:42,783 epoch 4 - iter 890/894 - loss 0.05704236 - time (sec): 92.93 - samples/sec: 927.84 - lr: 0.000020 - momentum: 0.000000
|
131 |
+
2023-09-03 23:37:43,141 ----------------------------------------------------------------------------------------------------
|
132 |
+
2023-09-03 23:37:43,141 EPOCH 4 done: loss 0.0568 - lr: 0.000020
|
133 |
+
2023-09-03 23:37:56,337 DEV : loss 0.16102342307567596 - f1-score (micro avg) 0.7601
|
134 |
+
2023-09-03 23:37:56,363 saving best model
|
135 |
+
2023-09-03 23:37:57,891 ----------------------------------------------------------------------------------------------------
|
136 |
+
2023-09-03 23:38:07,278 epoch 5 - iter 89/894 - loss 0.04237017 - time (sec): 9.39 - samples/sec: 929.34 - lr: 0.000020 - momentum: 0.000000
|
137 |
+
2023-09-03 23:38:16,495 epoch 5 - iter 178/894 - loss 0.04053170 - time (sec): 18.60 - samples/sec: 915.63 - lr: 0.000019 - momentum: 0.000000
|
138 |
+
2023-09-03 23:38:26,293 epoch 5 - iter 267/894 - loss 0.04022232 - time (sec): 28.40 - samples/sec: 923.94 - lr: 0.000019 - momentum: 0.000000
|
139 |
+
2023-09-03 23:38:35,225 epoch 5 - iter 356/894 - loss 0.03940618 - time (sec): 37.33 - samples/sec: 931.91 - lr: 0.000019 - momentum: 0.000000
|
140 |
+
2023-09-03 23:38:44,805 epoch 5 - iter 445/894 - loss 0.03797463 - time (sec): 46.91 - samples/sec: 939.52 - lr: 0.000018 - momentum: 0.000000
|
141 |
+
2023-09-03 23:38:54,351 epoch 5 - iter 534/894 - loss 0.03759381 - time (sec): 56.46 - samples/sec: 934.25 - lr: 0.000018 - momentum: 0.000000
|
142 |
+
2023-09-03 23:39:03,289 epoch 5 - iter 623/894 - loss 0.03731125 - time (sec): 65.40 - samples/sec: 933.80 - lr: 0.000018 - momentum: 0.000000
|
143 |
+
2023-09-03 23:39:12,853 epoch 5 - iter 712/894 - loss 0.03703168 - time (sec): 74.96 - samples/sec: 932.07 - lr: 0.000017 - momentum: 0.000000
|
144 |
+
2023-09-03 23:39:21,676 epoch 5 - iter 801/894 - loss 0.03792050 - time (sec): 83.78 - samples/sec: 928.22 - lr: 0.000017 - momentum: 0.000000
|
145 |
+
2023-09-03 23:39:30,935 epoch 5 - iter 890/894 - loss 0.03624499 - time (sec): 93.04 - samples/sec: 925.72 - lr: 0.000017 - momentum: 0.000000
|
146 |
+
2023-09-03 23:39:31,374 ----------------------------------------------------------------------------------------------------
|
147 |
+
2023-09-03 23:39:31,374 EPOCH 5 done: loss 0.0361 - lr: 0.000017
|
148 |
+
2023-09-03 23:39:44,550 DEV : loss 0.19139504432678223 - f1-score (micro avg) 0.7598
|
149 |
+
2023-09-03 23:39:44,576 ----------------------------------------------------------------------------------------------------
|
150 |
+
2023-09-03 23:39:53,391 epoch 6 - iter 89/894 - loss 0.02273816 - time (sec): 8.81 - samples/sec: 949.03 - lr: 0.000016 - momentum: 0.000000
|
151 |
+
2023-09-03 23:40:03,138 epoch 6 - iter 178/894 - loss 0.03094662 - time (sec): 18.56 - samples/sec: 903.56 - lr: 0.000016 - momentum: 0.000000
|
152 |
+
2023-09-03 23:40:13,803 epoch 6 - iter 267/894 - loss 0.02784261 - time (sec): 29.23 - samples/sec: 927.87 - lr: 0.000016 - momentum: 0.000000
|
153 |
+
2023-09-03 23:40:23,166 epoch 6 - iter 356/894 - loss 0.02655943 - time (sec): 38.59 - samples/sec: 928.62 - lr: 0.000015 - momentum: 0.000000
|
154 |
+
2023-09-03 23:40:33,069 epoch 6 - iter 445/894 - loss 0.02461255 - time (sec): 48.49 - samples/sec: 940.90 - lr: 0.000015 - momentum: 0.000000
|
155 |
+
2023-09-03 23:40:41,923 epoch 6 - iter 534/894 - loss 0.02450099 - time (sec): 57.35 - samples/sec: 933.99 - lr: 0.000015 - momentum: 0.000000
|
156 |
+
2023-09-03 23:40:51,009 epoch 6 - iter 623/894 - loss 0.02418424 - time (sec): 66.43 - samples/sec: 927.04 - lr: 0.000014 - momentum: 0.000000
|
157 |
+
2023-09-03 23:40:59,851 epoch 6 - iter 712/894 - loss 0.02423121 - time (sec): 75.27 - samples/sec: 929.15 - lr: 0.000014 - momentum: 0.000000
|
158 |
+
2023-09-03 23:41:09,094 epoch 6 - iter 801/894 - loss 0.02349068 - time (sec): 84.52 - samples/sec: 928.36 - lr: 0.000014 - momentum: 0.000000
|
159 |
+
2023-09-03 23:41:17,949 epoch 6 - iter 890/894 - loss 0.02383666 - time (sec): 93.37 - samples/sec: 922.88 - lr: 0.000013 - momentum: 0.000000
|
160 |
+
2023-09-03 23:41:18,323 ----------------------------------------------------------------------------------------------------
|
161 |
+
2023-09-03 23:41:18,323 EPOCH 6 done: loss 0.0239 - lr: 0.000013
|
162 |
+
2023-09-03 23:41:31,323 DEV : loss 0.20917759835720062 - f1-score (micro avg) 0.7675
|
163 |
+
2023-09-03 23:41:31,357 saving best model
|
164 |
+
2023-09-03 23:41:32,698 ----------------------------------------------------------------------------------------------------
|
165 |
+
2023-09-03 23:41:41,274 epoch 7 - iter 89/894 - loss 0.02131126 - time (sec): 8.58 - samples/sec: 910.88 - lr: 0.000013 - momentum: 0.000000
|
166 |
+
2023-09-03 23:41:50,208 epoch 7 - iter 178/894 - loss 0.01558822 - time (sec): 17.51 - samples/sec: 894.18 - lr: 0.000013 - momentum: 0.000000
|
167 |
+
2023-09-03 23:42:00,140 epoch 7 - iter 267/894 - loss 0.01541116 - time (sec): 27.44 - samples/sec: 924.48 - lr: 0.000012 - momentum: 0.000000
|
168 |
+
2023-09-03 23:42:09,256 epoch 7 - iter 356/894 - loss 0.01482310 - time (sec): 36.56 - samples/sec: 933.49 - lr: 0.000012 - momentum: 0.000000
|
169 |
+
2023-09-03 23:42:18,691 epoch 7 - iter 445/894 - loss 0.01455277 - time (sec): 45.99 - samples/sec: 937.26 - lr: 0.000012 - momentum: 0.000000
|
170 |
+
2023-09-03 23:42:27,885 epoch 7 - iter 534/894 - loss 0.01453793 - time (sec): 55.19 - samples/sec: 930.23 - lr: 0.000011 - momentum: 0.000000
|
171 |
+
2023-09-03 23:42:36,796 epoch 7 - iter 623/894 - loss 0.01625399 - time (sec): 64.10 - samples/sec: 929.60 - lr: 0.000011 - momentum: 0.000000
|
172 |
+
2023-09-03 23:42:46,677 epoch 7 - iter 712/894 - loss 0.01580634 - time (sec): 73.98 - samples/sec: 930.54 - lr: 0.000011 - momentum: 0.000000
|
173 |
+
2023-09-03 23:42:55,514 epoch 7 - iter 801/894 - loss 0.01613378 - time (sec): 82.81 - samples/sec: 934.94 - lr: 0.000010 - momentum: 0.000000
|
174 |
+
2023-09-03 23:43:04,603 epoch 7 - iter 890/894 - loss 0.01538471 - time (sec): 91.90 - samples/sec: 937.58 - lr: 0.000010 - momentum: 0.000000
|
175 |
+
2023-09-03 23:43:04,991 ----------------------------------------------------------------------------------------------------
|
176 |
+
2023-09-03 23:43:04,991 EPOCH 7 done: loss 0.0156 - lr: 0.000010
|
177 |
+
2023-09-03 23:43:17,386 DEV : loss 0.23162303864955902 - f1-score (micro avg) 0.7754
|
178 |
+
2023-09-03 23:43:17,412 saving best model
|
179 |
+
2023-09-03 23:43:18,737 ----------------------------------------------------------------------------------------------------
|
180 |
+
2023-09-03 23:43:27,954 epoch 8 - iter 89/894 - loss 0.01009460 - time (sec): 9.22 - samples/sec: 917.53 - lr: 0.000010 - momentum: 0.000000
|
181 |
+
2023-09-03 23:43:36,766 epoch 8 - iter 178/894 - loss 0.00709218 - time (sec): 18.03 - samples/sec: 923.51 - lr: 0.000009 - momentum: 0.000000
|
182 |
+
2023-09-03 23:43:46,236 epoch 8 - iter 267/894 - loss 0.00777061 - time (sec): 27.50 - samples/sec: 948.29 - lr: 0.000009 - momentum: 0.000000
|
183 |
+
2023-09-03 23:43:55,678 epoch 8 - iter 356/894 - loss 0.00668856 - time (sec): 36.94 - samples/sec: 959.88 - lr: 0.000009 - momentum: 0.000000
|
184 |
+
2023-09-03 23:44:04,921 epoch 8 - iter 445/894 - loss 0.00864465 - time (sec): 46.18 - samples/sec: 950.74 - lr: 0.000008 - momentum: 0.000000
|
185 |
+
2023-09-03 23:44:13,549 epoch 8 - iter 534/894 - loss 0.00899618 - time (sec): 54.81 - samples/sec: 955.17 - lr: 0.000008 - momentum: 0.000000
|
186 |
+
2023-09-03 23:44:22,382 epoch 8 - iter 623/894 - loss 0.00881135 - time (sec): 63.64 - samples/sec: 956.37 - lr: 0.000008 - momentum: 0.000000
|
187 |
+
2023-09-03 23:44:31,077 epoch 8 - iter 712/894 - loss 0.01010302 - time (sec): 72.34 - samples/sec: 957.98 - lr: 0.000007 - momentum: 0.000000
|
188 |
+
2023-09-03 23:44:39,891 epoch 8 - iter 801/894 - loss 0.00991379 - time (sec): 81.15 - samples/sec: 955.84 - lr: 0.000007 - momentum: 0.000000
|
189 |
+
2023-09-03 23:44:49,009 epoch 8 - iter 890/894 - loss 0.00985983 - time (sec): 90.27 - samples/sec: 954.91 - lr: 0.000007 - momentum: 0.000000
|
190 |
+
2023-09-03 23:44:49,366 ----------------------------------------------------------------------------------------------------
|
191 |
+
2023-09-03 23:44:49,367 EPOCH 8 done: loss 0.0099 - lr: 0.000007
|
192 |
+
2023-09-03 23:45:01,950 DEV : loss 0.2163342833518982 - f1-score (micro avg) 0.7853
|
193 |
+
2023-09-03 23:45:01,977 saving best model
|
194 |
+
2023-09-03 23:45:03,335 ----------------------------------------------------------------------------------------------------
|
195 |
+
2023-09-03 23:45:12,384 epoch 9 - iter 89/894 - loss 0.01046440 - time (sec): 9.05 - samples/sec: 911.56 - lr: 0.000006 - momentum: 0.000000
|
196 |
+
2023-09-03 23:45:22,249 epoch 9 - iter 178/894 - loss 0.00684178 - time (sec): 18.91 - samples/sec: 939.00 - lr: 0.000006 - momentum: 0.000000
|
197 |
+
2023-09-03 23:45:31,727 epoch 9 - iter 267/894 - loss 0.00585405 - time (sec): 28.39 - samples/sec: 945.14 - lr: 0.000006 - momentum: 0.000000
|
198 |
+
2023-09-03 23:45:40,741 epoch 9 - iter 356/894 - loss 0.00581434 - time (sec): 37.40 - samples/sec: 944.49 - lr: 0.000005 - momentum: 0.000000
|
199 |
+
2023-09-03 23:45:49,876 epoch 9 - iter 445/894 - loss 0.00601538 - time (sec): 46.54 - samples/sec: 934.86 - lr: 0.000005 - momentum: 0.000000
|
200 |
+
2023-09-03 23:45:58,848 epoch 9 - iter 534/894 - loss 0.00637338 - time (sec): 55.51 - samples/sec: 938.35 - lr: 0.000005 - momentum: 0.000000
|
201 |
+
2023-09-03 23:46:07,969 epoch 9 - iter 623/894 - loss 0.00712429 - time (sec): 64.63 - samples/sec: 940.30 - lr: 0.000004 - momentum: 0.000000
|
202 |
+
2023-09-03 23:46:16,776 epoch 9 - iter 712/894 - loss 0.00713056 - time (sec): 73.44 - samples/sec: 944.52 - lr: 0.000004 - momentum: 0.000000
|
203 |
+
2023-09-03 23:46:26,040 epoch 9 - iter 801/894 - loss 0.00684114 - time (sec): 82.70 - samples/sec: 938.50 - lr: 0.000004 - momentum: 0.000000
|
204 |
+
2023-09-03 23:46:35,144 epoch 9 - iter 890/894 - loss 0.00671261 - time (sec): 91.81 - samples/sec: 939.00 - lr: 0.000003 - momentum: 0.000000
|
205 |
+
2023-09-03 23:46:35,515 ----------------------------------------------------------------------------------------------------
|
206 |
+
2023-09-03 23:46:35,515 EPOCH 9 done: loss 0.0067 - lr: 0.000003
|
207 |
+
2023-09-03 23:46:48,817 DEV : loss 0.22610056400299072 - f1-score (micro avg) 0.7939
|
208 |
+
2023-09-03 23:46:48,845 saving best model
|
209 |
+
2023-09-03 23:46:50,165 ----------------------------------------------------------------------------------------------------
|
210 |
+
2023-09-03 23:46:59,180 epoch 10 - iter 89/894 - loss 0.00107317 - time (sec): 9.01 - samples/sec: 950.83 - lr: 0.000003 - momentum: 0.000000
|
211 |
+
2023-09-03 23:47:08,078 epoch 10 - iter 178/894 - loss 0.00240391 - time (sec): 17.91 - samples/sec: 919.06 - lr: 0.000003 - momentum: 0.000000
|
212 |
+
2023-09-03 23:47:17,198 epoch 10 - iter 267/894 - loss 0.00259919 - time (sec): 27.03 - samples/sec: 924.99 - lr: 0.000002 - momentum: 0.000000
|
213 |
+
2023-09-03 23:47:25,814 epoch 10 - iter 356/894 - loss 0.00369997 - time (sec): 35.65 - samples/sec: 929.59 - lr: 0.000002 - momentum: 0.000000
|
214 |
+
2023-09-03 23:47:35,665 epoch 10 - iter 445/894 - loss 0.00404340 - time (sec): 45.50 - samples/sec: 941.77 - lr: 0.000002 - momentum: 0.000000
|
215 |
+
2023-09-03 23:47:45,431 epoch 10 - iter 534/894 - loss 0.00441361 - time (sec): 55.26 - samples/sec: 943.70 - lr: 0.000001 - momentum: 0.000000
|
216 |
+
2023-09-03 23:47:54,188 epoch 10 - iter 623/894 - loss 0.00431692 - time (sec): 64.02 - samples/sec: 945.20 - lr: 0.000001 - momentum: 0.000000
|
217 |
+
2023-09-03 23:48:02,892 epoch 10 - iter 712/894 - loss 0.00420207 - time (sec): 72.73 - samples/sec: 942.53 - lr: 0.000001 - momentum: 0.000000
|
218 |
+
2023-09-03 23:48:11,986 epoch 10 - iter 801/894 - loss 0.00417998 - time (sec): 81.82 - samples/sec: 952.06 - lr: 0.000000 - momentum: 0.000000
|
219 |
+
2023-09-03 23:48:20,669 epoch 10 - iter 890/894 - loss 0.00418087 - time (sec): 90.50 - samples/sec: 952.35 - lr: 0.000000 - momentum: 0.000000
|
220 |
+
2023-09-03 23:48:21,030 ----------------------------------------------------------------------------------------------------
|
221 |
+
2023-09-03 23:48:21,031 EPOCH 10 done: loss 0.0042 - lr: 0.000000
|
222 |
+
2023-09-03 23:48:33,669 DEV : loss 0.23058366775512695 - f1-score (micro avg) 0.7909
|
223 |
+
2023-09-03 23:48:34,151 ----------------------------------------------------------------------------------------------------
|
224 |
+
2023-09-03 23:48:34,152 Loading model from best epoch ...
|
225 |
+
2023-09-03 23:48:35,890 SequenceTagger predicts: Dictionary with 21 tags: O, S-loc, B-loc, E-loc, I-loc, S-pers, B-pers, E-pers, I-pers, S-org, B-org, E-org, I-org, S-prod, B-prod, E-prod, I-prod, S-time, B-time, E-time, I-time
|
226 |
+
2023-09-03 23:48:45,725
|
227 |
+
Results:
|
228 |
+
- F-score (micro) 0.7522
|
229 |
+
- F-score (macro) 0.6802
|
230 |
+
- Accuracy 0.6235
|
231 |
+
|
232 |
+
By class:
|
233 |
+
precision recall f1-score support
|
234 |
+
|
235 |
+
loc 0.8127 0.8591 0.8352 596
|
236 |
+
pers 0.6764 0.7658 0.7183 333
|
237 |
+
org 0.5492 0.5076 0.5276 132
|
238 |
+
prod 0.7021 0.5000 0.5841 66
|
239 |
+
time 0.6842 0.7959 0.7358 49
|
240 |
+
|
241 |
+
micro avg 0.7348 0.7704 0.7522 1176
|
242 |
+
macro avg 0.6849 0.6857 0.6802 1176
|
243 |
+
weighted avg 0.7330 0.7704 0.7494 1176
|
244 |
+
|
245 |
+
2023-09-03 23:48:45,725 ----------------------------------------------------------------------------------------------------
|