Upload folder using huggingface_hub
Browse files- hmbench-hipe2020/de-dbmdz/bert-base-historic-multilingual-cased-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4/best-model.pt +3 -0
- hmbench-hipe2020/de-dbmdz/bert-base-historic-multilingual-cased-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4/dev.tsv +0 -0
- hmbench-hipe2020/de-dbmdz/bert-base-historic-multilingual-cased-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4/final-model.pt +3 -0
- hmbench-hipe2020/de-dbmdz/bert-base-historic-multilingual-cased-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4/loss.tsv +11 -0
- hmbench-hipe2020/de-dbmdz/bert-base-historic-multilingual-cased-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4/test.tsv +0 -0
- hmbench-hipe2020/de-dbmdz/bert-base-historic-multilingual-cased-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4/training.log +247 -0
hmbench-hipe2020/de-dbmdz/bert-base-historic-multilingual-cased-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4/best-model.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:736c2d5e382f1c3939ef083b9af34b4a3155d310b34ed38a0379637719e97fdc
|
3 |
+
size 443334288
|
hmbench-hipe2020/de-dbmdz/bert-base-historic-multilingual-cased-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4/dev.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
hmbench-hipe2020/de-dbmdz/bert-base-historic-multilingual-cased-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4/final-model.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7b0a776d5b74f036c3ce36d988f18605676232968a7cdca43559ada3c2b892fe
|
3 |
+
size 443334491
|
hmbench-hipe2020/de-dbmdz/bert-base-historic-multilingual-cased-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4/loss.tsv
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
EPOCH TIMESTAMP LEARNING_RATE TRAIN_LOSS DEV_LOSS DEV_PRECISION DEV_RECALL DEV_F1 DEV_ACCURACY
|
2 |
+
1 22:05:05 0.0000 0.6427 0.1746 0.6445 0.5997 0.6213 0.4640
|
3 |
+
2 22:06:34 0.0000 0.1485 0.1355 0.6911 0.6943 0.6927 0.5505
|
4 |
+
3 22:08:03 0.0000 0.0893 0.1390 0.7512 0.7154 0.7329 0.5957
|
5 |
+
4 22:09:33 0.0000 0.0516 0.1509 0.7055 0.7717 0.7371 0.6055
|
6 |
+
5 22:11:06 0.0000 0.0358 0.1870 0.7400 0.7967 0.7673 0.6381
|
7 |
+
6 22:12:40 0.0000 0.0226 0.2096 0.7855 0.7647 0.7750 0.6498
|
8 |
+
7 22:14:13 0.0000 0.0157 0.2135 0.7528 0.7998 0.7756 0.6483
|
9 |
+
8 22:15:42 0.0000 0.0103 0.2366 0.7698 0.7897 0.7796 0.6529
|
10 |
+
9 22:17:12 0.0000 0.0058 0.2372 0.7899 0.7936 0.7917 0.6682
|
11 |
+
10 22:18:44 0.0000 0.0037 0.2338 0.7916 0.7959 0.7938 0.6715
|
hmbench-hipe2020/de-dbmdz/bert-base-historic-multilingual-cased-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4/test.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
hmbench-hipe2020/de-dbmdz/bert-base-historic-multilingual-cased-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4/training.log
ADDED
@@ -0,0 +1,247 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-09-03 22:03:37,162 ----------------------------------------------------------------------------------------------------
|
2 |
+
2023-09-03 22:03:37,163 Model: "SequenceTagger(
|
3 |
+
(embeddings): TransformerWordEmbeddings(
|
4 |
+
(model): BertModel(
|
5 |
+
(embeddings): BertEmbeddings(
|
6 |
+
(word_embeddings): Embedding(32001, 768)
|
7 |
+
(position_embeddings): Embedding(512, 768)
|
8 |
+
(token_type_embeddings): Embedding(2, 768)
|
9 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
10 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
11 |
+
)
|
12 |
+
(encoder): BertEncoder(
|
13 |
+
(layer): ModuleList(
|
14 |
+
(0-11): 12 x BertLayer(
|
15 |
+
(attention): BertAttention(
|
16 |
+
(self): BertSelfAttention(
|
17 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
18 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
19 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
21 |
+
)
|
22 |
+
(output): BertSelfOutput(
|
23 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
24 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
25 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
26 |
+
)
|
27 |
+
)
|
28 |
+
(intermediate): BertIntermediate(
|
29 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
30 |
+
(intermediate_act_fn): GELUActivation()
|
31 |
+
)
|
32 |
+
(output): BertOutput(
|
33 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
34 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
35 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
36 |
+
)
|
37 |
+
)
|
38 |
+
)
|
39 |
+
)
|
40 |
+
(pooler): BertPooler(
|
41 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
42 |
+
(activation): Tanh()
|
43 |
+
)
|
44 |
+
)
|
45 |
+
)
|
46 |
+
(locked_dropout): LockedDropout(p=0.5)
|
47 |
+
(linear): Linear(in_features=768, out_features=21, bias=True)
|
48 |
+
(loss_function): CrossEntropyLoss()
|
49 |
+
)"
|
50 |
+
2023-09-03 22:03:37,163 ----------------------------------------------------------------------------------------------------
|
51 |
+
2023-09-03 22:03:37,163 MultiCorpus: 3575 train + 1235 dev + 1266 test sentences
|
52 |
+
- NER_HIPE_2022 Corpus: 3575 train + 1235 dev + 1266 test sentences - /app/.flair/datasets/ner_hipe_2022/v2.1/hipe2020/de/with_doc_seperator
|
53 |
+
2023-09-03 22:03:37,163 ----------------------------------------------------------------------------------------------------
|
54 |
+
2023-09-03 22:03:37,163 Train: 3575 sentences
|
55 |
+
2023-09-03 22:03:37,163 (train_with_dev=False, train_with_test=False)
|
56 |
+
2023-09-03 22:03:37,163 ----------------------------------------------------------------------------------------------------
|
57 |
+
2023-09-03 22:03:37,163 Training Params:
|
58 |
+
2023-09-03 22:03:37,163 - learning_rate: "5e-05"
|
59 |
+
2023-09-03 22:03:37,163 - mini_batch_size: "8"
|
60 |
+
2023-09-03 22:03:37,163 - max_epochs: "10"
|
61 |
+
2023-09-03 22:03:37,163 - shuffle: "True"
|
62 |
+
2023-09-03 22:03:37,163 ----------------------------------------------------------------------------------------------------
|
63 |
+
2023-09-03 22:03:37,163 Plugins:
|
64 |
+
2023-09-03 22:03:37,163 - LinearScheduler | warmup_fraction: '0.1'
|
65 |
+
2023-09-03 22:03:37,164 ----------------------------------------------------------------------------------------------------
|
66 |
+
2023-09-03 22:03:37,164 Final evaluation on model from best epoch (best-model.pt)
|
67 |
+
2023-09-03 22:03:37,164 - metric: "('micro avg', 'f1-score')"
|
68 |
+
2023-09-03 22:03:37,164 ----------------------------------------------------------------------------------------------------
|
69 |
+
2023-09-03 22:03:37,164 Computation:
|
70 |
+
2023-09-03 22:03:37,164 - compute on device: cuda:0
|
71 |
+
2023-09-03 22:03:37,164 - embedding storage: none
|
72 |
+
2023-09-03 22:03:37,164 ----------------------------------------------------------------------------------------------------
|
73 |
+
2023-09-03 22:03:37,164 Model training base path: "hmbench-hipe2020/de-dbmdz/bert-base-historic-multilingual-cased-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4"
|
74 |
+
2023-09-03 22:03:37,164 ----------------------------------------------------------------------------------------------------
|
75 |
+
2023-09-03 22:03:37,164 ----------------------------------------------------------------------------------------------------
|
76 |
+
2023-09-03 22:03:44,616 epoch 1 - iter 44/447 - loss 3.00461982 - time (sec): 7.45 - samples/sec: 1175.42 - lr: 0.000005 - momentum: 0.000000
|
77 |
+
2023-09-03 22:03:52,433 epoch 1 - iter 88/447 - loss 1.96254236 - time (sec): 15.27 - samples/sec: 1163.70 - lr: 0.000010 - momentum: 0.000000
|
78 |
+
2023-09-03 22:03:59,439 epoch 1 - iter 132/447 - loss 1.50254678 - time (sec): 22.27 - samples/sec: 1154.90 - lr: 0.000015 - momentum: 0.000000
|
79 |
+
2023-09-03 22:04:07,711 epoch 1 - iter 176/447 - loss 1.21259910 - time (sec): 30.55 - samples/sec: 1129.89 - lr: 0.000020 - momentum: 0.000000
|
80 |
+
2023-09-03 22:04:14,819 epoch 1 - iter 220/447 - loss 1.03584482 - time (sec): 37.65 - samples/sec: 1134.34 - lr: 0.000024 - momentum: 0.000000
|
81 |
+
2023-09-03 22:04:22,049 epoch 1 - iter 264/447 - loss 0.91897569 - time (sec): 44.88 - samples/sec: 1134.71 - lr: 0.000029 - momentum: 0.000000
|
82 |
+
2023-09-03 22:04:29,426 epoch 1 - iter 308/447 - loss 0.83278018 - time (sec): 52.26 - samples/sec: 1133.34 - lr: 0.000034 - momentum: 0.000000
|
83 |
+
2023-09-03 22:04:36,847 epoch 1 - iter 352/447 - loss 0.75967852 - time (sec): 59.68 - samples/sec: 1133.18 - lr: 0.000039 - momentum: 0.000000
|
84 |
+
2023-09-03 22:04:43,829 epoch 1 - iter 396/447 - loss 0.69877256 - time (sec): 66.66 - samples/sec: 1134.73 - lr: 0.000044 - momentum: 0.000000
|
85 |
+
2023-09-03 22:04:53,046 epoch 1 - iter 440/447 - loss 0.64902061 - time (sec): 75.88 - samples/sec: 1123.32 - lr: 0.000049 - momentum: 0.000000
|
86 |
+
2023-09-03 22:04:54,158 ----------------------------------------------------------------------------------------------------
|
87 |
+
2023-09-03 22:04:54,158 EPOCH 1 done: loss 0.6427 - lr: 0.000049
|
88 |
+
2023-09-03 22:05:05,059 DEV : loss 0.17456364631652832 - f1-score (micro avg) 0.6213
|
89 |
+
2023-09-03 22:05:05,086 saving best model
|
90 |
+
2023-09-03 22:05:05,541 ----------------------------------------------------------------------------------------------------
|
91 |
+
2023-09-03 22:05:13,911 epoch 2 - iter 44/447 - loss 0.19617148 - time (sec): 8.37 - samples/sec: 1070.23 - lr: 0.000049 - momentum: 0.000000
|
92 |
+
2023-09-03 22:05:22,808 epoch 2 - iter 88/447 - loss 0.17967532 - time (sec): 17.27 - samples/sec: 1071.74 - lr: 0.000049 - momentum: 0.000000
|
93 |
+
2023-09-03 22:05:29,712 epoch 2 - iter 132/447 - loss 0.16966610 - time (sec): 24.17 - samples/sec: 1083.68 - lr: 0.000048 - momentum: 0.000000
|
94 |
+
2023-09-03 22:05:36,876 epoch 2 - iter 176/447 - loss 0.16937622 - time (sec): 31.33 - samples/sec: 1100.26 - lr: 0.000048 - momentum: 0.000000
|
95 |
+
2023-09-03 22:05:44,718 epoch 2 - iter 220/447 - loss 0.16592335 - time (sec): 39.18 - samples/sec: 1099.72 - lr: 0.000047 - momentum: 0.000000
|
96 |
+
2023-09-03 22:05:51,731 epoch 2 - iter 264/447 - loss 0.15644282 - time (sec): 46.19 - samples/sec: 1120.15 - lr: 0.000047 - momentum: 0.000000
|
97 |
+
2023-09-03 22:05:58,701 epoch 2 - iter 308/447 - loss 0.15370065 - time (sec): 53.16 - samples/sec: 1123.35 - lr: 0.000046 - momentum: 0.000000
|
98 |
+
2023-09-03 22:06:05,322 epoch 2 - iter 352/447 - loss 0.15345269 - time (sec): 59.78 - samples/sec: 1133.48 - lr: 0.000046 - momentum: 0.000000
|
99 |
+
2023-09-03 22:06:13,741 epoch 2 - iter 396/447 - loss 0.14938778 - time (sec): 68.20 - samples/sec: 1126.58 - lr: 0.000045 - momentum: 0.000000
|
100 |
+
2023-09-03 22:06:20,624 epoch 2 - iter 440/447 - loss 0.14932727 - time (sec): 75.08 - samples/sec: 1135.40 - lr: 0.000045 - momentum: 0.000000
|
101 |
+
2023-09-03 22:06:21,930 ----------------------------------------------------------------------------------------------------
|
102 |
+
2023-09-03 22:06:21,930 EPOCH 2 done: loss 0.1485 - lr: 0.000045
|
103 |
+
2023-09-03 22:06:34,648 DEV : loss 0.1355467289686203 - f1-score (micro avg) 0.6927
|
104 |
+
2023-09-03 22:06:34,674 saving best model
|
105 |
+
2023-09-03 22:06:35,991 ----------------------------------------------------------------------------------------------------
|
106 |
+
2023-09-03 22:06:43,373 epoch 3 - iter 44/447 - loss 0.11084828 - time (sec): 7.38 - samples/sec: 1159.33 - lr: 0.000044 - momentum: 0.000000
|
107 |
+
2023-09-03 22:06:51,829 epoch 3 - iter 88/447 - loss 0.09617220 - time (sec): 15.84 - samples/sec: 1127.10 - lr: 0.000043 - momentum: 0.000000
|
108 |
+
2023-09-03 22:06:59,166 epoch 3 - iter 132/447 - loss 0.08541625 - time (sec): 23.17 - samples/sec: 1131.09 - lr: 0.000043 - momentum: 0.000000
|
109 |
+
2023-09-03 22:07:06,261 epoch 3 - iter 176/447 - loss 0.08791110 - time (sec): 30.27 - samples/sec: 1138.58 - lr: 0.000042 - momentum: 0.000000
|
110 |
+
2023-09-03 22:07:12,844 epoch 3 - iter 220/447 - loss 0.08725166 - time (sec): 36.85 - samples/sec: 1141.37 - lr: 0.000042 - momentum: 0.000000
|
111 |
+
2023-09-03 22:07:20,076 epoch 3 - iter 264/447 - loss 0.08591226 - time (sec): 44.08 - samples/sec: 1146.82 - lr: 0.000041 - momentum: 0.000000
|
112 |
+
2023-09-03 22:07:27,072 epoch 3 - iter 308/447 - loss 0.08861516 - time (sec): 51.08 - samples/sec: 1149.11 - lr: 0.000041 - momentum: 0.000000
|
113 |
+
2023-09-03 22:07:34,653 epoch 3 - iter 352/447 - loss 0.08519341 - time (sec): 58.66 - samples/sec: 1151.20 - lr: 0.000040 - momentum: 0.000000
|
114 |
+
2023-09-03 22:07:41,422 epoch 3 - iter 396/447 - loss 0.08896865 - time (sec): 65.43 - samples/sec: 1159.03 - lr: 0.000040 - momentum: 0.000000
|
115 |
+
2023-09-03 22:07:49,673 epoch 3 - iter 440/447 - loss 0.08973667 - time (sec): 73.68 - samples/sec: 1157.81 - lr: 0.000039 - momentum: 0.000000
|
116 |
+
2023-09-03 22:07:50,684 ----------------------------------------------------------------------------------------------------
|
117 |
+
2023-09-03 22:07:50,684 EPOCH 3 done: loss 0.0893 - lr: 0.000039
|
118 |
+
2023-09-03 22:08:03,119 DEV : loss 0.13895265758037567 - f1-score (micro avg) 0.7329
|
119 |
+
2023-09-03 22:08:03,146 saving best model
|
120 |
+
2023-09-03 22:08:04,473 ----------------------------------------------------------------------------------------------------
|
121 |
+
2023-09-03 22:08:11,591 epoch 4 - iter 44/447 - loss 0.04648237 - time (sec): 7.12 - samples/sec: 1186.01 - lr: 0.000038 - momentum: 0.000000
|
122 |
+
2023-09-03 22:08:18,309 epoch 4 - iter 88/447 - loss 0.05241541 - time (sec): 13.84 - samples/sec: 1186.27 - lr: 0.000038 - momentum: 0.000000
|
123 |
+
2023-09-03 22:08:25,668 epoch 4 - iter 132/447 - loss 0.04548737 - time (sec): 21.19 - samples/sec: 1178.24 - lr: 0.000037 - momentum: 0.000000
|
124 |
+
2023-09-03 22:08:32,467 epoch 4 - iter 176/447 - loss 0.04325888 - time (sec): 27.99 - samples/sec: 1190.52 - lr: 0.000037 - momentum: 0.000000
|
125 |
+
2023-09-03 22:08:42,149 epoch 4 - iter 220/447 - loss 0.04812558 - time (sec): 37.68 - samples/sec: 1151.18 - lr: 0.000036 - momentum: 0.000000
|
126 |
+
2023-09-03 22:08:49,472 epoch 4 - iter 264/447 - loss 0.04853272 - time (sec): 45.00 - samples/sec: 1154.30 - lr: 0.000036 - momentum: 0.000000
|
127 |
+
2023-09-03 22:08:55,986 epoch 4 - iter 308/447 - loss 0.04945678 - time (sec): 51.51 - samples/sec: 1160.71 - lr: 0.000035 - momentum: 0.000000
|
128 |
+
2023-09-03 22:09:03,030 epoch 4 - iter 352/447 - loss 0.04862237 - time (sec): 58.56 - samples/sec: 1158.25 - lr: 0.000035 - momentum: 0.000000
|
129 |
+
2023-09-03 22:09:11,999 epoch 4 - iter 396/447 - loss 0.04969455 - time (sec): 67.52 - samples/sec: 1144.81 - lr: 0.000034 - momentum: 0.000000
|
130 |
+
2023-09-03 22:09:19,277 epoch 4 - iter 440/447 - loss 0.05061967 - time (sec): 74.80 - samples/sec: 1139.39 - lr: 0.000033 - momentum: 0.000000
|
131 |
+
2023-09-03 22:09:20,415 ----------------------------------------------------------------------------------------------------
|
132 |
+
2023-09-03 22:09:20,415 EPOCH 4 done: loss 0.0516 - lr: 0.000033
|
133 |
+
2023-09-03 22:09:33,207 DEV : loss 0.15090885758399963 - f1-score (micro avg) 0.7371
|
134 |
+
2023-09-03 22:09:33,233 saving best model
|
135 |
+
2023-09-03 22:09:34,589 ----------------------------------------------------------------------------------------------------
|
136 |
+
2023-09-03 22:09:42,646 epoch 5 - iter 44/447 - loss 0.03586095 - time (sec): 8.06 - samples/sec: 1113.62 - lr: 0.000033 - momentum: 0.000000
|
137 |
+
2023-09-03 22:09:50,282 epoch 5 - iter 88/447 - loss 0.03374525 - time (sec): 15.69 - samples/sec: 1100.55 - lr: 0.000032 - momentum: 0.000000
|
138 |
+
2023-09-03 22:09:57,990 epoch 5 - iter 132/447 - loss 0.03495845 - time (sec): 23.40 - samples/sec: 1116.01 - lr: 0.000032 - momentum: 0.000000
|
139 |
+
2023-09-03 22:10:05,484 epoch 5 - iter 176/447 - loss 0.03476096 - time (sec): 30.89 - samples/sec: 1122.55 - lr: 0.000031 - momentum: 0.000000
|
140 |
+
2023-09-03 22:10:12,600 epoch 5 - iter 220/447 - loss 0.03837830 - time (sec): 38.01 - samples/sec: 1121.96 - lr: 0.000031 - momentum: 0.000000
|
141 |
+
2023-09-03 22:10:20,517 epoch 5 - iter 264/447 - loss 0.03833497 - time (sec): 45.93 - samples/sec: 1116.17 - lr: 0.000030 - momentum: 0.000000
|
142 |
+
2023-09-03 22:10:29,701 epoch 5 - iter 308/447 - loss 0.03847519 - time (sec): 55.11 - samples/sec: 1099.20 - lr: 0.000030 - momentum: 0.000000
|
143 |
+
2023-09-03 22:10:36,611 epoch 5 - iter 352/447 - loss 0.03810102 - time (sec): 62.02 - samples/sec: 1105.93 - lr: 0.000029 - momentum: 0.000000
|
144 |
+
2023-09-03 22:10:44,324 epoch 5 - iter 396/447 - loss 0.03738290 - time (sec): 69.73 - samples/sec: 1100.88 - lr: 0.000028 - momentum: 0.000000
|
145 |
+
2023-09-03 22:10:52,171 epoch 5 - iter 440/447 - loss 0.03626288 - time (sec): 77.58 - samples/sec: 1100.48 - lr: 0.000028 - momentum: 0.000000
|
146 |
+
2023-09-03 22:10:53,227 ----------------------------------------------------------------------------------------------------
|
147 |
+
2023-09-03 22:10:53,227 EPOCH 5 done: loss 0.0358 - lr: 0.000028
|
148 |
+
2023-09-03 22:11:06,510 DEV : loss 0.18703238666057587 - f1-score (micro avg) 0.7673
|
149 |
+
2023-09-03 22:11:06,536 saving best model
|
150 |
+
2023-09-03 22:11:07,864 ----------------------------------------------------------------------------------------------------
|
151 |
+
2023-09-03 22:11:15,663 epoch 6 - iter 44/447 - loss 0.01850349 - time (sec): 7.80 - samples/sec: 1103.69 - lr: 0.000027 - momentum: 0.000000
|
152 |
+
2023-09-03 22:11:23,891 epoch 6 - iter 88/447 - loss 0.01852900 - time (sec): 16.03 - samples/sec: 1099.21 - lr: 0.000027 - momentum: 0.000000
|
153 |
+
2023-09-03 22:11:31,268 epoch 6 - iter 132/447 - loss 0.01746134 - time (sec): 23.40 - samples/sec: 1109.71 - lr: 0.000026 - momentum: 0.000000
|
154 |
+
2023-09-03 22:11:40,403 epoch 6 - iter 176/447 - loss 0.01744129 - time (sec): 32.54 - samples/sec: 1101.18 - lr: 0.000026 - momentum: 0.000000
|
155 |
+
2023-09-03 22:11:47,974 epoch 6 - iter 220/447 - loss 0.01967293 - time (sec): 40.11 - samples/sec: 1081.05 - lr: 0.000025 - momentum: 0.000000
|
156 |
+
2023-09-03 22:11:55,216 epoch 6 - iter 264/447 - loss 0.01841148 - time (sec): 47.35 - samples/sec: 1087.19 - lr: 0.000025 - momentum: 0.000000
|
157 |
+
2023-09-03 22:12:03,093 epoch 6 - iter 308/447 - loss 0.01855352 - time (sec): 55.23 - samples/sec: 1085.87 - lr: 0.000024 - momentum: 0.000000
|
158 |
+
2023-09-03 22:12:10,507 epoch 6 - iter 352/447 - loss 0.02055176 - time (sec): 62.64 - samples/sec: 1086.07 - lr: 0.000023 - momentum: 0.000000
|
159 |
+
2023-09-03 22:12:18,228 epoch 6 - iter 396/447 - loss 0.02136484 - time (sec): 70.36 - samples/sec: 1093.17 - lr: 0.000023 - momentum: 0.000000
|
160 |
+
2023-09-03 22:12:26,017 epoch 6 - iter 440/447 - loss 0.02271157 - time (sec): 78.15 - samples/sec: 1091.54 - lr: 0.000022 - momentum: 0.000000
|
161 |
+
2023-09-03 22:12:27,092 ----------------------------------------------------------------------------------------------------
|
162 |
+
2023-09-03 22:12:27,092 EPOCH 6 done: loss 0.0226 - lr: 0.000022
|
163 |
+
2023-09-03 22:12:40,208 DEV : loss 0.2095835655927658 - f1-score (micro avg) 0.775
|
164 |
+
2023-09-03 22:12:40,235 saving best model
|
165 |
+
2023-09-03 22:12:41,848 ----------------------------------------------------------------------------------------------------
|
166 |
+
2023-09-03 22:12:51,322 epoch 7 - iter 44/447 - loss 0.02179964 - time (sec): 9.47 - samples/sec: 1048.43 - lr: 0.000022 - momentum: 0.000000
|
167 |
+
2023-09-03 22:12:58,904 epoch 7 - iter 88/447 - loss 0.01967603 - time (sec): 17.05 - samples/sec: 1046.02 - lr: 0.000021 - momentum: 0.000000
|
168 |
+
2023-09-03 22:13:06,822 epoch 7 - iter 132/447 - loss 0.01671162 - time (sec): 24.97 - samples/sec: 1064.77 - lr: 0.000021 - momentum: 0.000000
|
169 |
+
2023-09-03 22:13:14,693 epoch 7 - iter 176/447 - loss 0.01631688 - time (sec): 32.84 - samples/sec: 1078.88 - lr: 0.000020 - momentum: 0.000000
|
170 |
+
2023-09-03 22:13:22,185 epoch 7 - iter 220/447 - loss 0.01540574 - time (sec): 40.34 - samples/sec: 1089.38 - lr: 0.000020 - momentum: 0.000000
|
171 |
+
2023-09-03 22:13:29,431 epoch 7 - iter 264/447 - loss 0.01610182 - time (sec): 47.58 - samples/sec: 1085.33 - lr: 0.000019 - momentum: 0.000000
|
172 |
+
2023-09-03 22:13:36,929 epoch 7 - iter 308/447 - loss 0.01612637 - time (sec): 55.08 - samples/sec: 1091.99 - lr: 0.000018 - momentum: 0.000000
|
173 |
+
2023-09-03 22:13:44,464 epoch 7 - iter 352/447 - loss 0.01597313 - time (sec): 62.61 - samples/sec: 1091.97 - lr: 0.000018 - momentum: 0.000000
|
174 |
+
2023-09-03 22:13:51,503 epoch 7 - iter 396/447 - loss 0.01617994 - time (sec): 69.65 - samples/sec: 1096.51 - lr: 0.000017 - momentum: 0.000000
|
175 |
+
2023-09-03 22:13:59,075 epoch 7 - iter 440/447 - loss 0.01580620 - time (sec): 77.23 - samples/sec: 1106.63 - lr: 0.000017 - momentum: 0.000000
|
176 |
+
2023-09-03 22:14:00,041 ----------------------------------------------------------------------------------------------------
|
177 |
+
2023-09-03 22:14:00,041 EPOCH 7 done: loss 0.0157 - lr: 0.000017
|
178 |
+
2023-09-03 22:14:12,985 DEV : loss 0.21346184611320496 - f1-score (micro avg) 0.7756
|
179 |
+
2023-09-03 22:14:13,012 saving best model
|
180 |
+
2023-09-03 22:14:14,349 ----------------------------------------------------------------------------------------------------
|
181 |
+
2023-09-03 22:14:21,624 epoch 8 - iter 44/447 - loss 0.00559374 - time (sec): 7.27 - samples/sec: 1181.34 - lr: 0.000016 - momentum: 0.000000
|
182 |
+
2023-09-03 22:14:29,176 epoch 8 - iter 88/447 - loss 0.00569671 - time (sec): 14.83 - samples/sec: 1155.86 - lr: 0.000016 - momentum: 0.000000
|
183 |
+
2023-09-03 22:14:36,035 epoch 8 - iter 132/447 - loss 0.01018177 - time (sec): 21.68 - samples/sec: 1169.06 - lr: 0.000015 - momentum: 0.000000
|
184 |
+
2023-09-03 22:14:43,018 epoch 8 - iter 176/447 - loss 0.01136583 - time (sec): 28.67 - samples/sec: 1168.77 - lr: 0.000015 - momentum: 0.000000
|
185 |
+
2023-09-03 22:14:50,415 epoch 8 - iter 220/447 - loss 0.01046024 - time (sec): 36.06 - samples/sec: 1158.72 - lr: 0.000014 - momentum: 0.000000
|
186 |
+
2023-09-03 22:14:57,393 epoch 8 - iter 264/447 - loss 0.00983952 - time (sec): 43.04 - samples/sec: 1166.38 - lr: 0.000013 - momentum: 0.000000
|
187 |
+
2023-09-03 22:15:04,599 epoch 8 - iter 308/447 - loss 0.00938640 - time (sec): 50.25 - samples/sec: 1163.21 - lr: 0.000013 - momentum: 0.000000
|
188 |
+
2023-09-03 22:15:13,018 epoch 8 - iter 352/447 - loss 0.01105031 - time (sec): 58.67 - samples/sec: 1152.82 - lr: 0.000012 - momentum: 0.000000
|
189 |
+
2023-09-03 22:15:21,211 epoch 8 - iter 396/447 - loss 0.01042212 - time (sec): 66.86 - samples/sec: 1147.29 - lr: 0.000012 - momentum: 0.000000
|
190 |
+
2023-09-03 22:15:28,131 epoch 8 - iter 440/447 - loss 0.01008377 - time (sec): 73.78 - samples/sec: 1153.04 - lr: 0.000011 - momentum: 0.000000
|
191 |
+
2023-09-03 22:15:29,423 ----------------------------------------------------------------------------------------------------
|
192 |
+
2023-09-03 22:15:29,423 EPOCH 8 done: loss 0.0103 - lr: 0.000011
|
193 |
+
2023-09-03 22:15:42,125 DEV : loss 0.23662017285823822 - f1-score (micro avg) 0.7796
|
194 |
+
2023-09-03 22:15:42,152 saving best model
|
195 |
+
2023-09-03 22:15:43,477 ----------------------------------------------------------------------------------------------------
|
196 |
+
2023-09-03 22:15:50,431 epoch 9 - iter 44/447 - loss 0.00145890 - time (sec): 6.95 - samples/sec: 1193.03 - lr: 0.000011 - momentum: 0.000000
|
197 |
+
2023-09-03 22:15:58,205 epoch 9 - iter 88/447 - loss 0.00495495 - time (sec): 14.73 - samples/sec: 1152.95 - lr: 0.000010 - momentum: 0.000000
|
198 |
+
2023-09-03 22:16:04,837 epoch 9 - iter 132/447 - loss 0.00690696 - time (sec): 21.36 - samples/sec: 1166.87 - lr: 0.000010 - momentum: 0.000000
|
199 |
+
2023-09-03 22:16:12,174 epoch 9 - iter 176/447 - loss 0.00870116 - time (sec): 28.70 - samples/sec: 1159.17 - lr: 0.000009 - momentum: 0.000000
|
200 |
+
2023-09-03 22:16:20,096 epoch 9 - iter 220/447 - loss 0.00803870 - time (sec): 36.62 - samples/sec: 1148.72 - lr: 0.000008 - momentum: 0.000000
|
201 |
+
2023-09-03 22:16:27,725 epoch 9 - iter 264/447 - loss 0.00678798 - time (sec): 44.25 - samples/sec: 1140.18 - lr: 0.000008 - momentum: 0.000000
|
202 |
+
2023-09-03 22:16:34,699 epoch 9 - iter 308/447 - loss 0.00678808 - time (sec): 51.22 - samples/sec: 1151.45 - lr: 0.000007 - momentum: 0.000000
|
203 |
+
2023-09-03 22:16:43,889 epoch 9 - iter 352/447 - loss 0.00678058 - time (sec): 60.41 - samples/sec: 1143.77 - lr: 0.000007 - momentum: 0.000000
|
204 |
+
2023-09-03 22:16:51,250 epoch 9 - iter 396/447 - loss 0.00610103 - time (sec): 67.77 - samples/sec: 1141.24 - lr: 0.000006 - momentum: 0.000000
|
205 |
+
2023-09-03 22:16:58,407 epoch 9 - iter 440/447 - loss 0.00581456 - time (sec): 74.93 - samples/sec: 1140.58 - lr: 0.000006 - momentum: 0.000000
|
206 |
+
2023-09-03 22:16:59,353 ----------------------------------------------------------------------------------------------------
|
207 |
+
2023-09-03 22:16:59,354 EPOCH 9 done: loss 0.0058 - lr: 0.000006
|
208 |
+
2023-09-03 22:17:12,218 DEV : loss 0.23721420764923096 - f1-score (micro avg) 0.7917
|
209 |
+
2023-09-03 22:17:12,245 saving best model
|
210 |
+
2023-09-03 22:17:13,563 ----------------------------------------------------------------------------------------------------
|
211 |
+
2023-09-03 22:17:22,436 epoch 10 - iter 44/447 - loss 0.00717064 - time (sec): 8.87 - samples/sec: 1114.23 - lr: 0.000005 - momentum: 0.000000
|
212 |
+
2023-09-03 22:17:30,722 epoch 10 - iter 88/447 - loss 0.00593374 - time (sec): 17.16 - samples/sec: 1081.01 - lr: 0.000005 - momentum: 0.000000
|
213 |
+
2023-09-03 22:17:38,148 epoch 10 - iter 132/447 - loss 0.00468114 - time (sec): 24.58 - samples/sec: 1090.66 - lr: 0.000004 - momentum: 0.000000
|
214 |
+
2023-09-03 22:17:45,211 epoch 10 - iter 176/447 - loss 0.00470797 - time (sec): 31.65 - samples/sec: 1099.93 - lr: 0.000003 - momentum: 0.000000
|
215 |
+
2023-09-03 22:17:52,787 epoch 10 - iter 220/447 - loss 0.00429535 - time (sec): 39.22 - samples/sec: 1104.04 - lr: 0.000003 - momentum: 0.000000
|
216 |
+
2023-09-03 22:17:59,720 epoch 10 - iter 264/447 - loss 0.00404627 - time (sec): 46.16 - samples/sec: 1111.62 - lr: 0.000002 - momentum: 0.000000
|
217 |
+
2023-09-03 22:18:07,149 epoch 10 - iter 308/447 - loss 0.00420055 - time (sec): 53.58 - samples/sec: 1110.36 - lr: 0.000002 - momentum: 0.000000
|
218 |
+
2023-09-03 22:18:15,187 epoch 10 - iter 352/447 - loss 0.00415827 - time (sec): 61.62 - samples/sec: 1105.23 - lr: 0.000001 - momentum: 0.000000
|
219 |
+
2023-09-03 22:18:22,241 epoch 10 - iter 396/447 - loss 0.00376964 - time (sec): 68.68 - samples/sec: 1113.03 - lr: 0.000001 - momentum: 0.000000
|
220 |
+
2023-09-03 22:18:30,062 epoch 10 - iter 440/447 - loss 0.00369437 - time (sec): 76.50 - samples/sec: 1118.14 - lr: 0.000000 - momentum: 0.000000
|
221 |
+
2023-09-03 22:18:31,120 ----------------------------------------------------------------------------------------------------
|
222 |
+
2023-09-03 22:18:31,121 EPOCH 10 done: loss 0.0037 - lr: 0.000000
|
223 |
+
2023-09-03 22:18:44,578 DEV : loss 0.23381954431533813 - f1-score (micro avg) 0.7938
|
224 |
+
2023-09-03 22:18:44,605 saving best model
|
225 |
+
2023-09-03 22:18:46,420 ----------------------------------------------------------------------------------------------------
|
226 |
+
2023-09-03 22:18:46,422 Loading model from best epoch ...
|
227 |
+
2023-09-03 22:18:48,216 SequenceTagger predicts: Dictionary with 21 tags: O, S-loc, B-loc, E-loc, I-loc, S-pers, B-pers, E-pers, I-pers, S-org, B-org, E-org, I-org, S-prod, B-prod, E-prod, I-prod, S-time, B-time, E-time, I-time
|
228 |
+
2023-09-03 22:18:58,912
|
229 |
+
Results:
|
230 |
+
- F-score (micro) 0.7375
|
231 |
+
- F-score (macro) 0.6636
|
232 |
+
- Accuracy 0.6048
|
233 |
+
|
234 |
+
By class:
|
235 |
+
precision recall f1-score support
|
236 |
+
|
237 |
+
loc 0.8358 0.8540 0.8448 596
|
238 |
+
pers 0.6085 0.7327 0.6649 333
|
239 |
+
org 0.5500 0.5000 0.5238 132
|
240 |
+
prod 0.6200 0.4697 0.5345 66
|
241 |
+
time 0.7091 0.7959 0.7500 49
|
242 |
+
|
243 |
+
micro avg 0.7198 0.7560 0.7375 1176
|
244 |
+
macro avg 0.6647 0.6705 0.6636 1176
|
245 |
+
weighted avg 0.7220 0.7560 0.7365 1176
|
246 |
+
|
247 |
+
2023-09-03 22:18:58,912 ----------------------------------------------------------------------------------------------------
|