stefan-it's picture
Upload folder using huggingface_hub
4e4284b
raw
history blame
24 kB
2023-09-03 19:10:58,280 ----------------------------------------------------------------------------------------------------
2023-09-03 19:10:58,281 Model: "SequenceTagger(
(embeddings): TransformerWordEmbeddings(
(model): BertModel(
(embeddings): BertEmbeddings(
(word_embeddings): Embedding(32001, 768)
(position_embeddings): Embedding(512, 768)
(token_type_embeddings): Embedding(2, 768)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(encoder): BertEncoder(
(layer): ModuleList(
(0-11): 12 x BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
)
)
(pooler): BertPooler(
(dense): Linear(in_features=768, out_features=768, bias=True)
(activation): Tanh()
)
)
)
(locked_dropout): LockedDropout(p=0.5)
(linear): Linear(in_features=768, out_features=21, bias=True)
(loss_function): CrossEntropyLoss()
)"
2023-09-03 19:10:58,281 ----------------------------------------------------------------------------------------------------
2023-09-03 19:10:58,281 MultiCorpus: 3575 train + 1235 dev + 1266 test sentences
- NER_HIPE_2022 Corpus: 3575 train + 1235 dev + 1266 test sentences - /app/.flair/datasets/ner_hipe_2022/v2.1/hipe2020/de/with_doc_seperator
2023-09-03 19:10:58,281 ----------------------------------------------------------------------------------------------------
2023-09-03 19:10:58,281 Train: 3575 sentences
2023-09-03 19:10:58,281 (train_with_dev=False, train_with_test=False)
2023-09-03 19:10:58,281 ----------------------------------------------------------------------------------------------------
2023-09-03 19:10:58,281 Training Params:
2023-09-03 19:10:58,281 - learning_rate: "5e-05"
2023-09-03 19:10:58,282 - mini_batch_size: "4"
2023-09-03 19:10:58,282 - max_epochs: "10"
2023-09-03 19:10:58,282 - shuffle: "True"
2023-09-03 19:10:58,282 ----------------------------------------------------------------------------------------------------
2023-09-03 19:10:58,282 Plugins:
2023-09-03 19:10:58,282 - LinearScheduler | warmup_fraction: '0.1'
2023-09-03 19:10:58,282 ----------------------------------------------------------------------------------------------------
2023-09-03 19:10:58,282 Final evaluation on model from best epoch (best-model.pt)
2023-09-03 19:10:58,282 - metric: "('micro avg', 'f1-score')"
2023-09-03 19:10:58,282 ----------------------------------------------------------------------------------------------------
2023-09-03 19:10:58,282 Computation:
2023-09-03 19:10:58,282 - compute on device: cuda:0
2023-09-03 19:10:58,282 - embedding storage: none
2023-09-03 19:10:58,282 ----------------------------------------------------------------------------------------------------
2023-09-03 19:10:58,282 Model training base path: "hmbench-hipe2020/de-dbmdz/bert-base-historic-multilingual-cased-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1"
2023-09-03 19:10:58,282 ----------------------------------------------------------------------------------------------------
2023-09-03 19:10:58,282 ----------------------------------------------------------------------------------------------------
2023-09-03 19:11:08,149 epoch 1 - iter 89/894 - loss 2.69238806 - time (sec): 9.87 - samples/sec: 969.46 - lr: 0.000005 - momentum: 0.000000
2023-09-03 19:11:16,982 epoch 1 - iter 178/894 - loss 1.72783195 - time (sec): 18.70 - samples/sec: 938.61 - lr: 0.000010 - momentum: 0.000000
2023-09-03 19:11:25,549 epoch 1 - iter 267/894 - loss 1.32723397 - time (sec): 27.27 - samples/sec: 927.78 - lr: 0.000015 - momentum: 0.000000
2023-09-03 19:11:34,550 epoch 1 - iter 356/894 - loss 1.08297083 - time (sec): 36.27 - samples/sec: 933.52 - lr: 0.000020 - momentum: 0.000000
2023-09-03 19:11:43,678 epoch 1 - iter 445/894 - loss 0.93516935 - time (sec): 45.39 - samples/sec: 925.57 - lr: 0.000025 - momentum: 0.000000
2023-09-03 19:11:52,963 epoch 1 - iter 534/894 - loss 0.82076707 - time (sec): 54.68 - samples/sec: 931.70 - lr: 0.000030 - momentum: 0.000000
2023-09-03 19:12:02,152 epoch 1 - iter 623/894 - loss 0.73887451 - time (sec): 63.87 - samples/sec: 932.18 - lr: 0.000035 - momentum: 0.000000
2023-09-03 19:12:12,078 epoch 1 - iter 712/894 - loss 0.66806596 - time (sec): 73.79 - samples/sec: 936.82 - lr: 0.000040 - momentum: 0.000000
2023-09-03 19:12:20,908 epoch 1 - iter 801/894 - loss 0.62298748 - time (sec): 82.62 - samples/sec: 933.34 - lr: 0.000045 - momentum: 0.000000
2023-09-03 19:12:30,535 epoch 1 - iter 890/894 - loss 0.58400475 - time (sec): 92.25 - samples/sec: 933.31 - lr: 0.000050 - momentum: 0.000000
2023-09-03 19:12:31,038 ----------------------------------------------------------------------------------------------------
2023-09-03 19:12:31,038 EPOCH 1 done: loss 0.5821 - lr: 0.000050
2023-09-03 19:12:42,208 DEV : loss 0.18371683359146118 - f1-score (micro avg) 0.5825
2023-09-03 19:12:42,234 saving best model
2023-09-03 19:12:42,727 ----------------------------------------------------------------------------------------------------
2023-09-03 19:12:51,709 epoch 2 - iter 89/894 - loss 0.17046008 - time (sec): 8.98 - samples/sec: 962.12 - lr: 0.000049 - momentum: 0.000000
2023-09-03 19:13:00,759 epoch 2 - iter 178/894 - loss 0.19669504 - time (sec): 18.03 - samples/sec: 957.33 - lr: 0.000049 - momentum: 0.000000
2023-09-03 19:13:09,665 epoch 2 - iter 267/894 - loss 0.18605037 - time (sec): 26.94 - samples/sec: 963.49 - lr: 0.000048 - momentum: 0.000000
2023-09-03 19:13:18,786 epoch 2 - iter 356/894 - loss 0.18077337 - time (sec): 36.06 - samples/sec: 952.93 - lr: 0.000048 - momentum: 0.000000
2023-09-03 19:13:27,532 epoch 2 - iter 445/894 - loss 0.17533928 - time (sec): 44.80 - samples/sec: 946.11 - lr: 0.000047 - momentum: 0.000000
2023-09-03 19:13:36,721 epoch 2 - iter 534/894 - loss 0.16613548 - time (sec): 53.99 - samples/sec: 947.52 - lr: 0.000047 - momentum: 0.000000
2023-09-03 19:13:45,883 epoch 2 - iter 623/894 - loss 0.16384940 - time (sec): 63.16 - samples/sec: 955.99 - lr: 0.000046 - momentum: 0.000000
2023-09-03 19:13:54,746 epoch 2 - iter 712/894 - loss 0.16395552 - time (sec): 72.02 - samples/sec: 953.51 - lr: 0.000046 - momentum: 0.000000
2023-09-03 19:14:03,506 epoch 2 - iter 801/894 - loss 0.16536964 - time (sec): 80.78 - samples/sec: 950.74 - lr: 0.000045 - momentum: 0.000000
2023-09-03 19:14:13,066 epoch 2 - iter 890/894 - loss 0.16119508 - time (sec): 90.34 - samples/sec: 954.72 - lr: 0.000044 - momentum: 0.000000
2023-09-03 19:14:13,434 ----------------------------------------------------------------------------------------------------
2023-09-03 19:14:13,434 EPOCH 2 done: loss 0.1608 - lr: 0.000044
2023-09-03 19:14:26,157 DEV : loss 0.15039657056331635 - f1-score (micro avg) 0.7048
2023-09-03 19:14:26,183 saving best model
2023-09-03 19:14:27,527 ----------------------------------------------------------------------------------------------------
2023-09-03 19:14:36,028 epoch 3 - iter 89/894 - loss 0.11340688 - time (sec): 8.50 - samples/sec: 918.99 - lr: 0.000044 - momentum: 0.000000
2023-09-03 19:14:44,712 epoch 3 - iter 178/894 - loss 0.09592060 - time (sec): 17.18 - samples/sec: 941.66 - lr: 0.000043 - momentum: 0.000000
2023-09-03 19:14:53,577 epoch 3 - iter 267/894 - loss 0.09646760 - time (sec): 26.05 - samples/sec: 935.25 - lr: 0.000043 - momentum: 0.000000
2023-09-03 19:15:02,836 epoch 3 - iter 356/894 - loss 0.08755957 - time (sec): 35.31 - samples/sec: 941.36 - lr: 0.000042 - momentum: 0.000000
2023-09-03 19:15:12,599 epoch 3 - iter 445/894 - loss 0.09112142 - time (sec): 45.07 - samples/sec: 941.98 - lr: 0.000042 - momentum: 0.000000
2023-09-03 19:15:21,491 epoch 3 - iter 534/894 - loss 0.08801368 - time (sec): 53.96 - samples/sec: 951.86 - lr: 0.000041 - momentum: 0.000000
2023-09-03 19:15:30,675 epoch 3 - iter 623/894 - loss 0.09094375 - time (sec): 63.15 - samples/sec: 949.84 - lr: 0.000041 - momentum: 0.000000
2023-09-03 19:15:39,685 epoch 3 - iter 712/894 - loss 0.09156094 - time (sec): 72.16 - samples/sec: 949.51 - lr: 0.000040 - momentum: 0.000000
2023-09-03 19:15:48,448 epoch 3 - iter 801/894 - loss 0.09217268 - time (sec): 80.92 - samples/sec: 951.03 - lr: 0.000039 - momentum: 0.000000
2023-09-03 19:15:58,235 epoch 3 - iter 890/894 - loss 0.09239416 - time (sec): 90.71 - samples/sec: 950.84 - lr: 0.000039 - momentum: 0.000000
2023-09-03 19:15:58,594 ----------------------------------------------------------------------------------------------------
2023-09-03 19:15:58,595 EPOCH 3 done: loss 0.0922 - lr: 0.000039
2023-09-03 19:16:11,494 DEV : loss 0.16789782047271729 - f1-score (micro avg) 0.6876
2023-09-03 19:16:11,520 ----------------------------------------------------------------------------------------------------
2023-09-03 19:16:20,482 epoch 4 - iter 89/894 - loss 0.07502495 - time (sec): 8.96 - samples/sec: 1006.44 - lr: 0.000038 - momentum: 0.000000
2023-09-03 19:16:29,307 epoch 4 - iter 178/894 - loss 0.06363791 - time (sec): 17.79 - samples/sec: 964.85 - lr: 0.000038 - momentum: 0.000000
2023-09-03 19:16:38,803 epoch 4 - iter 267/894 - loss 0.06701115 - time (sec): 27.28 - samples/sec: 963.11 - lr: 0.000037 - momentum: 0.000000
2023-09-03 19:16:48,680 epoch 4 - iter 356/894 - loss 0.06452749 - time (sec): 37.16 - samples/sec: 972.68 - lr: 0.000037 - momentum: 0.000000
2023-09-03 19:16:58,142 epoch 4 - iter 445/894 - loss 0.05918610 - time (sec): 46.62 - samples/sec: 961.53 - lr: 0.000036 - momentum: 0.000000
2023-09-03 19:17:07,462 epoch 4 - iter 534/894 - loss 0.06098012 - time (sec): 55.94 - samples/sec: 957.32 - lr: 0.000036 - momentum: 0.000000
2023-09-03 19:17:16,307 epoch 4 - iter 623/894 - loss 0.06022659 - time (sec): 64.79 - samples/sec: 954.35 - lr: 0.000035 - momentum: 0.000000
2023-09-03 19:17:25,355 epoch 4 - iter 712/894 - loss 0.06200534 - time (sec): 73.83 - samples/sec: 951.40 - lr: 0.000034 - momentum: 0.000000
2023-09-03 19:17:33,874 epoch 4 - iter 801/894 - loss 0.06028832 - time (sec): 82.35 - samples/sec: 942.67 - lr: 0.000034 - momentum: 0.000000
2023-09-03 19:17:43,366 epoch 4 - iter 890/894 - loss 0.05867760 - time (sec): 91.84 - samples/sec: 938.71 - lr: 0.000033 - momentum: 0.000000
2023-09-03 19:17:43,740 ----------------------------------------------------------------------------------------------------
2023-09-03 19:17:43,740 EPOCH 4 done: loss 0.0588 - lr: 0.000033
2023-09-03 19:17:57,223 DEV : loss 0.20298035442829132 - f1-score (micro avg) 0.7452
2023-09-03 19:17:57,249 saving best model
2023-09-03 19:17:58,587 ----------------------------------------------------------------------------------------------------
2023-09-03 19:18:08,986 epoch 5 - iter 89/894 - loss 0.05671696 - time (sec): 10.40 - samples/sec: 934.69 - lr: 0.000033 - momentum: 0.000000
2023-09-03 19:18:18,053 epoch 5 - iter 178/894 - loss 0.04365569 - time (sec): 19.46 - samples/sec: 912.17 - lr: 0.000032 - momentum: 0.000000
2023-09-03 19:18:27,552 epoch 5 - iter 267/894 - loss 0.04035798 - time (sec): 28.96 - samples/sec: 918.00 - lr: 0.000032 - momentum: 0.000000
2023-09-03 19:18:36,505 epoch 5 - iter 356/894 - loss 0.03970231 - time (sec): 37.92 - samples/sec: 914.97 - lr: 0.000031 - momentum: 0.000000
2023-09-03 19:18:46,170 epoch 5 - iter 445/894 - loss 0.03784230 - time (sec): 47.58 - samples/sec: 918.91 - lr: 0.000031 - momentum: 0.000000
2023-09-03 19:18:55,397 epoch 5 - iter 534/894 - loss 0.03987657 - time (sec): 56.81 - samples/sec: 923.90 - lr: 0.000030 - momentum: 0.000000
2023-09-03 19:19:04,547 epoch 5 - iter 623/894 - loss 0.03994062 - time (sec): 65.96 - samples/sec: 920.22 - lr: 0.000029 - momentum: 0.000000
2023-09-03 19:19:13,832 epoch 5 - iter 712/894 - loss 0.04061015 - time (sec): 75.24 - samples/sec: 923.28 - lr: 0.000029 - momentum: 0.000000
2023-09-03 19:19:22,963 epoch 5 - iter 801/894 - loss 0.04065690 - time (sec): 84.37 - samples/sec: 921.46 - lr: 0.000028 - momentum: 0.000000
2023-09-03 19:19:31,888 epoch 5 - iter 890/894 - loss 0.04197579 - time (sec): 93.30 - samples/sec: 923.92 - lr: 0.000028 - momentum: 0.000000
2023-09-03 19:19:32,322 ----------------------------------------------------------------------------------------------------
2023-09-03 19:19:32,322 EPOCH 5 done: loss 0.0420 - lr: 0.000028
2023-09-03 19:19:45,787 DEV : loss 0.21861010789871216 - f1-score (micro avg) 0.7381
2023-09-03 19:19:45,813 ----------------------------------------------------------------------------------------------------
2023-09-03 19:19:55,164 epoch 6 - iter 89/894 - loss 0.02420486 - time (sec): 9.35 - samples/sec: 926.99 - lr: 0.000027 - momentum: 0.000000
2023-09-03 19:20:04,086 epoch 6 - iter 178/894 - loss 0.03490990 - time (sec): 18.27 - samples/sec: 896.54 - lr: 0.000027 - momentum: 0.000000
2023-09-03 19:20:13,846 epoch 6 - iter 267/894 - loss 0.02886084 - time (sec): 28.03 - samples/sec: 911.47 - lr: 0.000026 - momentum: 0.000000
2023-09-03 19:20:23,022 epoch 6 - iter 356/894 - loss 0.03059653 - time (sec): 37.21 - samples/sec: 925.61 - lr: 0.000026 - momentum: 0.000000
2023-09-03 19:20:31,670 epoch 6 - iter 445/894 - loss 0.03090125 - time (sec): 45.86 - samples/sec: 916.17 - lr: 0.000025 - momentum: 0.000000
2023-09-03 19:20:40,713 epoch 6 - iter 534/894 - loss 0.03055680 - time (sec): 54.90 - samples/sec: 915.92 - lr: 0.000024 - momentum: 0.000000
2023-09-03 19:20:49,597 epoch 6 - iter 623/894 - loss 0.03149645 - time (sec): 63.78 - samples/sec: 911.66 - lr: 0.000024 - momentum: 0.000000
2023-09-03 19:20:59,900 epoch 6 - iter 712/894 - loss 0.03005318 - time (sec): 74.09 - samples/sec: 922.66 - lr: 0.000023 - momentum: 0.000000
2023-09-03 19:21:08,996 epoch 6 - iter 801/894 - loss 0.02957260 - time (sec): 83.18 - samples/sec: 924.36 - lr: 0.000023 - momentum: 0.000000
2023-09-03 19:21:18,642 epoch 6 - iter 890/894 - loss 0.02924329 - time (sec): 92.83 - samples/sec: 927.66 - lr: 0.000022 - momentum: 0.000000
2023-09-03 19:21:19,039 ----------------------------------------------------------------------------------------------------
2023-09-03 19:21:19,039 EPOCH 6 done: loss 0.0291 - lr: 0.000022
2023-09-03 19:21:32,508 DEV : loss 0.24210010468959808 - f1-score (micro avg) 0.7598
2023-09-03 19:21:32,535 saving best model
2023-09-03 19:21:33,870 ----------------------------------------------------------------------------------------------------
2023-09-03 19:21:42,847 epoch 7 - iter 89/894 - loss 0.01754516 - time (sec): 8.98 - samples/sec: 979.14 - lr: 0.000022 - momentum: 0.000000
2023-09-03 19:21:51,750 epoch 7 - iter 178/894 - loss 0.02284649 - time (sec): 17.88 - samples/sec: 956.82 - lr: 0.000021 - momentum: 0.000000
2023-09-03 19:22:02,425 epoch 7 - iter 267/894 - loss 0.02108914 - time (sec): 28.55 - samples/sec: 954.57 - lr: 0.000021 - momentum: 0.000000
2023-09-03 19:22:11,584 epoch 7 - iter 356/894 - loss 0.02139335 - time (sec): 37.71 - samples/sec: 944.72 - lr: 0.000020 - momentum: 0.000000
2023-09-03 19:22:20,794 epoch 7 - iter 445/894 - loss 0.02142739 - time (sec): 46.92 - samples/sec: 946.25 - lr: 0.000019 - momentum: 0.000000
2023-09-03 19:22:29,777 epoch 7 - iter 534/894 - loss 0.02059029 - time (sec): 55.91 - samples/sec: 940.92 - lr: 0.000019 - momentum: 0.000000
2023-09-03 19:22:38,940 epoch 7 - iter 623/894 - loss 0.01995416 - time (sec): 65.07 - samples/sec: 936.79 - lr: 0.000018 - momentum: 0.000000
2023-09-03 19:22:48,055 epoch 7 - iter 712/894 - loss 0.01981773 - time (sec): 74.18 - samples/sec: 932.64 - lr: 0.000018 - momentum: 0.000000
2023-09-03 19:22:56,949 epoch 7 - iter 801/894 - loss 0.02006500 - time (sec): 83.08 - samples/sec: 927.80 - lr: 0.000017 - momentum: 0.000000
2023-09-03 19:23:06,568 epoch 7 - iter 890/894 - loss 0.01936137 - time (sec): 92.70 - samples/sec: 930.70 - lr: 0.000017 - momentum: 0.000000
2023-09-03 19:23:06,944 ----------------------------------------------------------------------------------------------------
2023-09-03 19:23:06,944 EPOCH 7 done: loss 0.0193 - lr: 0.000017
2023-09-03 19:23:20,362 DEV : loss 0.242599755525589 - f1-score (micro avg) 0.7696
2023-09-03 19:23:20,388 saving best model
2023-09-03 19:23:21,700 ----------------------------------------------------------------------------------------------------
2023-09-03 19:23:31,009 epoch 8 - iter 89/894 - loss 0.01621017 - time (sec): 9.31 - samples/sec: 931.18 - lr: 0.000016 - momentum: 0.000000
2023-09-03 19:23:40,722 epoch 8 - iter 178/894 - loss 0.01277269 - time (sec): 19.02 - samples/sec: 934.74 - lr: 0.000016 - momentum: 0.000000
2023-09-03 19:23:49,975 epoch 8 - iter 267/894 - loss 0.01041762 - time (sec): 28.27 - samples/sec: 950.73 - lr: 0.000015 - momentum: 0.000000
2023-09-03 19:23:59,828 epoch 8 - iter 356/894 - loss 0.01011581 - time (sec): 38.13 - samples/sec: 956.09 - lr: 0.000014 - momentum: 0.000000
2023-09-03 19:24:08,579 epoch 8 - iter 445/894 - loss 0.01175983 - time (sec): 46.88 - samples/sec: 941.76 - lr: 0.000014 - momentum: 0.000000
2023-09-03 19:24:17,840 epoch 8 - iter 534/894 - loss 0.01291973 - time (sec): 56.14 - samples/sec: 937.53 - lr: 0.000013 - momentum: 0.000000
2023-09-03 19:24:27,048 epoch 8 - iter 623/894 - loss 0.01208747 - time (sec): 65.35 - samples/sec: 943.69 - lr: 0.000013 - momentum: 0.000000
2023-09-03 19:24:35,924 epoch 8 - iter 712/894 - loss 0.01226839 - time (sec): 74.22 - samples/sec: 942.20 - lr: 0.000012 - momentum: 0.000000
2023-09-03 19:24:44,759 epoch 8 - iter 801/894 - loss 0.01213190 - time (sec): 83.06 - samples/sec: 940.26 - lr: 0.000012 - momentum: 0.000000
2023-09-03 19:24:53,805 epoch 8 - iter 890/894 - loss 0.01190405 - time (sec): 92.10 - samples/sec: 935.67 - lr: 0.000011 - momentum: 0.000000
2023-09-03 19:24:54,212 ----------------------------------------------------------------------------------------------------
2023-09-03 19:24:54,212 EPOCH 8 done: loss 0.0119 - lr: 0.000011
2023-09-03 19:25:07,680 DEV : loss 0.2613238990306854 - f1-score (micro avg) 0.774
2023-09-03 19:25:07,707 saving best model
2023-09-03 19:25:09,069 ----------------------------------------------------------------------------------------------------
2023-09-03 19:25:17,987 epoch 9 - iter 89/894 - loss 0.00997870 - time (sec): 8.92 - samples/sec: 927.34 - lr: 0.000011 - momentum: 0.000000
2023-09-03 19:25:27,459 epoch 9 - iter 178/894 - loss 0.00632446 - time (sec): 18.39 - samples/sec: 955.83 - lr: 0.000010 - momentum: 0.000000
2023-09-03 19:25:36,811 epoch 9 - iter 267/894 - loss 0.00637963 - time (sec): 27.74 - samples/sec: 933.36 - lr: 0.000009 - momentum: 0.000000
2023-09-03 19:25:46,415 epoch 9 - iter 356/894 - loss 0.00558079 - time (sec): 37.34 - samples/sec: 946.64 - lr: 0.000009 - momentum: 0.000000
2023-09-03 19:25:56,059 epoch 9 - iter 445/894 - loss 0.00590974 - time (sec): 46.99 - samples/sec: 940.55 - lr: 0.000008 - momentum: 0.000000
2023-09-03 19:26:05,743 epoch 9 - iter 534/894 - loss 0.00636897 - time (sec): 56.67 - samples/sec: 943.37 - lr: 0.000008 - momentum: 0.000000
2023-09-03 19:26:14,631 epoch 9 - iter 623/894 - loss 0.00614434 - time (sec): 65.56 - samples/sec: 945.95 - lr: 0.000007 - momentum: 0.000000
2023-09-03 19:26:23,473 epoch 9 - iter 712/894 - loss 0.00565531 - time (sec): 74.40 - samples/sec: 941.02 - lr: 0.000007 - momentum: 0.000000
2023-09-03 19:26:32,236 epoch 9 - iter 801/894 - loss 0.00552811 - time (sec): 83.17 - samples/sec: 940.20 - lr: 0.000006 - momentum: 0.000000
2023-09-03 19:26:41,209 epoch 9 - iter 890/894 - loss 0.00611643 - time (sec): 92.14 - samples/sec: 934.75 - lr: 0.000006 - momentum: 0.000000
2023-09-03 19:26:41,593 ----------------------------------------------------------------------------------------------------
2023-09-03 19:26:41,593 EPOCH 9 done: loss 0.0061 - lr: 0.000006
2023-09-03 19:26:54,966 DEV : loss 0.2732395827770233 - f1-score (micro avg) 0.7797
2023-09-03 19:26:54,993 saving best model
2023-09-03 19:26:56,319 ----------------------------------------------------------------------------------------------------
2023-09-03 19:27:05,605 epoch 10 - iter 89/894 - loss 0.00478917 - time (sec): 9.28 - samples/sec: 946.10 - lr: 0.000005 - momentum: 0.000000
2023-09-03 19:27:14,380 epoch 10 - iter 178/894 - loss 0.00284241 - time (sec): 18.06 - samples/sec: 925.92 - lr: 0.000004 - momentum: 0.000000
2023-09-03 19:27:23,312 epoch 10 - iter 267/894 - loss 0.00262347 - time (sec): 26.99 - samples/sec: 936.64 - lr: 0.000004 - momentum: 0.000000
2023-09-03 19:27:32,573 epoch 10 - iter 356/894 - loss 0.00287710 - time (sec): 36.25 - samples/sec: 940.19 - lr: 0.000003 - momentum: 0.000000
2023-09-03 19:27:42,409 epoch 10 - iter 445/894 - loss 0.00327777 - time (sec): 46.09 - samples/sec: 938.49 - lr: 0.000003 - momentum: 0.000000
2023-09-03 19:27:52,015 epoch 10 - iter 534/894 - loss 0.00378774 - time (sec): 55.69 - samples/sec: 937.56 - lr: 0.000002 - momentum: 0.000000
2023-09-03 19:28:01,642 epoch 10 - iter 623/894 - loss 0.00405072 - time (sec): 65.32 - samples/sec: 933.00 - lr: 0.000002 - momentum: 0.000000
2023-09-03 19:28:10,575 epoch 10 - iter 712/894 - loss 0.00418249 - time (sec): 74.25 - samples/sec: 932.14 - lr: 0.000001 - momentum: 0.000000
2023-09-03 19:28:19,446 epoch 10 - iter 801/894 - loss 0.00407931 - time (sec): 83.13 - samples/sec: 927.77 - lr: 0.000001 - momentum: 0.000000
2023-09-03 19:28:29,092 epoch 10 - iter 890/894 - loss 0.00412299 - time (sec): 92.77 - samples/sec: 929.02 - lr: 0.000000 - momentum: 0.000000
2023-09-03 19:28:29,466 ----------------------------------------------------------------------------------------------------
2023-09-03 19:28:29,466 EPOCH 10 done: loss 0.0041 - lr: 0.000000
2023-09-03 19:28:42,905 DEV : loss 0.2644493281841278 - f1-score (micro avg) 0.7788
2023-09-03 19:28:43,391 ----------------------------------------------------------------------------------------------------
2023-09-03 19:28:43,392 Loading model from best epoch ...
2023-09-03 19:28:45,259 SequenceTagger predicts: Dictionary with 21 tags: O, S-loc, B-loc, E-loc, I-loc, S-pers, B-pers, E-pers, I-pers, S-org, B-org, E-org, I-org, S-prod, B-prod, E-prod, I-prod, S-time, B-time, E-time, I-time
2023-09-03 19:28:55,968
Results:
- F-score (micro) 0.7471
- F-score (macro) 0.6726
- Accuracy 0.6148
By class:
precision recall f1-score support
loc 0.8409 0.8423 0.8416 596
pers 0.6453 0.7267 0.6836 333
org 0.6744 0.4394 0.5321 132
prod 0.6818 0.4545 0.5455 66
time 0.7451 0.7755 0.7600 49
micro avg 0.7546 0.7398 0.7471 1176
macro avg 0.7175 0.6477 0.6726 1176
weighted avg 0.7539 0.7398 0.7421 1176
2023-09-03 19:28:55,968 ----------------------------------------------------------------------------------------------------