Datasets:
Tasks:
Question Answering
Languages:
English
Size:
10K<n<100K
ArXiv:
Tags:
table-question-answering
License:
Delete loading script
Browse files- wikitablequestions.py +0 -184
wikitablequestions.py
DELETED
|
@@ -1,184 +0,0 @@
|
|
| 1 |
-
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
| 2 |
-
#
|
| 3 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
-
# you may not use this file except in compliance with the License.
|
| 5 |
-
# You may obtain a copy of the License at
|
| 6 |
-
#
|
| 7 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
-
#
|
| 9 |
-
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
-
# See the License for the specific language governing permissions and
|
| 13 |
-
# limitations under the License.
|
| 14 |
-
"""The WikiTableQuestions dataset is a large-scale dataset for the task of question answering on semi-structured tables."""
|
| 15 |
-
|
| 16 |
-
import os
|
| 17 |
-
|
| 18 |
-
import datasets
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
# Find for instance the citation on arxiv or on the dataset repo/website
|
| 22 |
-
_CITATION = """\
|
| 23 |
-
@inproceedings{pasupat-liang-2015-compositional,
|
| 24 |
-
title = "Compositional Semantic Parsing on Semi-Structured Tables",
|
| 25 |
-
author = "Pasupat, Panupong and Liang, Percy",
|
| 26 |
-
booktitle = "Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)",
|
| 27 |
-
month = jul,
|
| 28 |
-
year = "2015",
|
| 29 |
-
address = "Beijing, China",
|
| 30 |
-
publisher = "Association for Computational Linguistics",
|
| 31 |
-
url = "https://aclanthology.org/P15-1142",
|
| 32 |
-
doi = "10.3115/v1/P15-1142",
|
| 33 |
-
pages = "1470--1480",
|
| 34 |
-
}
|
| 35 |
-
"""
|
| 36 |
-
|
| 37 |
-
# You can copy an official description
|
| 38 |
-
_DESCRIPTION = """\
|
| 39 |
-
This WikiTableQuestions dataset is a large-scale dataset for the task of question answering on semi-structured tables.
|
| 40 |
-
"""
|
| 41 |
-
|
| 42 |
-
_HOMEPAGE = "https://nlp.stanford.edu/software/sempre/wikitable"
|
| 43 |
-
|
| 44 |
-
_LICENSE = "Creative Commons Attribution Share Alike 4.0 International"
|
| 45 |
-
|
| 46 |
-
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
|
| 47 |
-
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
|
| 48 |
-
_DATA_URL = (
|
| 49 |
-
"https://github.com/ppasupat/WikiTableQuestions/releases/download/v1.0.2/WikiTableQuestions-1.0.2-compact.zip"
|
| 50 |
-
)
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
class WikiTableQuestions(datasets.GeneratorBasedBuilder):
|
| 54 |
-
"""WikiTableQuestions: a large-scale dataset for the task of question answering on semi-structured tables."""
|
| 55 |
-
|
| 56 |
-
VERSION = datasets.Version("1.0.2")
|
| 57 |
-
|
| 58 |
-
# This is an example of a dataset with multiple configurations.
|
| 59 |
-
# If you don't want/need to define several sub-sets in your dataset,
|
| 60 |
-
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
|
| 61 |
-
|
| 62 |
-
# If you need to make complex sub-parts in the datasets with configurable options
|
| 63 |
-
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
|
| 64 |
-
# BUILDER_CONFIG_CLASS = MyBuilderConfig
|
| 65 |
-
|
| 66 |
-
# You will be able to load one or the other configurations in the following list with
|
| 67 |
-
# data = datasets.load_dataset('my_dataset', 'first_domain')
|
| 68 |
-
# data = datasets.load_dataset('my_dataset', 'second_domain')
|
| 69 |
-
BUILDER_CONFIGS = [
|
| 70 |
-
datasets.BuilderConfig(
|
| 71 |
-
name="random-split-1",
|
| 72 |
-
version=VERSION,
|
| 73 |
-
description="The random-split-1-train/dev.tsv and pristine-unseen-tables.tsv",
|
| 74 |
-
),
|
| 75 |
-
datasets.BuilderConfig(
|
| 76 |
-
name="random-split-2",
|
| 77 |
-
version=VERSION,
|
| 78 |
-
description="The random-split-2-train/dev.tsv and pristine-unseen-tables.tsv",
|
| 79 |
-
),
|
| 80 |
-
datasets.BuilderConfig(
|
| 81 |
-
name="random-split-3",
|
| 82 |
-
version=VERSION,
|
| 83 |
-
description="The random-split-3-train/dev.tsv and pristine-unseen-tables.tsv",
|
| 84 |
-
),
|
| 85 |
-
datasets.BuilderConfig(
|
| 86 |
-
name="random-split-4",
|
| 87 |
-
version=VERSION,
|
| 88 |
-
description="The random-split-4-train/dev.tsv and pristine-unseen-tables.tsv",
|
| 89 |
-
),
|
| 90 |
-
datasets.BuilderConfig(
|
| 91 |
-
name="random-split-5",
|
| 92 |
-
version=VERSION,
|
| 93 |
-
description="The random-split-5-train/dev.tsv and pristine-unseen-tables.tsv",
|
| 94 |
-
),
|
| 95 |
-
]
|
| 96 |
-
|
| 97 |
-
DEFAULT_CONFIG_NAME = (
|
| 98 |
-
"random-split-1" # It's not mandatory to have a default configuration. Just use one if it make sense.
|
| 99 |
-
)
|
| 100 |
-
|
| 101 |
-
def _info(self):
|
| 102 |
-
features = datasets.Features(
|
| 103 |
-
{
|
| 104 |
-
"id": datasets.Value("string"),
|
| 105 |
-
"question": datasets.Value("string"),
|
| 106 |
-
"answers": datasets.features.Sequence(datasets.Value("string")),
|
| 107 |
-
"table": {
|
| 108 |
-
"header": datasets.features.Sequence(datasets.Value("string")),
|
| 109 |
-
"rows": datasets.features.Sequence(datasets.features.Sequence(datasets.Value("string"))),
|
| 110 |
-
"name": datasets.Value("string"),
|
| 111 |
-
},
|
| 112 |
-
}
|
| 113 |
-
)
|
| 114 |
-
return datasets.DatasetInfo(
|
| 115 |
-
# This is the description that will appear on the datasets page.
|
| 116 |
-
description=_DESCRIPTION,
|
| 117 |
-
# This defines the different columns of the dataset and their types
|
| 118 |
-
features=features, # Here we define them above because they are different between the two configurations
|
| 119 |
-
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
|
| 120 |
-
# specify them. They'll be used if as_supervised=True in builder.as_dataset.
|
| 121 |
-
# supervised_keys=("sentence", "label"),
|
| 122 |
-
# Homepage of the dataset for documentation
|
| 123 |
-
homepage=_HOMEPAGE,
|
| 124 |
-
# License for the dataset if available
|
| 125 |
-
license=_LICENSE,
|
| 126 |
-
# Citation for the dataset
|
| 127 |
-
citation=_CITATION,
|
| 128 |
-
)
|
| 129 |
-
|
| 130 |
-
def _split_generators(self, dl_manager):
|
| 131 |
-
train_file = "{}-train.tsv".format(self.config.name)
|
| 132 |
-
dev_file = "{}-dev.tsv".format(self.config.name)
|
| 133 |
-
test_file = "pristine-unseen-tables.tsv"
|
| 134 |
-
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
|
| 135 |
-
urls = _DATA_URL
|
| 136 |
-
root_dir = os.path.join(dl_manager.download_and_extract(urls), "WikiTableQuestions")
|
| 137 |
-
return [
|
| 138 |
-
datasets.SplitGenerator(
|
| 139 |
-
name=datasets.Split.TRAIN,
|
| 140 |
-
# These kwargs will be passed to _generate_examples
|
| 141 |
-
gen_kwargs={"main_filepath": os.path.join(root_dir, "data", train_file), "root_dir": root_dir},
|
| 142 |
-
),
|
| 143 |
-
datasets.SplitGenerator(
|
| 144 |
-
name=datasets.Split.TEST,
|
| 145 |
-
# These kwargs will be passed to _generate_examples
|
| 146 |
-
gen_kwargs={"main_filepath": os.path.join(root_dir, "data", test_file), "root_dir": root_dir},
|
| 147 |
-
),
|
| 148 |
-
datasets.SplitGenerator(
|
| 149 |
-
name=datasets.Split.VALIDATION,
|
| 150 |
-
# These kwargs will be passed to _generate_examples
|
| 151 |
-
gen_kwargs={"main_filepath": os.path.join(root_dir, "data", dev_file), "root_dir": root_dir},
|
| 152 |
-
),
|
| 153 |
-
]
|
| 154 |
-
|
| 155 |
-
def _read_table_from_file(self, table_name: str, root_dir: str):
|
| 156 |
-
def _extract_table_content(_line: str):
|
| 157 |
-
_vals = [_.replace("\n", " ").strip() for _ in _line.strip("\n").split("\t")]
|
| 158 |
-
return _vals
|
| 159 |
-
|
| 160 |
-
rows = []
|
| 161 |
-
# assert ".csv" in _wtq_table_name
|
| 162 |
-
# use the normalized table file
|
| 163 |
-
table_name = table_name.replace(".csv", ".tsv")
|
| 164 |
-
with open(os.path.join(root_dir, table_name), "r", encoding="utf8") as table_f:
|
| 165 |
-
table_lines = table_f.readlines()
|
| 166 |
-
# the first line is header
|
| 167 |
-
header = _extract_table_content(table_lines[0])
|
| 168 |
-
for line in table_lines[1:]:
|
| 169 |
-
rows.append(_extract_table_content(line))
|
| 170 |
-
return {"header": header, "rows": rows, "name": table_name}
|
| 171 |
-
|
| 172 |
-
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
|
| 173 |
-
def _generate_examples(self, main_filepath, root_dir):
|
| 174 |
-
# The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
|
| 175 |
-
with open(main_filepath, encoding="utf-8") as f:
|
| 176 |
-
# skip the first line since it is the tsv header
|
| 177 |
-
next(f)
|
| 178 |
-
for idx, line in enumerate(f):
|
| 179 |
-
example_id, question, table_name, answer = line.strip("\n").split("\t")
|
| 180 |
-
answer = answer.split("|")
|
| 181 |
-
# must contain rows and header keys
|
| 182 |
-
table_content = self._read_table_from_file(table_name, root_dir)
|
| 183 |
-
|
| 184 |
-
yield idx, {"id": example_id, "question": question, "answers": answer, "table": table_content}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|