|
import os |
|
import pandas as pd |
|
from datasets import DatasetDict, Dataset, Audio |
|
from sklearn.model_selection import train_test_split |
|
|
|
def load_data(data_dir, test_size=0.2, seed=42): |
|
|
|
metadata = pd.read_csv(os.path.join(data_dir, "metadata.csv")) |
|
|
|
|
|
train_data, test_data = train_test_split(metadata, test_size=0.2, random_state=seed) |
|
|
|
|
|
train_dataset = Dataset.from_pandas(train_data) |
|
test_dataset = Dataset.from_pandas(test_data) |
|
|
|
|
|
train_dataset = train_dataset.cast_column("path", Audio()) |
|
test_dataset = test_dataset.cast_column("path", Audio()) |
|
|
|
|
|
data = DatasetDict({ |
|
"train": train_dataset, |
|
"test": test_dataset |
|
}) |
|
|
|
return data |
|
|
|
|
|
data = load_data("my_dataset") |
|
print(data) |
|
|