mr02 commited on
Commit
ed22c6b
·
verified ·
1 Parent(s): 6ea3841

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +74 -17
README.md CHANGED
@@ -1,16 +1,31 @@
1
  ---
 
 
 
 
 
 
 
 
 
 
 
2
  dataset_info:
3
  features:
 
 
4
  - name: answer
5
  dtype: string
 
 
6
  - name: image_url
7
  dtype: string
8
- - name: original_order
9
  dtype: string
 
 
10
  - name: parquet_path
11
  dtype: string
12
- - name: question
13
- dtype: string
14
  - name: speciality
15
  dtype: string
16
  - name: flag_answer_format
@@ -23,25 +38,67 @@ dataset_info:
23
  dtype: string
24
  - name: flag_difficulty_llms
25
  dtype: string
26
- - name: image
27
- dtype: image
28
- - name: original_problem_id
29
- dtype: string
30
- - name: permutation_number
31
- dtype: string
32
- - name: problem_id
33
- dtype: string
34
- - name: order
35
- dtype: int64
36
  splits:
37
  - name: train
38
- num_bytes: 1228986309.804
39
- num_examples: 5994
40
- download_size: 154747960
41
- dataset_size: 1228986309.804
42
  configs:
43
  - config_name: default
44
  data_files:
45
  - split: train
46
  path: data/train-*
47
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ license: cc-by-4.0
3
+ task_categories:
4
+ - image-text-to-text
5
+ language:
6
+ - en
7
+ tags:
8
+ - medical
9
+ - multimodal
10
+ - in-context-learning
11
+ - vqa
12
+ - benchmark
13
  dataset_info:
14
  features:
15
+ - name: question
16
+ dtype: string
17
  - name: answer
18
  dtype: string
19
+ - name: image
20
+ dtype: image
21
  - name: image_url
22
  dtype: string
23
+ - name: problem_id
24
  dtype: string
25
+ - name: order
26
+ dtype: int64
27
  - name: parquet_path
28
  dtype: string
 
 
29
  - name: speciality
30
  dtype: string
31
  - name: flag_answer_format
 
38
  dtype: string
39
  - name: flag_difficulty_llms
40
  dtype: string
 
 
 
 
 
 
 
 
 
 
41
  splits:
42
  - name: train
43
+ num_bytes: 94510405.0
44
+ num_examples: 517
45
+ download_size: 90895608
46
+ dataset_size: 94510405.0
47
  configs:
48
  - config_name: default
49
  data_files:
50
  - split: train
51
  path: data/train-*
52
  ---
53
+
54
+ # SMMILE: An Expert-Driven Benchmark for Multimodal Medical In-Context Learning
55
+
56
+ [Paper](https://huggingface.co/papers/2506.21355) | [Project page](https://smmile-benchmark.github.io) | [Code](https://github.com/eth-medical-ai-lab/smmile)
57
+ <div align="center">
58
+ <img src="./logo_final.png" alt="SMMILE Logo" width="400">
59
+ </div>
60
+
61
+ ## Introduction
62
+
63
+ Multimodal in-context learning (ICL) remains underexplored despite the profound potential it could have in complex application domains such as medicine. Clinicians routinely face a long tail of tasks which they need to learn to solve from few examples, such as considering few relevant previous cases or few differential diagnoses. While MLLMs have shown impressive advances in medical visual question answering (VQA) or multi-turn chatting, their ability to learn multimodal tasks from context is largely unknown.
64
+
65
+ We introduce **SMMILE** (Stanford Multimodal Medical In-context Learning Evaluation), the first multimodal medical ICL benchmark. A set of clinical experts curated ICL problems to scrutinize MLLM's ability to learn multimodal tasks at inference time from context.
66
+
67
+ ## Dataset Access
68
+
69
+ The SMMILE dataset is available on HuggingFace:
70
+
71
+ ```python
72
+ from datasets import load_dataset
73
+ load_dataset('smmile/SMMILE', token=YOUR_HF_TOKEN)
74
+ load_dataset('smmile/SMMILE-plusplus', token=YOUR_HF_TOKEN)
75
+ ```
76
+
77
+ Note: You need to set your HuggingFace token as an environment variable:
78
+ ```bash
79
+ export HF_TOKEN=your_token_here
80
+ ```
81
+
82
+ ## License
83
+
84
+ This work is licensed under a [Creative Commons Attribution 4.0 International License](http://creativecommons.org/licenses/by/4.0/).
85
+
86
+ ## Citation
87
+
88
+ If you find our dataset useful for your research, please cite the following paper:
89
+
90
+ ```bibtex
91
+ @article{rieff2025smmile,
92
+ title={SMMILE: An Expert-Driven Benchmark for Multimodal Medical In-Context Learning},
93
+ author={Melanie Rieff and Maya Varma and Ossian Rabow and Subathra Adithan and Julie Kim and Ken Chang and Hannah Lee and Nidhi Rohatgi and Christian Bluethgen and Mohamed S. Muneer and Jean-Benoit Delbrouck and Michael Moor},
94
+ year={2025},
95
+ eprint={2506.21355},
96
+ archivePrefix={arXiv},
97
+ primaryClass={cs.LG},
98
+ url={https://arxiv.org/abs/2506.21355},
99
+ }
100
+ ```
101
+
102
+ ## Acknowledgments
103
+
104
+ We thank the clinical experts who contributed to curating the benchmark dataset.