Datasets:

Modalities:
Audio
Text
Formats:
parquet
Languages:
Malayalam
DOI:
Libraries:
Datasets
Dask
License:
File size: 4,267 Bytes
dbd4b4d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20a0187
 
 
 
 
 
 
 
dbd4b4d
176eb44
88f3dc5
176eb44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f40e8c5
3cfcc75
 
176eb44
 
 
 
 
 
8a40db2
 
 
 
 
 
 
 
 
176eb44
8a40db2
 
 
 
176eb44
 
8a40db2
176eb44
 
 
8a40db2
 
 
 
 
 
 
 
 
176eb44
 
 
 
 
 
 
 
8a40db2
176eb44
 
 
8a40db2
176eb44
8a40db2
176eb44
8a40db2
176eb44
8a40db2
176eb44
8a40db2
176eb44
8a40db2
176eb44
8a40db2
176eb44
8a40db2
176eb44
 
 
 
8a40db2
176eb44
 
 
 
 
8a40db2
176eb44
 
 
 
8a40db2
176eb44
 
 
8a40db2
176eb44
 
 
 
 
dbd4b4d
8a40db2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
---
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
dataset_info:
  features:
  - name: audio
    dtype: audio
  - name: speechid
    dtype: string
  - name: speaker_id
    dtype: string
  - name: review_score
    dtype: int64
  - name: transcript
    dtype: string
  - name: category
    dtype: string
  - name: speaker_gender
    dtype: string
  - name: speaker_age
    dtype: string
  splits:
  - name: train
    num_bytes: 579920220.506
    num_examples: 1541
  download_size: 422956016
  dataset_size: 579920220.506
license: cc-by-4.0
task_categories:
- automatic-speech-recognition
language:
- ml
pretty_name: SMC Malayalam Speech Corpus
size_categories:
- 1K<n<10K
---

# Dataset Card for [msc]

## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **https://smc.org.in**
- **https://gitlab.com/smc/msc-reviewed-speech**
- **https://blog.smc.org.in/malayalam-speech-corpus/**
- **Point of Contact: Kavya Manohar**

### Dataset Summary



- 1541 speech samples
- 75 speech contributors
- 1:38:16 hours of speech
- 482 unique sentences
- 1400 unique words
- 553 unique syllables
- 48 unique phonemes

For more detailed analysis see the python notebook provided [here](https://gitlab.com/smc/msc-reviewed-speech/-/blob/master/analysis/EDA.ipynb)

### Supported Tasks and Leaderboards

Automatic Speech Recognition system development, gender and age identification of speakers
 
### Languages

Malayalam

## Dataset Structure

- file_name
- speechid
- speaker_id
- review_score
- transcript
- category (optional speech category)
- speaker_gender (optionally self declared)
- speaker_age (optionally self declared)

### Data Instances


### Data Fields


### Data Splits

So specific Splits

## Dataset Creation

The speech data is collected from volunteer users who read and record their speech through a [web application](https://msc.smc.org.in) using their personal devices. The recorded speech is reviewed (upvote and downvote gives a score of +1 and -1 respectively) by other users. The review score is also published.

### Curation Rationale

The recorded speech is reviewed (upvote and downvote gives a score of +1 and -1 respectively) by other users. The review score is also published.

### Curation Rationale

Those speech samples with at least three positive reviews are included in this dataset.

### Source Data

#### Initial Data Collection and Normalization

The speech data is collected from volunteer contributors who read and record their speech through a [web application](https://msc.smc.org.in). The users optionally provide name, age and gender. There is no further verification. Sentences to read out are curated by MSC Admin. The speech samples are reviewed by other users.


### Personal and Sensitive Information

Every speaker is identified by a unique alphanumeric id and age and gender are published if the speaker has voluntarily published them.

## Considerations for Using the Data

### Social Impact of Dataset

Read speech corpus, recorded in natural environments by the users.


### Dataset Curators

Kavya Manohar

### Licensing Information

CC-BY-SA 4.0

### Citation Information


### Contributions

http://msc.smc.org.in/