sizhuoli commited on
Commit
0d852cd
·
verified ·
1 Parent(s): 09b8193

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +21 -7
README.md CHANGED
@@ -12,7 +12,7 @@ size_categories:
12
  - 100M<n<1B
13
  ---
14
 
15
- Manual crown delineation of individual trees in two countries: Denmark and Finland.
16
 
17
 
18
  Dataset download link: https://sid.erda.dk/sharelink/eFt21tspNe
@@ -25,9 +25,9 @@ Publication: https://doi.org/10.1093/pnasnexus/pgad076
25
  ----------------------------------------
26
 
27
 
28
- Dataset description:
29
 
30
- ---------- Denmark data---------- :
31
 
32
  More than 20k individual trees growing in different landscapes.
33
 
@@ -37,7 +37,7 @@ Images contain RGB and near-infrared bands and were taken in summer 2018.
37
 
38
  Image credits: Danish Agency for Data Supply and Infrastructure (https://sdfi.dk/)
39
 
40
- ---------- Finland data---------:
41
 
42
  More than 4k individual tree crowns in random sampling regions
43
 
@@ -47,10 +47,24 @@ Image credits: National Survey of Finland (https://www.maanmittauslaitos.fi/en/m
47
 
48
 
49
 
50
- Tasks:
51
 
52
- Segmentation of individual tree crowns
53
 
54
- Transfer learning/domain adaptation between datasets with different visual semantics, band compositions, forest species, etc.
55
 
56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
  - 100M<n<1B
13
  ---
14
 
15
+ # Manual crown delineation of individual trees in 2 countries: Denmark and Finland
16
 
17
 
18
  Dataset download link: https://sid.erda.dk/sharelink/eFt21tspNe
 
25
  ----------------------------------------
26
 
27
 
28
+ ## Dataset description
29
 
30
+ ---------- **Denmark data**---------- :
31
 
32
  More than 20k individual trees growing in different landscapes.
33
 
 
37
 
38
  Image credits: Danish Agency for Data Supply and Infrastructure (https://sdfi.dk/)
39
 
40
+ ---------- **Finland data**---------:
41
 
42
  More than 4k individual tree crowns in random sampling regions
43
 
 
47
 
48
 
49
 
50
+ ## Tasks
51
 
52
+ * Segmentation of individual tree crowns
53
 
54
+ * Transfer learning/domain adaptation between datasets with different visual semantics, band compositions, forest species, etc.
55
 
56
 
57
+ ## Citation
58
+
59
+
60
+ ```
61
+ @article{li2023deep,
62
+ title={Deep learning enables image-based tree counting, crown segmentation, and height prediction at national scale},
63
+ SHORTauthor={Li, Sizhuo and Brandt, Martin and Fensholt, Rasmus and Kariryaa, Ankit and Igel, Christian and Gieseke, Fabian and Nord-Larsen, Thomas and Oehmcke, Stefan and Carlsen, Ask Holm and Junttila, Samuli and others},
64
+ author={Li, Sizhuo and Brandt, Martin and Fensholt, Rasmus and Kariryaa, Ankit and Igel, Christian and Gieseke, Fabian and Nord-Larsen, Thomas and Oehmcke, Stefan and Carlsen, Ask Holm and Junttila, Samuli and Xiaoye Tong and Alexandre d’Aspremont and Philippe Ciais},
65
+ journal={PNAS nexus},
66
+ volume={2},
67
+ number={4},
68
+ year={2023},
69
+ publisher={Oxford University Press}
70
+ }