Datasets:
siyue
commited on
Commit
·
1ae9e7b
1
Parent(s):
e815a7f
upload
Browse files
squall.py
ADDED
@@ -0,0 +1,197 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
# Lint as: python3
|
17 |
+
"""SQUALL: Lexical-level Supervised Table Question Answering Dataset."""
|
18 |
+
|
19 |
+
|
20 |
+
import json
|
21 |
+
|
22 |
+
import datasets
|
23 |
+
from datasets.tasks import QuestionAnsweringExtractive
|
24 |
+
|
25 |
+
|
26 |
+
logger = datasets.logging.get_logger(__name__)
|
27 |
+
|
28 |
+
|
29 |
+
_CITATION = """\
|
30 |
+
@inproceedings{Shi:Zhao:Boyd-Graber:Daume-III:Lee-2020,
|
31 |
+
Title = {On the Potential of Lexico-logical Alignments for Semantic Parsing to {SQL} Queries},
|
32 |
+
Author = {Tianze Shi and Chen Zhao and Jordan Boyd-Graber and Hal {Daum\'{e} III} and Lillian Lee},
|
33 |
+
Booktitle = {Findings of EMNLP},
|
34 |
+
Year = {2020},
|
35 |
+
}
|
36 |
+
"""
|
37 |
+
|
38 |
+
_DESCRIPTION = """\
|
39 |
+
To explore the utility of fine-grained, lexical-level supervision, authors \
|
40 |
+
introduce SQUALL, a dataset that enriches 11,276 WikiTableQuestions \
|
41 |
+
English-language questions with manually created SQL equivalents plus \
|
42 |
+
alignments between SQL and question fragments.
|
43 |
+
"""
|
44 |
+
|
45 |
+
_URL = "https://github.com/tzshi/squall/tree/main/data/"
|
46 |
+
_URLS = {
|
47 |
+
"squall": _URL + "squall.json",
|
48 |
+
"twtq-test": _URL + "wtq-test.json",
|
49 |
+
"dev-0": _URL + "dev-0.ids",
|
50 |
+
"dev-1": _URL + "dev-1.ids",
|
51 |
+
"dev-2": _URL + "dev-2.ids",
|
52 |
+
"dev-3": _URL + "dev-3.ids",
|
53 |
+
"dev-4": _URL + "dev-4.ids",
|
54 |
+
}
|
55 |
+
|
56 |
+
|
57 |
+
class SquallConfig(datasets.BuilderConfig):
|
58 |
+
"""BuilderConfig for Squall."""
|
59 |
+
|
60 |
+
def __init__(self, fold_num, **kwargs):
|
61 |
+
"""BuilderConfig for Squall.
|
62 |
+
|
63 |
+
Args:
|
64 |
+
**kwargs: keyword arguments forwarded to super.
|
65 |
+
"""
|
66 |
+
super(SquallConfig, self).__init__(**kwargs)
|
67 |
+
self.fold_num = fold_num
|
68 |
+
|
69 |
+
|
70 |
+
class Squall(datasets.GeneratorBasedBuilder):
|
71 |
+
"""SQUALL: Lexical-level Supervised Table Question Answering Dataset."""
|
72 |
+
|
73 |
+
BUILDER_CONFIGS = [
|
74 |
+
SquallConfig(
|
75 |
+
fold_num=0,
|
76 |
+
),
|
77 |
+
]
|
78 |
+
|
79 |
+
def _info(self):
|
80 |
+
return datasets.DatasetInfo(
|
81 |
+
description=_DESCRIPTION,
|
82 |
+
features=datasets.Features(
|
83 |
+
{
|
84 |
+
"nt": datasets.Value("string"),
|
85 |
+
"tbl": datasets.Value("string"),
|
86 |
+
"columns":
|
87 |
+
{
|
88 |
+
"raw_header": datasets.Value("string"),
|
89 |
+
"tokenized_header": datasets.features.Sequence(datasets.Value("string")),
|
90 |
+
"column_suffixes": datasets.features.Sequence(datasets.Value("string")),
|
91 |
+
"column_dtype": datasets.Value("string"),
|
92 |
+
"example": datasets.Value("string")
|
93 |
+
},
|
94 |
+
"nl": datasets.features.Sequence(datasets.Value("string")),
|
95 |
+
"nl_pos": datasets.features.Sequence(datasets.Value("string")),
|
96 |
+
"nl_ner": datasets.features.Sequence(datasets.Value("string")),
|
97 |
+
"nl_incolumns": datasets.features.Sequence(datasets.Value("bool_")),
|
98 |
+
"nl_incells": datasets.features.Sequence(datasets.Value("bool_")),
|
99 |
+
"columns_innl": datasets.features.Sequence(datasets.Value("bool_")),
|
100 |
+
"tgt": datasets.Value("string"),
|
101 |
+
"sql": datasets.features.Sequence(datasets.Value("string"))
|
102 |
+
# "align" is not implemented
|
103 |
+
}
|
104 |
+
),
|
105 |
+
# No default supervised_keys (as we have to pass both question
|
106 |
+
# and context as input).
|
107 |
+
supervised_keys=None,
|
108 |
+
homepage="https://github.com/tzshi/squall/tree/main",
|
109 |
+
citation=_CITATION,
|
110 |
+
task_templates=[
|
111 |
+
QuestionAnsweringExtractive(
|
112 |
+
question_column="nl", context_column="columns", answers_column="tgt"
|
113 |
+
)
|
114 |
+
],
|
115 |
+
)
|
116 |
+
|
117 |
+
def _split_generators(self, dl_manager):
|
118 |
+
downloaded_files = dl_manager.download_and_extract(_URLS)
|
119 |
+
|
120 |
+
return [
|
121 |
+
datasets.SplitGenerator(
|
122 |
+
name=datasets.Split.TRAIN,
|
123 |
+
gen_kwargs={"split_key": "train", "filepath": downloaded_files}),
|
124 |
+
datasets.SplitGenerator(
|
125 |
+
name=datasets.Split.VALIDATION,
|
126 |
+
gen_kwargs={"split_key": "dev", "filepath": downloaded_files}),
|
127 |
+
datasets.SplitGenerator(
|
128 |
+
name=datasets.Split.TEST,
|
129 |
+
gen_kwargs={"split_key": "test", "filepath": downloaded_files}),
|
130 |
+
]
|
131 |
+
|
132 |
+
def _generate_examples(self, split_key, filepath):
|
133 |
+
"""This function returns the examples in the raw (text) form."""
|
134 |
+
logger.info("generating examples from = %s", filepath)
|
135 |
+
|
136 |
+
squall_full = filepath["squall"] + '/squall.json'
|
137 |
+
dev_ids = filepath[f"dev-{self.fold_num}"] + f"/dev-{self.fold_num}.ids"
|
138 |
+
test = filepath["twtq-test"] + "/twtq-test.json"
|
139 |
+
|
140 |
+
if split_key != 'test':
|
141 |
+
with open(squall_full, encoding="utf-8") as f:
|
142 |
+
squall_full_data = json.load(f)
|
143 |
+
with open(dev_ids) as f:
|
144 |
+
dev_ids = set(json.load(f))
|
145 |
+
if split_key == "train":
|
146 |
+
set = [x for x in squall_full_data if x["tbl"] not in dev_ids]
|
147 |
+
else:
|
148 |
+
set = [x for x in squall_full_data if x["tbl"] in dev_ids]
|
149 |
+
idx = 0
|
150 |
+
for sample in set:
|
151 |
+
cols = {}
|
152 |
+
keys = ["raw_header", "tokenized_header", "column_suffixes", "column_dtype", "example"]
|
153 |
+
for k in range(5):
|
154 |
+
cols.update({keys[k]: sample["columns"][k]})
|
155 |
+
sql = [x[1] for x in sample["sql"]]
|
156 |
+
yield idx, {
|
157 |
+
"nt": sample["nt"],
|
158 |
+
"tbl": sample["tbl"],
|
159 |
+
"columns": cols,
|
160 |
+
"nl": sample["nl"],
|
161 |
+
"nl_pos": sample["nl_pos"],
|
162 |
+
"nl_ner": sample["nl_ner"],
|
163 |
+
# "nl_ralign": sample["nl_ralign"],
|
164 |
+
"nl_incolumns": sample["nl_incolumns"],
|
165 |
+
"nl_incells": sample["nl_incells"],
|
166 |
+
"columns_innl": sample["columns_innl"],
|
167 |
+
"tgt": sample["tgt"],
|
168 |
+
"sql": sql,
|
169 |
+
# "align": sample["align"]
|
170 |
+
}
|
171 |
+
idx += 1
|
172 |
+
else:
|
173 |
+
with open(test, encoding="utf-8") as f:
|
174 |
+
test_data = json.load(f)
|
175 |
+
idx = 0
|
176 |
+
for sample in test_data:
|
177 |
+
cols = {}
|
178 |
+
keys = ["raw_header", "tokenized_header", "column_suffixes", "column_dtype", "example"]
|
179 |
+
for k in range(5):
|
180 |
+
cols.update({keys[k]: sample["columns"][k]})
|
181 |
+
sql = [x[1] for x in sample["sql"]]
|
182 |
+
yield idx, {
|
183 |
+
"nt": sample["nt"],
|
184 |
+
"tbl": sample["tbl"],
|
185 |
+
"columns": cols,
|
186 |
+
"nl": sample["nl"],
|
187 |
+
"nl_pos": sample["nl_pos"],
|
188 |
+
"nl_ner": sample["nl_ner"],
|
189 |
+
# "nl_ralign": sample["nl_ralign"],
|
190 |
+
"nl_incolumns": sample["nl_incolumns"],
|
191 |
+
"nl_incells": sample["nl_incells"],
|
192 |
+
"columns_innl": sample["columns_innl"],
|
193 |
+
"tgt": '',
|
194 |
+
"sql": [],
|
195 |
+
# "align": sample["align"]
|
196 |
+
}
|
197 |
+
idx += 1
|