Upload folder using huggingface_hub
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +3 -0
- VTimeLLM/.vscode/launch.json +102 -0
- VTimeLLM/.vscode/settings.json +39 -0
- VTimeLLM/checkpoints/ViT-L-14.pt +3 -0
- VTimeLLM/checkpoints/vicuna-7b-v1.5/.gitattributes +35 -0
- VTimeLLM/checkpoints/vicuna-7b-v1.5/README.md +48 -0
- VTimeLLM/checkpoints/vicuna-7b-v1.5/config.json +26 -0
- VTimeLLM/checkpoints/vicuna-7b-v1.5/generation_config.json +9 -0
- VTimeLLM/checkpoints/vicuna-7b-v1.5/pytorch_model-00001-of-00002.bin +3 -0
- VTimeLLM/checkpoints/vicuna-7b-v1.5/pytorch_model-00002-of-00002.bin +3 -0
- VTimeLLM/checkpoints/vicuna-7b-v1.5/pytorch_model.bin.index.json +330 -0
- VTimeLLM/checkpoints/vicuna-7b-v1.5/special_tokens_map.json +24 -0
- VTimeLLM/checkpoints/vicuna-7b-v1.5/tokenizer.model +3 -0
- VTimeLLM/checkpoints/vicuna-7b-v1.5/tokenizer_config.json +35 -0
- VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-activitynet-stage4/README.md +202 -0
- VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-activitynet-stage4/adapter_config.json +34 -0
- VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-activitynet-stage4/adapter_model.safetensors +3 -0
- VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-activitynet-stage4/config.json +28 -0
- VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-activitynet-stage4/log/capfirst.txt +0 -0
- VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-activitynet-stage4/log/metric/capfirst.txt +4 -0
- VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-activitynet-stage4/log/metric/grounding.txt +5 -0
- VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-activitynet-stage4/log/metric/timefirst.txt +4 -0
- VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-activitynet-stage4/log/timefirst.txt +0 -0
- VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-activitynet-stage4/non_lora_trainables.bin +3 -0
- VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-activitynet-stage4/trainer_state.json +2371 -0
- VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-activitynet-stage5/README.md +202 -0
- VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-activitynet-stage5/adapter_config.json +34 -0
- VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-activitynet-stage5/adapter_model.safetensors +3 -0
- VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-activitynet-stage5/config.json +28 -0
- VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-activitynet-stage5/log/capfirst.txt +0 -0
- VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-activitynet-stage5/log/grounding.txt +0 -0
- VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-activitynet-stage5/log/metric/capfirst.txt +4 -0
- VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-activitynet-stage5/log/metric/grounding.txt +5 -0
- VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-activitynet-stage5/log/metric/timefirst.txt +4 -0
- VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-activitynet-stage5/log/timefirst.txt +0 -0
- VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-activitynet-stage5/non_lora_trainables.bin +3 -0
- VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-activitynet-stage5/trainer_state.json +0 -0
- VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-stage1/config.json +28 -0
- VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-stage1/mm_projector.bin +3 -0
- VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-stage1/trainer_state.json +0 -0
- VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-stage2/README.md +9 -0
- VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-stage2/adapter_config.json +26 -0
- VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-stage2/adapter_model.bin +3 -0
- VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-stage2/config.json +28 -0
- VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-stage2/non_lora_trainables.bin +3 -0
- VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-stage2/trainer_state.json +0 -0
- VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-stage3/README.md +9 -0
- VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-stage3/adapter_config.json +26 -0
- VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-stage3/adapter_model.bin +3 -0
- VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-stage3/config.json +28 -0
.gitattributes
CHANGED
@@ -57,3 +57,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
57 |
# Video files - compressed
|
58 |
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
59 |
*.webm filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
57 |
# Video files - compressed
|
58 |
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
59 |
*.webm filter=lfs diff=lfs merge=lfs -text
|
60 |
+
VTimeLLM/data/activitynet/mdpo-train.json filter=lfs diff=lfs merge=lfs -text
|
61 |
+
VTimeLLM/flash-attention/assets/flashattn_banner.pdf filter=lfs diff=lfs merge=lfs -text
|
62 |
+
VTimeLLM/flash-attention/flash_attn-2.8.3+cu12torch2.8cxx11abiTRUE-cp310-cp310-linux_x86_64.whl filter=lfs diff=lfs merge=lfs -text
|
VTimeLLM/.vscode/launch.json
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"version": "0.2.0",
|
3 |
+
"configurations": [
|
4 |
+
{
|
5 |
+
"name": "Debug MDPO Training",
|
6 |
+
"type": "python",
|
7 |
+
"request": "launch",
|
8 |
+
"program": "${workspaceFolder}/scripts/train/debug_mdpo_train.sh",
|
9 |
+
"console": "integratedTerminal",
|
10 |
+
"cwd": "${workspaceFolder}",
|
11 |
+
"env": {
|
12 |
+
"PYTHONPATH": "${workspaceFolder}:${env:PYTHONPATH}",
|
13 |
+
"CUDA_VISIBLE_DEVICES": "1",
|
14 |
+
"TRANSFORMERS_OFFLINE": "1",
|
15 |
+
"WANDB_PROJECT": "vtimellm"
|
16 |
+
},
|
17 |
+
"args": [],
|
18 |
+
"justMyCode": false,
|
19 |
+
"stopOnEntry": false
|
20 |
+
},
|
21 |
+
{
|
22 |
+
"name": "Debug Python Training Direct",
|
23 |
+
"type": "python",
|
24 |
+
"request": "launch",
|
25 |
+
"module": "vtimellm.train.train_dpo_mem",
|
26 |
+
"console": "integratedTerminal",
|
27 |
+
"cwd": "${workspaceFolder}",
|
28 |
+
"env": {
|
29 |
+
"PYTHONPATH": "${workspaceFolder}:${env:PYTHONPATH}",
|
30 |
+
"CUDA_VISIBLE_DEVICES": "1",
|
31 |
+
"TRANSFORMERS_OFFLINE": "1",
|
32 |
+
"WANDB_PROJECT": "vtimellm",
|
33 |
+
"RANK": "1",
|
34 |
+
"MASTER_PORT": "29571"
|
35 |
+
},
|
36 |
+
"args": [
|
37 |
+
"--deepspeed", "./scripts/zero2.json",
|
38 |
+
"--lora_enable", "True",
|
39 |
+
"--lora_r", "8",
|
40 |
+
"--lora_alpha", "128",
|
41 |
+
"--training_stage", "3",
|
42 |
+
"--finetuning", "True",
|
43 |
+
"--model_name_or_path", "./checkpoints/vicuna-7b-v1.5",
|
44 |
+
"--version", "v1",
|
45 |
+
"--data_path", "./data/activitynet/mdpo-train.json",
|
46 |
+
"--data_folder", "./data/activitynet/videos/train",
|
47 |
+
"--feat_folder", "./data/activitynet/clipvitl14-vtimellm.pth",
|
48 |
+
"--pretrain_mm_mlp_adapter", "./checkpoints/vtimellm-vicuna-v1-5-7b-stage1/mm_projector.bin",
|
49 |
+
"--stage2_path", "./checkpoints/vtimellm-vicuna-v1-5-7b-stage2",
|
50 |
+
"--stage3_path", "./checkpoints/vtimellm-vicuna-v1-5-7b-stage3",
|
51 |
+
"--stage4_path", "checkpoints/vtimellm-vicuna-v1-5-7b-activitynet-stage4",
|
52 |
+
"--output_dir", "./outputs/vtimellm-vicuna-v1-5-7b-activitynet-stage5",
|
53 |
+
"--bf16", "True",
|
54 |
+
"--max_steps", "100",
|
55 |
+
"--per_device_train_batch_size", "2",
|
56 |
+
"--gradient_accumulation_steps", "4",
|
57 |
+
"--evaluation_strategy", "no",
|
58 |
+
"--save_strategy", "no",
|
59 |
+
"--save_steps", "50000",
|
60 |
+
"--save_total_limit", "10",
|
61 |
+
"--learning_rate", "1e-6",
|
62 |
+
"--freeze_mm_mlp_adapter", "True",
|
63 |
+
"--weight_decay", "0.",
|
64 |
+
"--warmup_ratio", "0.1",
|
65 |
+
"--lr_scheduler_type", "cosine",
|
66 |
+
"--logging_steps", "1",
|
67 |
+
"--tf32", "True",
|
68 |
+
"--model_max_length", "2048",
|
69 |
+
"--gradient_checkpointing", "True",
|
70 |
+
"--dataloader_num_workers", "4",
|
71 |
+
"--lazy_preprocess", "True",
|
72 |
+
"--report_to", "none",
|
73 |
+
"--run_name", "vtimellm-vicuna-v1-5-7b-activitynet-stage5",
|
74 |
+
"--gamma", "0.0",
|
75 |
+
"--beta", "0.5",
|
76 |
+
"--dpo_alpha", "1.0",
|
77 |
+
"--train4dpo"
|
78 |
+
],
|
79 |
+
"justMyCode": false,
|
80 |
+
"stopOnEntry": false
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"name": "Debug with DeepSpeed",
|
84 |
+
"type": "python",
|
85 |
+
"request": "launch",
|
86 |
+
"program": "${workspaceFolder}/scripts/train/debug_deepspeed.py",
|
87 |
+
"console": "integratedTerminal",
|
88 |
+
"cwd": "${workspaceFolder}",
|
89 |
+
"env": {
|
90 |
+
"PYTHONPATH": "${workspaceFolder}:${env:PYTHONPATH}",
|
91 |
+
"CUDA_VISIBLE_DEVICES": "1",
|
92 |
+
"TRANSFORMERS_OFFLINE": "1",
|
93 |
+
"WANDB_PROJECT": "vtimellm",
|
94 |
+
"RANK": "1",
|
95 |
+
"MASTER_PORT": "29571"
|
96 |
+
},
|
97 |
+
"args": [],
|
98 |
+
"justMyCode": false,
|
99 |
+
"stopOnEntry": false
|
100 |
+
}
|
101 |
+
]
|
102 |
+
}
|
VTimeLLM/.vscode/settings.json
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"python.defaultInterpreterPath": "/home/jisoo/.conda/envs/vtimellm/bin/python",
|
3 |
+
"python.terminal.activateEnvironment": true,
|
4 |
+
"python.condaPath": "/home/jisoo/.conda/bin/conda",
|
5 |
+
"python.envFile": "${workspaceFolder}/.env",
|
6 |
+
"python.analysis.extraPaths": [
|
7 |
+
"${workspaceFolder}",
|
8 |
+
"${workspaceFolder}/vtimellm",
|
9 |
+
"${workspaceFolder}/vtimellm/train",
|
10 |
+
"${workspaceFolder}/vtimellm/model"
|
11 |
+
],
|
12 |
+
"python.analysis.autoImportCompletions": true,
|
13 |
+
"python.analysis.typeCheckingMode": "basic",
|
14 |
+
"python.analysis.autoSearchPaths": true,
|
15 |
+
"python.analysis.diagnosticMode": "workspace",
|
16 |
+
"python.analysis.stubPath": "${workspaceFolder}/typings",
|
17 |
+
"python.linting.enabled": true,
|
18 |
+
"python.linting.pylintEnabled": false,
|
19 |
+
"python.linting.flake8Enabled": true,
|
20 |
+
"python.linting.mypyEnabled": false,
|
21 |
+
"python.formatting.provider": "black",
|
22 |
+
"python.sortImports.args": ["--profile", "black"],
|
23 |
+
"files.associations": {
|
24 |
+
"*.py": "python"
|
25 |
+
},
|
26 |
+
"terminal.integrated.env.linux": {
|
27 |
+
"PYTHONPATH": "${workspaceFolder}:${env:PYTHONPATH}",
|
28 |
+
"CUDA_VISIBLE_DEVICES": "1",
|
29 |
+
"TRANSFORMERS_OFFLINE": "1",
|
30 |
+
"WANDB_PROJECT": "vtimellm"
|
31 |
+
},
|
32 |
+
"terminal.integrated.defaultProfile.linux": "bash",
|
33 |
+
"terminal.integrated.profiles.linux": {
|
34 |
+
"bash": {
|
35 |
+
"path": "/bin/bash",
|
36 |
+
"args": ["-l"]
|
37 |
+
}
|
38 |
+
}
|
39 |
+
}
|
VTimeLLM/checkpoints/ViT-L-14.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b8cca3fd41ae0c99ba7e8951adf17d267cdb84cd88be6f7c2e0eca1737a03836
|
3 |
+
size 932768134
|
VTimeLLM/checkpoints/vicuna-7b-v1.5/.gitattributes
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
VTimeLLM/checkpoints/vicuna-7b-v1.5/README.md
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
inference: false
|
3 |
+
license: llama2
|
4 |
+
---
|
5 |
+
|
6 |
+
# Vicuna Model Card
|
7 |
+
|
8 |
+
## Model Details
|
9 |
+
|
10 |
+
Vicuna is a chat assistant trained by fine-tuning Llama 2 on user-shared conversations collected from ShareGPT.
|
11 |
+
|
12 |
+
- **Developed by:** [LMSYS](https://lmsys.org/)
|
13 |
+
- **Model type:** An auto-regressive language model based on the transformer architecture
|
14 |
+
- **License:** Llama 2 Community License Agreement
|
15 |
+
- **Finetuned from model:** [Llama 2](https://arxiv.org/abs/2307.09288)
|
16 |
+
|
17 |
+
### Model Sources
|
18 |
+
|
19 |
+
- **Repository:** https://github.com/lm-sys/FastChat
|
20 |
+
- **Blog:** https://lmsys.org/blog/2023-03-30-vicuna/
|
21 |
+
- **Paper:** https://arxiv.org/abs/2306.05685
|
22 |
+
- **Demo:** https://chat.lmsys.org/
|
23 |
+
|
24 |
+
## Uses
|
25 |
+
|
26 |
+
The primary use of Vicuna is research on large language models and chatbots.
|
27 |
+
The primary intended users of the model are researchers and hobbyists in natural language processing, machine learning, and artificial intelligence.
|
28 |
+
|
29 |
+
## How to Get Started with the Model
|
30 |
+
|
31 |
+
- Command line interface: https://github.com/lm-sys/FastChat#vicuna-weights
|
32 |
+
- APIs (OpenAI API, Huggingface API): https://github.com/lm-sys/FastChat/tree/main#api
|
33 |
+
|
34 |
+
## Training Details
|
35 |
+
|
36 |
+
Vicuna v1.5 is fine-tuned from Llama 2 with supervised instruction fine-tuning.
|
37 |
+
The training data is around 125K conversations collected from ShareGPT.com.
|
38 |
+
See more details in the "Training Details of Vicuna Models" section in the appendix of this [paper](https://arxiv.org/pdf/2306.05685.pdf).
|
39 |
+
|
40 |
+
## Evaluation
|
41 |
+
|
42 |
+

|
43 |
+
|
44 |
+
Vicuna is evaluated with standard benchmarks, human preference, and LLM-as-a-judge. See more details in this [paper](https://arxiv.org/pdf/2306.05685.pdf) and [leaderboard](https://huggingface.co/spaces/lmsys/chatbot-arena-leaderboard).
|
45 |
+
|
46 |
+
## Difference between different versions of Vicuna
|
47 |
+
|
48 |
+
See [vicuna_weights_version.md](https://github.com/lm-sys/FastChat/blob/main/docs/vicuna_weights_version.md)
|
VTimeLLM/checkpoints/vicuna-7b-v1.5/config.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "vicuna-7b-v1.5",
|
3 |
+
"architectures": [
|
4 |
+
"LlamaForCausalLM"
|
5 |
+
],
|
6 |
+
"bos_token_id": 1,
|
7 |
+
"eos_token_id": 2,
|
8 |
+
"hidden_act": "silu",
|
9 |
+
"hidden_size": 4096,
|
10 |
+
"initializer_range": 0.02,
|
11 |
+
"intermediate_size": 11008,
|
12 |
+
"max_position_embeddings": 4096,
|
13 |
+
"model_type": "llama",
|
14 |
+
"num_attention_heads": 32,
|
15 |
+
"num_hidden_layers": 32,
|
16 |
+
"num_key_value_heads": 32,
|
17 |
+
"pad_token_id": 0,
|
18 |
+
"pretraining_tp": 1,
|
19 |
+
"rms_norm_eps": 1e-05,
|
20 |
+
"rope_scaling": null,
|
21 |
+
"tie_word_embeddings": false,
|
22 |
+
"torch_dtype": "float16",
|
23 |
+
"transformers_version": "4.31.0",
|
24 |
+
"use_cache": true,
|
25 |
+
"vocab_size": 32000
|
26 |
+
}
|
VTimeLLM/checkpoints/vicuna-7b-v1.5/generation_config.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 1,
|
3 |
+
"eos_token_id": 2,
|
4 |
+
"max_length": 4096,
|
5 |
+
"pad_token_id": 0,
|
6 |
+
"temperature": 0.9,
|
7 |
+
"top_p": 0.6,
|
8 |
+
"transformers_version": "4.31.0"
|
9 |
+
}
|
VTimeLLM/checkpoints/vicuna-7b-v1.5/pytorch_model-00001-of-00002.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4133d2fcc5f31286881ea50806d95b721d016b533036a99dedce3f8fe88520e6
|
3 |
+
size 9976634558
|
VTimeLLM/checkpoints/vicuna-7b-v1.5/pytorch_model-00002-of-00002.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d261d3c35e92d3070d1e61ed821ebfca812a847d2a880757d82728acf005c5ac
|
3 |
+
size 3500315539
|
VTimeLLM/checkpoints/vicuna-7b-v1.5/pytorch_model.bin.index.json
ADDED
@@ -0,0 +1,330 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 13476839424
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "pytorch_model-00002-of-00002.bin",
|
7 |
+
"model.embed_tokens.weight": "pytorch_model-00001-of-00002.bin",
|
8 |
+
"model.layers.0.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
9 |
+
"model.layers.0.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
10 |
+
"model.layers.0.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
11 |
+
"model.layers.0.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
12 |
+
"model.layers.0.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
13 |
+
"model.layers.0.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
14 |
+
"model.layers.0.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
15 |
+
"model.layers.0.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
16 |
+
"model.layers.0.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
17 |
+
"model.layers.0.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
18 |
+
"model.layers.1.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
19 |
+
"model.layers.1.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
20 |
+
"model.layers.1.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
21 |
+
"model.layers.1.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
22 |
+
"model.layers.1.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
23 |
+
"model.layers.1.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
24 |
+
"model.layers.1.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
25 |
+
"model.layers.1.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
26 |
+
"model.layers.1.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
27 |
+
"model.layers.1.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
28 |
+
"model.layers.10.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
29 |
+
"model.layers.10.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
30 |
+
"model.layers.10.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
31 |
+
"model.layers.10.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
32 |
+
"model.layers.10.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
33 |
+
"model.layers.10.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
34 |
+
"model.layers.10.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
35 |
+
"model.layers.10.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
36 |
+
"model.layers.10.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
37 |
+
"model.layers.10.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
38 |
+
"model.layers.11.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
39 |
+
"model.layers.11.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
40 |
+
"model.layers.11.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
41 |
+
"model.layers.11.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
42 |
+
"model.layers.11.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
43 |
+
"model.layers.11.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
44 |
+
"model.layers.11.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
45 |
+
"model.layers.11.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
46 |
+
"model.layers.11.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
47 |
+
"model.layers.11.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
48 |
+
"model.layers.12.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
49 |
+
"model.layers.12.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
50 |
+
"model.layers.12.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
51 |
+
"model.layers.12.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
52 |
+
"model.layers.12.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
53 |
+
"model.layers.12.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
54 |
+
"model.layers.12.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
55 |
+
"model.layers.12.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
56 |
+
"model.layers.12.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
57 |
+
"model.layers.12.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
58 |
+
"model.layers.13.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
59 |
+
"model.layers.13.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
60 |
+
"model.layers.13.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
61 |
+
"model.layers.13.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
62 |
+
"model.layers.13.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
63 |
+
"model.layers.13.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
64 |
+
"model.layers.13.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
65 |
+
"model.layers.13.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
66 |
+
"model.layers.13.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
67 |
+
"model.layers.13.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
68 |
+
"model.layers.14.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
69 |
+
"model.layers.14.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
70 |
+
"model.layers.14.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
71 |
+
"model.layers.14.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
72 |
+
"model.layers.14.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
73 |
+
"model.layers.14.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
74 |
+
"model.layers.14.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
75 |
+
"model.layers.14.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
76 |
+
"model.layers.14.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
77 |
+
"model.layers.14.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
78 |
+
"model.layers.15.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
79 |
+
"model.layers.15.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
80 |
+
"model.layers.15.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
81 |
+
"model.layers.15.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
82 |
+
"model.layers.15.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
83 |
+
"model.layers.15.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
84 |
+
"model.layers.15.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
85 |
+
"model.layers.15.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
86 |
+
"model.layers.15.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
87 |
+
"model.layers.15.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
88 |
+
"model.layers.16.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
89 |
+
"model.layers.16.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
90 |
+
"model.layers.16.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
91 |
+
"model.layers.16.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
92 |
+
"model.layers.16.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
93 |
+
"model.layers.16.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
94 |
+
"model.layers.16.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
95 |
+
"model.layers.16.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
96 |
+
"model.layers.16.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
97 |
+
"model.layers.16.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
98 |
+
"model.layers.17.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
99 |
+
"model.layers.17.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
100 |
+
"model.layers.17.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
101 |
+
"model.layers.17.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
102 |
+
"model.layers.17.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
103 |
+
"model.layers.17.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
104 |
+
"model.layers.17.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
105 |
+
"model.layers.17.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
106 |
+
"model.layers.17.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
107 |
+
"model.layers.17.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
108 |
+
"model.layers.18.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
109 |
+
"model.layers.18.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
110 |
+
"model.layers.18.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
111 |
+
"model.layers.18.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
112 |
+
"model.layers.18.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
113 |
+
"model.layers.18.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
114 |
+
"model.layers.18.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
115 |
+
"model.layers.18.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
116 |
+
"model.layers.18.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
117 |
+
"model.layers.18.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
118 |
+
"model.layers.19.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
119 |
+
"model.layers.19.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
120 |
+
"model.layers.19.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
121 |
+
"model.layers.19.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
122 |
+
"model.layers.19.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
123 |
+
"model.layers.19.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
124 |
+
"model.layers.19.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
125 |
+
"model.layers.19.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
126 |
+
"model.layers.19.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
127 |
+
"model.layers.19.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
128 |
+
"model.layers.2.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
129 |
+
"model.layers.2.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
130 |
+
"model.layers.2.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
131 |
+
"model.layers.2.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
132 |
+
"model.layers.2.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
133 |
+
"model.layers.2.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
134 |
+
"model.layers.2.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
135 |
+
"model.layers.2.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
136 |
+
"model.layers.2.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
137 |
+
"model.layers.2.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
138 |
+
"model.layers.20.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
139 |
+
"model.layers.20.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
140 |
+
"model.layers.20.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
141 |
+
"model.layers.20.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
142 |
+
"model.layers.20.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
143 |
+
"model.layers.20.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
144 |
+
"model.layers.20.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
145 |
+
"model.layers.20.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
146 |
+
"model.layers.20.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
147 |
+
"model.layers.20.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
148 |
+
"model.layers.21.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
149 |
+
"model.layers.21.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
150 |
+
"model.layers.21.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
151 |
+
"model.layers.21.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
152 |
+
"model.layers.21.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
153 |
+
"model.layers.21.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
154 |
+
"model.layers.21.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
155 |
+
"model.layers.21.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
156 |
+
"model.layers.21.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
157 |
+
"model.layers.21.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
158 |
+
"model.layers.22.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
159 |
+
"model.layers.22.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
160 |
+
"model.layers.22.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
161 |
+
"model.layers.22.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
162 |
+
"model.layers.22.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
163 |
+
"model.layers.22.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
164 |
+
"model.layers.22.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
165 |
+
"model.layers.22.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
166 |
+
"model.layers.22.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
167 |
+
"model.layers.22.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
168 |
+
"model.layers.23.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
169 |
+
"model.layers.23.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
170 |
+
"model.layers.23.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
171 |
+
"model.layers.23.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
172 |
+
"model.layers.23.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
173 |
+
"model.layers.23.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
174 |
+
"model.layers.23.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
175 |
+
"model.layers.23.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
176 |
+
"model.layers.23.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
177 |
+
"model.layers.23.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
178 |
+
"model.layers.24.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
179 |
+
"model.layers.24.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
|
180 |
+
"model.layers.24.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
|
181 |
+
"model.layers.24.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
|
182 |
+
"model.layers.24.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
183 |
+
"model.layers.24.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
184 |
+
"model.layers.24.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
|
185 |
+
"model.layers.24.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
186 |
+
"model.layers.24.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
|
187 |
+
"model.layers.24.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
188 |
+
"model.layers.25.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
189 |
+
"model.layers.25.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
|
190 |
+
"model.layers.25.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
|
191 |
+
"model.layers.25.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
|
192 |
+
"model.layers.25.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
193 |
+
"model.layers.25.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
194 |
+
"model.layers.25.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
|
195 |
+
"model.layers.25.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
196 |
+
"model.layers.25.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
|
197 |
+
"model.layers.25.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
198 |
+
"model.layers.26.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
199 |
+
"model.layers.26.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
|
200 |
+
"model.layers.26.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
|
201 |
+
"model.layers.26.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
|
202 |
+
"model.layers.26.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
203 |
+
"model.layers.26.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
204 |
+
"model.layers.26.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
|
205 |
+
"model.layers.26.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
206 |
+
"model.layers.26.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
|
207 |
+
"model.layers.26.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
208 |
+
"model.layers.27.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
209 |
+
"model.layers.27.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
|
210 |
+
"model.layers.27.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
|
211 |
+
"model.layers.27.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
|
212 |
+
"model.layers.27.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
213 |
+
"model.layers.27.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
214 |
+
"model.layers.27.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
|
215 |
+
"model.layers.27.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
216 |
+
"model.layers.27.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
|
217 |
+
"model.layers.27.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
218 |
+
"model.layers.28.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
219 |
+
"model.layers.28.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
|
220 |
+
"model.layers.28.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
|
221 |
+
"model.layers.28.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
|
222 |
+
"model.layers.28.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
223 |
+
"model.layers.28.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
224 |
+
"model.layers.28.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
|
225 |
+
"model.layers.28.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
226 |
+
"model.layers.28.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
|
227 |
+
"model.layers.28.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
228 |
+
"model.layers.29.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
229 |
+
"model.layers.29.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
|
230 |
+
"model.layers.29.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
|
231 |
+
"model.layers.29.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
|
232 |
+
"model.layers.29.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
233 |
+
"model.layers.29.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
234 |
+
"model.layers.29.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
|
235 |
+
"model.layers.29.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
236 |
+
"model.layers.29.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
|
237 |
+
"model.layers.29.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
238 |
+
"model.layers.3.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
239 |
+
"model.layers.3.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
240 |
+
"model.layers.3.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
241 |
+
"model.layers.3.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
242 |
+
"model.layers.3.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
243 |
+
"model.layers.3.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
244 |
+
"model.layers.3.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
245 |
+
"model.layers.3.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
246 |
+
"model.layers.3.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
247 |
+
"model.layers.3.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
248 |
+
"model.layers.30.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
249 |
+
"model.layers.30.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
|
250 |
+
"model.layers.30.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
|
251 |
+
"model.layers.30.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
|
252 |
+
"model.layers.30.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
253 |
+
"model.layers.30.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
254 |
+
"model.layers.30.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
|
255 |
+
"model.layers.30.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
256 |
+
"model.layers.30.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
|
257 |
+
"model.layers.30.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
258 |
+
"model.layers.31.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
259 |
+
"model.layers.31.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
|
260 |
+
"model.layers.31.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
|
261 |
+
"model.layers.31.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
|
262 |
+
"model.layers.31.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
263 |
+
"model.layers.31.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
264 |
+
"model.layers.31.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
|
265 |
+
"model.layers.31.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
266 |
+
"model.layers.31.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
|
267 |
+
"model.layers.31.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
268 |
+
"model.layers.4.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
269 |
+
"model.layers.4.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
270 |
+
"model.layers.4.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
271 |
+
"model.layers.4.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
272 |
+
"model.layers.4.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
273 |
+
"model.layers.4.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
274 |
+
"model.layers.4.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
275 |
+
"model.layers.4.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
276 |
+
"model.layers.4.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
277 |
+
"model.layers.4.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
278 |
+
"model.layers.5.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
279 |
+
"model.layers.5.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
280 |
+
"model.layers.5.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
281 |
+
"model.layers.5.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
282 |
+
"model.layers.5.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
283 |
+
"model.layers.5.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
284 |
+
"model.layers.5.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
285 |
+
"model.layers.5.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
286 |
+
"model.layers.5.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
287 |
+
"model.layers.5.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
288 |
+
"model.layers.6.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
289 |
+
"model.layers.6.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
290 |
+
"model.layers.6.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
291 |
+
"model.layers.6.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
292 |
+
"model.layers.6.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
293 |
+
"model.layers.6.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
294 |
+
"model.layers.6.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
295 |
+
"model.layers.6.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
296 |
+
"model.layers.6.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
297 |
+
"model.layers.6.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
298 |
+
"model.layers.7.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
299 |
+
"model.layers.7.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
300 |
+
"model.layers.7.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
301 |
+
"model.layers.7.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
302 |
+
"model.layers.7.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
303 |
+
"model.layers.7.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
304 |
+
"model.layers.7.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
305 |
+
"model.layers.7.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
306 |
+
"model.layers.7.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
307 |
+
"model.layers.7.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
308 |
+
"model.layers.8.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
309 |
+
"model.layers.8.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
310 |
+
"model.layers.8.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
311 |
+
"model.layers.8.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
312 |
+
"model.layers.8.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
313 |
+
"model.layers.8.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
314 |
+
"model.layers.8.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
315 |
+
"model.layers.8.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
316 |
+
"model.layers.8.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
317 |
+
"model.layers.8.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
318 |
+
"model.layers.9.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
319 |
+
"model.layers.9.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
320 |
+
"model.layers.9.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
321 |
+
"model.layers.9.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
322 |
+
"model.layers.9.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
323 |
+
"model.layers.9.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
324 |
+
"model.layers.9.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
325 |
+
"model.layers.9.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
326 |
+
"model.layers.9.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
327 |
+
"model.layers.9.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
328 |
+
"model.norm.weight": "pytorch_model-00002-of-00002.bin"
|
329 |
+
}
|
330 |
+
}
|
VTimeLLM/checkpoints/vicuna-7b-v1.5/special_tokens_map.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "</s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": "<unk>",
|
17 |
+
"unk_token": {
|
18 |
+
"content": "<unk>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
}
|
24 |
+
}
|
VTimeLLM/checkpoints/vicuna-7b-v1.5/tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
|
3 |
+
size 499723
|
VTimeLLM/checkpoints/vicuna-7b-v1.5/tokenizer_config.json
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": true,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"bos_token": {
|
5 |
+
"__type": "AddedToken",
|
6 |
+
"content": "<s>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false
|
11 |
+
},
|
12 |
+
"clean_up_tokenization_spaces": false,
|
13 |
+
"eos_token": {
|
14 |
+
"__type": "AddedToken",
|
15 |
+
"content": "</s>",
|
16 |
+
"lstrip": false,
|
17 |
+
"normalized": false,
|
18 |
+
"rstrip": false,
|
19 |
+
"single_word": false
|
20 |
+
},
|
21 |
+
"legacy": false,
|
22 |
+
"model_max_length": 4096,
|
23 |
+
"pad_token": null,
|
24 |
+
"padding_side": "right",
|
25 |
+
"sp_model_kwargs": {},
|
26 |
+
"tokenizer_class": "LlamaTokenizer",
|
27 |
+
"unk_token": {
|
28 |
+
"__type": "AddedToken",
|
29 |
+
"content": "<unk>",
|
30 |
+
"lstrip": false,
|
31 |
+
"normalized": false,
|
32 |
+
"rstrip": false,
|
33 |
+
"single_word": false
|
34 |
+
}
|
35 |
+
}
|
VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-activitynet-stage4/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: ./checkpoints/vtimellm/vicuna-7b-v1.5
|
3 |
+
library_name: peft
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.13.2
|
VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-activitynet-stage4/adapter_config.json
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "./checkpoints/vtimellm/vicuna-7b-v1.5",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 128,
|
14 |
+
"lora_dropout": 0.05,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 64,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"o_proj",
|
24 |
+
"gate_proj",
|
25 |
+
"v_proj",
|
26 |
+
"up_proj",
|
27 |
+
"q_proj",
|
28 |
+
"down_proj",
|
29 |
+
"k_proj"
|
30 |
+
],
|
31 |
+
"task_type": "CAUSAL_LM",
|
32 |
+
"use_dora": false,
|
33 |
+
"use_rslora": false
|
34 |
+
}
|
VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-activitynet-stage4/adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9c5a1f385fa4355354e4397555aa4717926ce1691edce0cdcd36831f89148ae1
|
3 |
+
size 319876480
|
VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-activitynet-stage4/config.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "./checkpoints/vtimellm/vicuna-7b-v1.5",
|
3 |
+
"architectures": [
|
4 |
+
"LlamaForCausalLM"
|
5 |
+
],
|
6 |
+
"bos_token_id": 1,
|
7 |
+
"eos_token_id": 2,
|
8 |
+
"freeze_mm_mlp_adapter": true,
|
9 |
+
"hidden_act": "silu",
|
10 |
+
"hidden_size": 4096,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"intermediate_size": 11008,
|
13 |
+
"max_position_embeddings": 4096,
|
14 |
+
"model_type": "VTimeLLM",
|
15 |
+
"num_attention_heads": 32,
|
16 |
+
"num_hidden_layers": 32,
|
17 |
+
"num_key_value_heads": 32,
|
18 |
+
"pad_token_id": 0,
|
19 |
+
"pretraining_tp": 1,
|
20 |
+
"rms_norm_eps": 1e-05,
|
21 |
+
"rope_scaling": null,
|
22 |
+
"tie_word_embeddings": false,
|
23 |
+
"torch_dtype": "float16",
|
24 |
+
"transformers_version": "4.31.0",
|
25 |
+
"tune_mm_mlp_adapter": false,
|
26 |
+
"use_cache": true,
|
27 |
+
"vocab_size": 32000
|
28 |
+
}
|
VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-activitynet-stage4/log/capfirst.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-activitynet-stage4/log/metric/capfirst.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
soda_c: 6.48
|
2 |
+
METEOR: 7.38
|
3 |
+
CIDEr: 29.14
|
4 |
+
Num samples: 4885
|
VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-activitynet-stage4/log/metric/grounding.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
mIoU: 41.21
|
2 |
+
[email protected]: 58.55
|
3 |
+
[email protected]: 41.02
|
4 |
+
[email protected]: 23.81
|
5 |
+
Num samples: 17031
|
VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-activitynet-stage4/log/metric/timefirst.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
soda_c: 6.69
|
2 |
+
METEOR: 7.58
|
3 |
+
CIDEr: 28.33
|
4 |
+
Num samples: 4885
|
VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-activitynet-stage4/log/timefirst.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-activitynet-stage4/non_lora_trainables.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:60fb82c3660319e6d0b239950b20c28181e97f1ade117dc0660b40e2ad94a89b
|
3 |
+
size 912
|
VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-activitynet-stage4/trainer_state.json
ADDED
@@ -0,0 +1,2371 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 1.0,
|
5 |
+
"global_step": 391,
|
6 |
+
"is_hyper_param_search": false,
|
7 |
+
"is_local_process_zero": true,
|
8 |
+
"is_world_process_zero": true,
|
9 |
+
"log_history": [
|
10 |
+
{
|
11 |
+
"epoch": 0.0,
|
12 |
+
"learning_rate": 1.6666666666666667e-06,
|
13 |
+
"loss": 1.3645,
|
14 |
+
"step": 1
|
15 |
+
},
|
16 |
+
{
|
17 |
+
"epoch": 0.01,
|
18 |
+
"learning_rate": 3.3333333333333333e-06,
|
19 |
+
"loss": 1.3684,
|
20 |
+
"step": 2
|
21 |
+
},
|
22 |
+
{
|
23 |
+
"epoch": 0.01,
|
24 |
+
"learning_rate": 5e-06,
|
25 |
+
"loss": 1.2526,
|
26 |
+
"step": 3
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"epoch": 0.01,
|
30 |
+
"learning_rate": 6.666666666666667e-06,
|
31 |
+
"loss": 1.3323,
|
32 |
+
"step": 4
|
33 |
+
},
|
34 |
+
{
|
35 |
+
"epoch": 0.01,
|
36 |
+
"learning_rate": 8.333333333333334e-06,
|
37 |
+
"loss": 1.3115,
|
38 |
+
"step": 5
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"epoch": 0.02,
|
42 |
+
"learning_rate": 1e-05,
|
43 |
+
"loss": 1.2538,
|
44 |
+
"step": 6
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.02,
|
48 |
+
"learning_rate": 1.1666666666666668e-05,
|
49 |
+
"loss": 1.3902,
|
50 |
+
"step": 7
|
51 |
+
},
|
52 |
+
{
|
53 |
+
"epoch": 0.02,
|
54 |
+
"learning_rate": 1.3333333333333333e-05,
|
55 |
+
"loss": 1.2545,
|
56 |
+
"step": 8
|
57 |
+
},
|
58 |
+
{
|
59 |
+
"epoch": 0.02,
|
60 |
+
"learning_rate": 1.5000000000000002e-05,
|
61 |
+
"loss": 1.2489,
|
62 |
+
"step": 9
|
63 |
+
},
|
64 |
+
{
|
65 |
+
"epoch": 0.03,
|
66 |
+
"learning_rate": 1.6666666666666667e-05,
|
67 |
+
"loss": 1.2843,
|
68 |
+
"step": 10
|
69 |
+
},
|
70 |
+
{
|
71 |
+
"epoch": 0.03,
|
72 |
+
"learning_rate": 1.8333333333333333e-05,
|
73 |
+
"loss": 1.2717,
|
74 |
+
"step": 11
|
75 |
+
},
|
76 |
+
{
|
77 |
+
"epoch": 0.03,
|
78 |
+
"learning_rate": 2e-05,
|
79 |
+
"loss": 1.2765,
|
80 |
+
"step": 12
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"epoch": 0.03,
|
84 |
+
"learning_rate": 1.999965645087791e-05,
|
85 |
+
"loss": 1.1861,
|
86 |
+
"step": 13
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 0.04,
|
90 |
+
"learning_rate": 1.9998625827116828e-05,
|
91 |
+
"loss": 1.2493,
|
92 |
+
"step": 14
|
93 |
+
},
|
94 |
+
{
|
95 |
+
"epoch": 0.04,
|
96 |
+
"learning_rate": 1.9996908199530737e-05,
|
97 |
+
"loss": 1.1681,
|
98 |
+
"step": 15
|
99 |
+
},
|
100 |
+
{
|
101 |
+
"epoch": 0.04,
|
102 |
+
"learning_rate": 1.9994503686137526e-05,
|
103 |
+
"loss": 1.1345,
|
104 |
+
"step": 16
|
105 |
+
},
|
106 |
+
{
|
107 |
+
"epoch": 0.04,
|
108 |
+
"learning_rate": 1.999141245215089e-05,
|
109 |
+
"loss": 1.1421,
|
110 |
+
"step": 17
|
111 |
+
},
|
112 |
+
{
|
113 |
+
"epoch": 0.05,
|
114 |
+
"learning_rate": 1.998763470996897e-05,
|
115 |
+
"loss": 1.1518,
|
116 |
+
"step": 18
|
117 |
+
},
|
118 |
+
{
|
119 |
+
"epoch": 0.05,
|
120 |
+
"learning_rate": 1.998317071915977e-05,
|
121 |
+
"loss": 1.1099,
|
122 |
+
"step": 19
|
123 |
+
},
|
124 |
+
{
|
125 |
+
"epoch": 0.05,
|
126 |
+
"learning_rate": 1.9978020786443314e-05,
|
127 |
+
"loss": 1.1448,
|
128 |
+
"step": 20
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 0.05,
|
132 |
+
"learning_rate": 1.9972185265670573e-05,
|
133 |
+
"loss": 1.1106,
|
134 |
+
"step": 21
|
135 |
+
},
|
136 |
+
{
|
137 |
+
"epoch": 0.06,
|
138 |
+
"learning_rate": 1.9965664557799164e-05,
|
139 |
+
"loss": 1.099,
|
140 |
+
"step": 22
|
141 |
+
},
|
142 |
+
{
|
143 |
+
"epoch": 0.06,
|
144 |
+
"learning_rate": 1.9958459110865767e-05,
|
145 |
+
"loss": 1.0345,
|
146 |
+
"step": 23
|
147 |
+
},
|
148 |
+
{
|
149 |
+
"epoch": 0.06,
|
150 |
+
"learning_rate": 1.995056941995538e-05,
|
151 |
+
"loss": 1.105,
|
152 |
+
"step": 24
|
153 |
+
},
|
154 |
+
{
|
155 |
+
"epoch": 0.06,
|
156 |
+
"learning_rate": 1.9941996027167286e-05,
|
157 |
+
"loss": 1.0901,
|
158 |
+
"step": 25
|
159 |
+
},
|
160 |
+
{
|
161 |
+
"epoch": 0.07,
|
162 |
+
"learning_rate": 1.993273952157779e-05,
|
163 |
+
"loss": 1.0549,
|
164 |
+
"step": 26
|
165 |
+
},
|
166 |
+
{
|
167 |
+
"epoch": 0.07,
|
168 |
+
"learning_rate": 1.992280053919977e-05,
|
169 |
+
"loss": 1.0424,
|
170 |
+
"step": 27
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 0.07,
|
174 |
+
"learning_rate": 1.9912179762938962e-05,
|
175 |
+
"loss": 1.0631,
|
176 |
+
"step": 28
|
177 |
+
},
|
178 |
+
{
|
179 |
+
"epoch": 0.07,
|
180 |
+
"learning_rate": 1.9900877922547034e-05,
|
181 |
+
"loss": 1.0341,
|
182 |
+
"step": 29
|
183 |
+
},
|
184 |
+
{
|
185 |
+
"epoch": 0.08,
|
186 |
+
"learning_rate": 1.988889579457146e-05,
|
187 |
+
"loss": 1.0353,
|
188 |
+
"step": 30
|
189 |
+
},
|
190 |
+
{
|
191 |
+
"epoch": 0.08,
|
192 |
+
"learning_rate": 1.987623420230214e-05,
|
193 |
+
"loss": 1.0658,
|
194 |
+
"step": 31
|
195 |
+
},
|
196 |
+
{
|
197 |
+
"epoch": 0.08,
|
198 |
+
"learning_rate": 1.9862894015714866e-05,
|
199 |
+
"loss": 1.1181,
|
200 |
+
"step": 32
|
201 |
+
},
|
202 |
+
{
|
203 |
+
"epoch": 0.08,
|
204 |
+
"learning_rate": 1.984887615141151e-05,
|
205 |
+
"loss": 1.0635,
|
206 |
+
"step": 33
|
207 |
+
},
|
208 |
+
{
|
209 |
+
"epoch": 0.09,
|
210 |
+
"learning_rate": 1.9834181572557066e-05,
|
211 |
+
"loss": 1.1001,
|
212 |
+
"step": 34
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 0.09,
|
216 |
+
"learning_rate": 1.9818811288813475e-05,
|
217 |
+
"loss": 1.0327,
|
218 |
+
"step": 35
|
219 |
+
},
|
220 |
+
{
|
221 |
+
"epoch": 0.09,
|
222 |
+
"learning_rate": 1.9802766356270226e-05,
|
223 |
+
"loss": 1.0402,
|
224 |
+
"step": 36
|
225 |
+
},
|
226 |
+
{
|
227 |
+
"epoch": 0.09,
|
228 |
+
"learning_rate": 1.9786047877371823e-05,
|
229 |
+
"loss": 1.1246,
|
230 |
+
"step": 37
|
231 |
+
},
|
232 |
+
{
|
233 |
+
"epoch": 0.1,
|
234 |
+
"learning_rate": 1.976865700084201e-05,
|
235 |
+
"loss": 1.0863,
|
236 |
+
"step": 38
|
237 |
+
},
|
238 |
+
{
|
239 |
+
"epoch": 0.1,
|
240 |
+
"learning_rate": 1.975059492160486e-05,
|
241 |
+
"loss": 1.0068,
|
242 |
+
"step": 39
|
243 |
+
},
|
244 |
+
{
|
245 |
+
"epoch": 0.1,
|
246 |
+
"learning_rate": 1.9731862880702676e-05,
|
247 |
+
"loss": 0.9806,
|
248 |
+
"step": 40
|
249 |
+
},
|
250 |
+
{
|
251 |
+
"epoch": 0.1,
|
252 |
+
"learning_rate": 1.9712462165210687e-05,
|
253 |
+
"loss": 0.9874,
|
254 |
+
"step": 41
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"epoch": 0.11,
|
258 |
+
"learning_rate": 1.969239410814865e-05,
|
259 |
+
"loss": 1.0439,
|
260 |
+
"step": 42
|
261 |
+
},
|
262 |
+
{
|
263 |
+
"epoch": 0.11,
|
264 |
+
"learning_rate": 1.967166008838925e-05,
|
265 |
+
"loss": 1.0838,
|
266 |
+
"step": 43
|
267 |
+
},
|
268 |
+
{
|
269 |
+
"epoch": 0.11,
|
270 |
+
"learning_rate": 1.9650261530563336e-05,
|
271 |
+
"loss": 0.9728,
|
272 |
+
"step": 44
|
273 |
+
},
|
274 |
+
{
|
275 |
+
"epoch": 0.12,
|
276 |
+
"learning_rate": 1.9628199904962063e-05,
|
277 |
+
"loss": 1.0489,
|
278 |
+
"step": 45
|
279 |
+
},
|
280 |
+
{
|
281 |
+
"epoch": 0.12,
|
282 |
+
"learning_rate": 1.9605476727435854e-05,
|
283 |
+
"loss": 0.9422,
|
284 |
+
"step": 46
|
285 |
+
},
|
286 |
+
{
|
287 |
+
"epoch": 0.12,
|
288 |
+
"learning_rate": 1.9582093559290242e-05,
|
289 |
+
"loss": 0.993,
|
290 |
+
"step": 47
|
291 |
+
},
|
292 |
+
{
|
293 |
+
"epoch": 0.12,
|
294 |
+
"learning_rate": 1.9558052007178608e-05,
|
295 |
+
"loss": 0.9845,
|
296 |
+
"step": 48
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"epoch": 0.13,
|
300 |
+
"learning_rate": 1.9533353722991775e-05,
|
301 |
+
"loss": 1.0499,
|
302 |
+
"step": 49
|
303 |
+
},
|
304 |
+
{
|
305 |
+
"epoch": 0.13,
|
306 |
+
"learning_rate": 1.9508000403744516e-05,
|
307 |
+
"loss": 1.1251,
|
308 |
+
"step": 50
|
309 |
+
},
|
310 |
+
{
|
311 |
+
"epoch": 0.13,
|
312 |
+
"learning_rate": 1.948199379145894e-05,
|
313 |
+
"loss": 1.0186,
|
314 |
+
"step": 51
|
315 |
+
},
|
316 |
+
{
|
317 |
+
"epoch": 0.13,
|
318 |
+
"learning_rate": 1.9455335673044817e-05,
|
319 |
+
"loss": 1.0046,
|
320 |
+
"step": 52
|
321 |
+
},
|
322 |
+
{
|
323 |
+
"epoch": 0.14,
|
324 |
+
"learning_rate": 1.9428027880176775e-05,
|
325 |
+
"loss": 1.0096,
|
326 |
+
"step": 53
|
327 |
+
},
|
328 |
+
{
|
329 |
+
"epoch": 0.14,
|
330 |
+
"learning_rate": 1.9400072289168474e-05,
|
331 |
+
"loss": 1.0032,
|
332 |
+
"step": 54
|
333 |
+
},
|
334 |
+
{
|
335 |
+
"epoch": 0.14,
|
336 |
+
"learning_rate": 1.937147082084366e-05,
|
337 |
+
"loss": 0.99,
|
338 |
+
"step": 55
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"epoch": 0.14,
|
342 |
+
"learning_rate": 1.93422254404042e-05,
|
343 |
+
"loss": 1.0222,
|
344 |
+
"step": 56
|
345 |
+
},
|
346 |
+
{
|
347 |
+
"epoch": 0.15,
|
348 |
+
"learning_rate": 1.931233815729505e-05,
|
349 |
+
"loss": 0.9811,
|
350 |
+
"step": 57
|
351 |
+
},
|
352 |
+
{
|
353 |
+
"epoch": 0.15,
|
354 |
+
"learning_rate": 1.9281811025066184e-05,
|
355 |
+
"loss": 1.0403,
|
356 |
+
"step": 58
|
357 |
+
},
|
358 |
+
{
|
359 |
+
"epoch": 0.15,
|
360 |
+
"learning_rate": 1.9250646141231503e-05,
|
361 |
+
"loss": 0.9889,
|
362 |
+
"step": 59
|
363 |
+
},
|
364 |
+
{
|
365 |
+
"epoch": 0.15,
|
366 |
+
"learning_rate": 1.921884564712469e-05,
|
367 |
+
"loss": 0.9928,
|
368 |
+
"step": 60
|
369 |
+
},
|
370 |
+
{
|
371 |
+
"epoch": 0.16,
|
372 |
+
"learning_rate": 1.9186411727752124e-05,
|
373 |
+
"loss": 1.039,
|
374 |
+
"step": 61
|
375 |
+
},
|
376 |
+
{
|
377 |
+
"epoch": 0.16,
|
378 |
+
"learning_rate": 1.9153346611642706e-05,
|
379 |
+
"loss": 1.0045,
|
380 |
+
"step": 62
|
381 |
+
},
|
382 |
+
{
|
383 |
+
"epoch": 0.16,
|
384 |
+
"learning_rate": 1.911965257069476e-05,
|
385 |
+
"loss": 1.0537,
|
386 |
+
"step": 63
|
387 |
+
},
|
388 |
+
{
|
389 |
+
"epoch": 0.16,
|
390 |
+
"learning_rate": 1.908533192001992e-05,
|
391 |
+
"loss": 1.0228,
|
392 |
+
"step": 64
|
393 |
+
},
|
394 |
+
{
|
395 |
+
"epoch": 0.17,
|
396 |
+
"learning_rate": 1.9050387017784067e-05,
|
397 |
+
"loss": 1.0228,
|
398 |
+
"step": 65
|
399 |
+
},
|
400 |
+
{
|
401 |
+
"epoch": 0.17,
|
402 |
+
"learning_rate": 1.9014820265045304e-05,
|
403 |
+
"loss": 1.0907,
|
404 |
+
"step": 66
|
405 |
+
},
|
406 |
+
{
|
407 |
+
"epoch": 0.17,
|
408 |
+
"learning_rate": 1.8978634105588963e-05,
|
409 |
+
"loss": 1.0749,
|
410 |
+
"step": 67
|
411 |
+
},
|
412 |
+
{
|
413 |
+
"epoch": 0.17,
|
414 |
+
"learning_rate": 1.8941831025759705e-05,
|
415 |
+
"loss": 0.9774,
|
416 |
+
"step": 68
|
417 |
+
},
|
418 |
+
{
|
419 |
+
"epoch": 0.18,
|
420 |
+
"learning_rate": 1.8904413554290687e-05,
|
421 |
+
"loss": 1.062,
|
422 |
+
"step": 69
|
423 |
+
},
|
424 |
+
{
|
425 |
+
"epoch": 0.18,
|
426 |
+
"learning_rate": 1.88663842621298e-05,
|
427 |
+
"loss": 1.0407,
|
428 |
+
"step": 70
|
429 |
+
},
|
430 |
+
{
|
431 |
+
"epoch": 0.18,
|
432 |
+
"learning_rate": 1.8827745762263038e-05,
|
433 |
+
"loss": 0.9572,
|
434 |
+
"step": 71
|
435 |
+
},
|
436 |
+
{
|
437 |
+
"epoch": 0.18,
|
438 |
+
"learning_rate": 1.8788500709534934e-05,
|
439 |
+
"loss": 1.0043,
|
440 |
+
"step": 72
|
441 |
+
},
|
442 |
+
{
|
443 |
+
"epoch": 0.19,
|
444 |
+
"learning_rate": 1.8748651800466174e-05,
|
445 |
+
"loss": 1.0551,
|
446 |
+
"step": 73
|
447 |
+
},
|
448 |
+
{
|
449 |
+
"epoch": 0.19,
|
450 |
+
"learning_rate": 1.8708201773068303e-05,
|
451 |
+
"loss": 0.9995,
|
452 |
+
"step": 74
|
453 |
+
},
|
454 |
+
{
|
455 |
+
"epoch": 0.19,
|
456 |
+
"learning_rate": 1.8667153406655606e-05,
|
457 |
+
"loss": 0.9252,
|
458 |
+
"step": 75
|
459 |
+
},
|
460 |
+
{
|
461 |
+
"epoch": 0.19,
|
462 |
+
"learning_rate": 1.8625509521654122e-05,
|
463 |
+
"loss": 0.9991,
|
464 |
+
"step": 76
|
465 |
+
},
|
466 |
+
{
|
467 |
+
"epoch": 0.2,
|
468 |
+
"learning_rate": 1.8583272979407885e-05,
|
469 |
+
"loss": 1.0187,
|
470 |
+
"step": 77
|
471 |
+
},
|
472 |
+
{
|
473 |
+
"epoch": 0.2,
|
474 |
+
"learning_rate": 1.8540446681982295e-05,
|
475 |
+
"loss": 1.0334,
|
476 |
+
"step": 78
|
477 |
+
},
|
478 |
+
{
|
479 |
+
"epoch": 0.2,
|
480 |
+
"learning_rate": 1.849703357196473e-05,
|
481 |
+
"loss": 0.9912,
|
482 |
+
"step": 79
|
483 |
+
},
|
484 |
+
{
|
485 |
+
"epoch": 0.2,
|
486 |
+
"learning_rate": 1.8453036632262352e-05,
|
487 |
+
"loss": 0.9045,
|
488 |
+
"step": 80
|
489 |
+
},
|
490 |
+
{
|
491 |
+
"epoch": 0.21,
|
492 |
+
"learning_rate": 1.840845888589717e-05,
|
493 |
+
"loss": 1.0177,
|
494 |
+
"step": 81
|
495 |
+
},
|
496 |
+
{
|
497 |
+
"epoch": 0.21,
|
498 |
+
"learning_rate": 1.8363303395798305e-05,
|
499 |
+
"loss": 1.023,
|
500 |
+
"step": 82
|
501 |
+
},
|
502 |
+
{
|
503 |
+
"epoch": 0.21,
|
504 |
+
"learning_rate": 1.8317573264591553e-05,
|
505 |
+
"loss": 1.0425,
|
506 |
+
"step": 83
|
507 |
+
},
|
508 |
+
{
|
509 |
+
"epoch": 0.21,
|
510 |
+
"learning_rate": 1.82712716343862e-05,
|
511 |
+
"loss": 0.9558,
|
512 |
+
"step": 84
|
513 |
+
},
|
514 |
+
{
|
515 |
+
"epoch": 0.22,
|
516 |
+
"learning_rate": 1.822440168655913e-05,
|
517 |
+
"loss": 1.0546,
|
518 |
+
"step": 85
|
519 |
+
},
|
520 |
+
{
|
521 |
+
"epoch": 0.22,
|
522 |
+
"learning_rate": 1.8176966641536228e-05,
|
523 |
+
"loss": 1.0546,
|
524 |
+
"step": 86
|
525 |
+
},
|
526 |
+
{
|
527 |
+
"epoch": 0.22,
|
528 |
+
"learning_rate": 1.812896975857111e-05,
|
529 |
+
"loss": 0.9943,
|
530 |
+
"step": 87
|
531 |
+
},
|
532 |
+
{
|
533 |
+
"epoch": 0.23,
|
534 |
+
"learning_rate": 1.8080414335521174e-05,
|
535 |
+
"loss": 1.0328,
|
536 |
+
"step": 88
|
537 |
+
},
|
538 |
+
{
|
539 |
+
"epoch": 0.23,
|
540 |
+
"learning_rate": 1.803130370862101e-05,
|
541 |
+
"loss": 0.9891,
|
542 |
+
"step": 89
|
543 |
+
},
|
544 |
+
{
|
545 |
+
"epoch": 0.23,
|
546 |
+
"learning_rate": 1.798164125225318e-05,
|
547 |
+
"loss": 0.9626,
|
548 |
+
"step": 90
|
549 |
+
},
|
550 |
+
{
|
551 |
+
"epoch": 0.23,
|
552 |
+
"learning_rate": 1.793143037871633e-05,
|
553 |
+
"loss": 1.0983,
|
554 |
+
"step": 91
|
555 |
+
},
|
556 |
+
{
|
557 |
+
"epoch": 0.24,
|
558 |
+
"learning_rate": 1.788067453799077e-05,
|
559 |
+
"loss": 0.9924,
|
560 |
+
"step": 92
|
561 |
+
},
|
562 |
+
{
|
563 |
+
"epoch": 0.24,
|
564 |
+
"learning_rate": 1.78293772175014e-05,
|
565 |
+
"loss": 1.0694,
|
566 |
+
"step": 93
|
567 |
+
},
|
568 |
+
{
|
569 |
+
"epoch": 0.24,
|
570 |
+
"learning_rate": 1.7777541941878116e-05,
|
571 |
+
"loss": 1.0714,
|
572 |
+
"step": 94
|
573 |
+
},
|
574 |
+
{
|
575 |
+
"epoch": 0.24,
|
576 |
+
"learning_rate": 1.772517227271359e-05,
|
577 |
+
"loss": 1.0333,
|
578 |
+
"step": 95
|
579 |
+
},
|
580 |
+
{
|
581 |
+
"epoch": 0.25,
|
582 |
+
"learning_rate": 1.7672271808318603e-05,
|
583 |
+
"loss": 0.9615,
|
584 |
+
"step": 96
|
585 |
+
},
|
586 |
+
{
|
587 |
+
"epoch": 0.25,
|
588 |
+
"learning_rate": 1.7618844183474775e-05,
|
589 |
+
"loss": 1.0454,
|
590 |
+
"step": 97
|
591 |
+
},
|
592 |
+
{
|
593 |
+
"epoch": 0.25,
|
594 |
+
"learning_rate": 1.7564893069184824e-05,
|
595 |
+
"loss": 1.0001,
|
596 |
+
"step": 98
|
597 |
+
},
|
598 |
+
{
|
599 |
+
"epoch": 0.25,
|
600 |
+
"learning_rate": 1.7510422172420344e-05,
|
601 |
+
"loss": 1.0092,
|
602 |
+
"step": 99
|
603 |
+
},
|
604 |
+
{
|
605 |
+
"epoch": 0.26,
|
606 |
+
"learning_rate": 1.745543523586709e-05,
|
607 |
+
"loss": 0.9421,
|
608 |
+
"step": 100
|
609 |
+
},
|
610 |
+
{
|
611 |
+
"epoch": 0.26,
|
612 |
+
"learning_rate": 1.7399936037667807e-05,
|
613 |
+
"loss": 0.989,
|
614 |
+
"step": 101
|
615 |
+
},
|
616 |
+
{
|
617 |
+
"epoch": 0.26,
|
618 |
+
"learning_rate": 1.7343928391162673e-05,
|
619 |
+
"loss": 1.0102,
|
620 |
+
"step": 102
|
621 |
+
},
|
622 |
+
{
|
623 |
+
"epoch": 0.26,
|
624 |
+
"learning_rate": 1.7287416144627237e-05,
|
625 |
+
"loss": 1.0589,
|
626 |
+
"step": 103
|
627 |
+
},
|
628 |
+
{
|
629 |
+
"epoch": 0.27,
|
630 |
+
"learning_rate": 1.7230403181008032e-05,
|
631 |
+
"loss": 1.0357,
|
632 |
+
"step": 104
|
633 |
+
},
|
634 |
+
{
|
635 |
+
"epoch": 0.27,
|
636 |
+
"learning_rate": 1.7172893417655792e-05,
|
637 |
+
"loss": 0.9683,
|
638 |
+
"step": 105
|
639 |
+
},
|
640 |
+
{
|
641 |
+
"epoch": 0.27,
|
642 |
+
"learning_rate": 1.7114890806056245e-05,
|
643 |
+
"loss": 1.0118,
|
644 |
+
"step": 106
|
645 |
+
},
|
646 |
+
{
|
647 |
+
"epoch": 0.27,
|
648 |
+
"learning_rate": 1.705639933155866e-05,
|
649 |
+
"loss": 0.9315,
|
650 |
+
"step": 107
|
651 |
+
},
|
652 |
+
{
|
653 |
+
"epoch": 0.28,
|
654 |
+
"learning_rate": 1.6997423013101967e-05,
|
655 |
+
"loss": 0.976,
|
656 |
+
"step": 108
|
657 |
+
},
|
658 |
+
{
|
659 |
+
"epoch": 0.28,
|
660 |
+
"learning_rate": 1.6937965902938667e-05,
|
661 |
+
"loss": 0.9231,
|
662 |
+
"step": 109
|
663 |
+
},
|
664 |
+
{
|
665 |
+
"epoch": 0.28,
|
666 |
+
"learning_rate": 1.687803208635635e-05,
|
667 |
+
"loss": 1.0081,
|
668 |
+
"step": 110
|
669 |
+
},
|
670 |
+
{
|
671 |
+
"epoch": 0.28,
|
672 |
+
"learning_rate": 1.6817625681397035e-05,
|
673 |
+
"loss": 0.9469,
|
674 |
+
"step": 111
|
675 |
+
},
|
676 |
+
{
|
677 |
+
"epoch": 0.29,
|
678 |
+
"learning_rate": 1.6756750838574197e-05,
|
679 |
+
"loss": 0.9626,
|
680 |
+
"step": 112
|
681 |
+
},
|
682 |
+
{
|
683 |
+
"epoch": 0.29,
|
684 |
+
"learning_rate": 1.66954117405876e-05,
|
685 |
+
"loss": 1.0383,
|
686 |
+
"step": 113
|
687 |
+
},
|
688 |
+
{
|
689 |
+
"epoch": 0.29,
|
690 |
+
"learning_rate": 1.66336126020359e-05,
|
691 |
+
"loss": 0.9196,
|
692 |
+
"step": 114
|
693 |
+
},
|
694 |
+
{
|
695 |
+
"epoch": 0.29,
|
696 |
+
"learning_rate": 1.6571357669127047e-05,
|
697 |
+
"loss": 1.0651,
|
698 |
+
"step": 115
|
699 |
+
},
|
700 |
+
{
|
701 |
+
"epoch": 0.3,
|
702 |
+
"learning_rate": 1.650865121938656e-05,
|
703 |
+
"loss": 1.0137,
|
704 |
+
"step": 116
|
705 |
+
},
|
706 |
+
{
|
707 |
+
"epoch": 0.3,
|
708 |
+
"learning_rate": 1.644549756136358e-05,
|
709 |
+
"loss": 1.0439,
|
710 |
+
"step": 117
|
711 |
+
},
|
712 |
+
{
|
713 |
+
"epoch": 0.3,
|
714 |
+
"learning_rate": 1.6381901034334876e-05,
|
715 |
+
"loss": 1.02,
|
716 |
+
"step": 118
|
717 |
+
},
|
718 |
+
{
|
719 |
+
"epoch": 0.3,
|
720 |
+
"learning_rate": 1.631786600800664e-05,
|
721 |
+
"loss": 0.9758,
|
722 |
+
"step": 119
|
723 |
+
},
|
724 |
+
{
|
725 |
+
"epoch": 0.31,
|
726 |
+
"learning_rate": 1.6253396882214293e-05,
|
727 |
+
"loss": 0.9368,
|
728 |
+
"step": 120
|
729 |
+
},
|
730 |
+
{
|
731 |
+
"epoch": 0.31,
|
732 |
+
"learning_rate": 1.6188498086620148e-05,
|
733 |
+
"loss": 0.9571,
|
734 |
+
"step": 121
|
735 |
+
},
|
736 |
+
{
|
737 |
+
"epoch": 0.31,
|
738 |
+
"learning_rate": 1.6123174080409055e-05,
|
739 |
+
"loss": 0.9936,
|
740 |
+
"step": 122
|
741 |
+
},
|
742 |
+
{
|
743 |
+
"epoch": 0.31,
|
744 |
+
"learning_rate": 1.6057429351982016e-05,
|
745 |
+
"loss": 0.9667,
|
746 |
+
"step": 123
|
747 |
+
},
|
748 |
+
{
|
749 |
+
"epoch": 0.32,
|
750 |
+
"learning_rate": 1.5991268418647772e-05,
|
751 |
+
"loss": 0.9729,
|
752 |
+
"step": 124
|
753 |
+
},
|
754 |
+
{
|
755 |
+
"epoch": 0.32,
|
756 |
+
"learning_rate": 1.5924695826312434e-05,
|
757 |
+
"loss": 0.9807,
|
758 |
+
"step": 125
|
759 |
+
},
|
760 |
+
{
|
761 |
+
"epoch": 0.32,
|
762 |
+
"learning_rate": 1.585771614916714e-05,
|
763 |
+
"loss": 0.9502,
|
764 |
+
"step": 126
|
765 |
+
},
|
766 |
+
{
|
767 |
+
"epoch": 0.32,
|
768 |
+
"learning_rate": 1.5790333989373738e-05,
|
769 |
+
"loss": 1.0288,
|
770 |
+
"step": 127
|
771 |
+
},
|
772 |
+
{
|
773 |
+
"epoch": 0.33,
|
774 |
+
"learning_rate": 1.5722553976748605e-05,
|
775 |
+
"loss": 0.9315,
|
776 |
+
"step": 128
|
777 |
+
},
|
778 |
+
{
|
779 |
+
"epoch": 0.33,
|
780 |
+
"learning_rate": 1.5654380768444498e-05,
|
781 |
+
"loss": 0.9576,
|
782 |
+
"step": 129
|
783 |
+
},
|
784 |
+
{
|
785 |
+
"epoch": 0.33,
|
786 |
+
"learning_rate": 1.55858190486306e-05,
|
787 |
+
"loss": 0.9538,
|
788 |
+
"step": 130
|
789 |
+
},
|
790 |
+
{
|
791 |
+
"epoch": 0.34,
|
792 |
+
"learning_rate": 1.551687352817063e-05,
|
793 |
+
"loss": 1.0317,
|
794 |
+
"step": 131
|
795 |
+
},
|
796 |
+
{
|
797 |
+
"epoch": 0.34,
|
798 |
+
"learning_rate": 1.5447548944299203e-05,
|
799 |
+
"loss": 0.9839,
|
800 |
+
"step": 132
|
801 |
+
},
|
802 |
+
{
|
803 |
+
"epoch": 0.34,
|
804 |
+
"learning_rate": 1.53778500602963e-05,
|
805 |
+
"loss": 0.9363,
|
806 |
+
"step": 133
|
807 |
+
},
|
808 |
+
{
|
809 |
+
"epoch": 0.34,
|
810 |
+
"learning_rate": 1.5307781665160005e-05,
|
811 |
+
"loss": 0.9423,
|
812 |
+
"step": 134
|
813 |
+
},
|
814 |
+
{
|
815 |
+
"epoch": 0.35,
|
816 |
+
"learning_rate": 1.523734857327744e-05,
|
817 |
+
"loss": 0.9763,
|
818 |
+
"step": 135
|
819 |
+
},
|
820 |
+
{
|
821 |
+
"epoch": 0.35,
|
822 |
+
"learning_rate": 1.5166555624093986e-05,
|
823 |
+
"loss": 0.9833,
|
824 |
+
"step": 136
|
825 |
+
},
|
826 |
+
{
|
827 |
+
"epoch": 0.35,
|
828 |
+
"learning_rate": 1.5095407681780753e-05,
|
829 |
+
"loss": 0.9967,
|
830 |
+
"step": 137
|
831 |
+
},
|
832 |
+
{
|
833 |
+
"epoch": 0.35,
|
834 |
+
"learning_rate": 1.5023909634900362e-05,
|
835 |
+
"loss": 0.9926,
|
836 |
+
"step": 138
|
837 |
+
},
|
838 |
+
{
|
839 |
+
"epoch": 0.36,
|
840 |
+
"learning_rate": 1.4952066396071064e-05,
|
841 |
+
"loss": 0.9541,
|
842 |
+
"step": 139
|
843 |
+
},
|
844 |
+
{
|
845 |
+
"epoch": 0.36,
|
846 |
+
"learning_rate": 1.4879882901629181e-05,
|
847 |
+
"loss": 0.9846,
|
848 |
+
"step": 140
|
849 |
+
},
|
850 |
+
{
|
851 |
+
"epoch": 0.36,
|
852 |
+
"learning_rate": 1.4807364111289941e-05,
|
853 |
+
"loss": 1.0408,
|
854 |
+
"step": 141
|
855 |
+
},
|
856 |
+
{
|
857 |
+
"epoch": 0.36,
|
858 |
+
"learning_rate": 1.4734515007806698e-05,
|
859 |
+
"loss": 1.016,
|
860 |
+
"step": 142
|
861 |
+
},
|
862 |
+
{
|
863 |
+
"epoch": 0.37,
|
864 |
+
"learning_rate": 1.4661340596628564e-05,
|
865 |
+
"loss": 0.926,
|
866 |
+
"step": 143
|
867 |
+
},
|
868 |
+
{
|
869 |
+
"epoch": 0.37,
|
870 |
+
"learning_rate": 1.4587845905556477e-05,
|
871 |
+
"loss": 1.0554,
|
872 |
+
"step": 144
|
873 |
+
},
|
874 |
+
{
|
875 |
+
"epoch": 0.37,
|
876 |
+
"learning_rate": 1.4514035984397759e-05,
|
877 |
+
"loss": 0.9519,
|
878 |
+
"step": 145
|
879 |
+
},
|
880 |
+
{
|
881 |
+
"epoch": 0.37,
|
882 |
+
"learning_rate": 1.4439915904619136e-05,
|
883 |
+
"loss": 0.9837,
|
884 |
+
"step": 146
|
885 |
+
},
|
886 |
+
{
|
887 |
+
"epoch": 0.38,
|
888 |
+
"learning_rate": 1.4365490758998268e-05,
|
889 |
+
"loss": 0.9919,
|
890 |
+
"step": 147
|
891 |
+
},
|
892 |
+
{
|
893 |
+
"epoch": 0.38,
|
894 |
+
"learning_rate": 1.429076566127385e-05,
|
895 |
+
"loss": 1.0057,
|
896 |
+
"step": 148
|
897 |
+
},
|
898 |
+
{
|
899 |
+
"epoch": 0.38,
|
900 |
+
"learning_rate": 1.4215745745794224e-05,
|
901 |
+
"loss": 0.9869,
|
902 |
+
"step": 149
|
903 |
+
},
|
904 |
+
{
|
905 |
+
"epoch": 0.38,
|
906 |
+
"learning_rate": 1.4140436167164611e-05,
|
907 |
+
"loss": 0.9596,
|
908 |
+
"step": 150
|
909 |
+
},
|
910 |
+
{
|
911 |
+
"epoch": 0.39,
|
912 |
+
"learning_rate": 1.4064842099892934e-05,
|
913 |
+
"loss": 1.0185,
|
914 |
+
"step": 151
|
915 |
+
},
|
916 |
+
{
|
917 |
+
"epoch": 0.39,
|
918 |
+
"learning_rate": 1.3988968738034285e-05,
|
919 |
+
"loss": 0.9345,
|
920 |
+
"step": 152
|
921 |
+
},
|
922 |
+
{
|
923 |
+
"epoch": 0.39,
|
924 |
+
"learning_rate": 1.3912821294834033e-05,
|
925 |
+
"loss": 0.948,
|
926 |
+
"step": 153
|
927 |
+
},
|
928 |
+
{
|
929 |
+
"epoch": 0.39,
|
930 |
+
"learning_rate": 1.3836405002369631e-05,
|
931 |
+
"loss": 0.9397,
|
932 |
+
"step": 154
|
933 |
+
},
|
934 |
+
{
|
935 |
+
"epoch": 0.4,
|
936 |
+
"learning_rate": 1.3759725111191118e-05,
|
937 |
+
"loss": 1.0747,
|
938 |
+
"step": 155
|
939 |
+
},
|
940 |
+
{
|
941 |
+
"epoch": 0.4,
|
942 |
+
"learning_rate": 1.3682786889960354e-05,
|
943 |
+
"loss": 0.9821,
|
944 |
+
"step": 156
|
945 |
+
},
|
946 |
+
{
|
947 |
+
"epoch": 0.4,
|
948 |
+
"learning_rate": 1.3605595625089006e-05,
|
949 |
+
"loss": 0.9395,
|
950 |
+
"step": 157
|
951 |
+
},
|
952 |
+
{
|
953 |
+
"epoch": 0.4,
|
954 |
+
"learning_rate": 1.3528156620375335e-05,
|
955 |
+
"loss": 0.9629,
|
956 |
+
"step": 158
|
957 |
+
},
|
958 |
+
{
|
959 |
+
"epoch": 0.41,
|
960 |
+
"learning_rate": 1.3450475196639753e-05,
|
961 |
+
"loss": 0.9918,
|
962 |
+
"step": 159
|
963 |
+
},
|
964 |
+
{
|
965 |
+
"epoch": 0.41,
|
966 |
+
"learning_rate": 1.3372556691359251e-05,
|
967 |
+
"loss": 0.9241,
|
968 |
+
"step": 160
|
969 |
+
},
|
970 |
+
{
|
971 |
+
"epoch": 0.41,
|
972 |
+
"learning_rate": 1.3294406458300646e-05,
|
973 |
+
"loss": 0.9903,
|
974 |
+
"step": 161
|
975 |
+
},
|
976 |
+
{
|
977 |
+
"epoch": 0.41,
|
978 |
+
"learning_rate": 1.3216029867152724e-05,
|
979 |
+
"loss": 0.8982,
|
980 |
+
"step": 162
|
981 |
+
},
|
982 |
+
{
|
983 |
+
"epoch": 0.42,
|
984 |
+
"learning_rate": 1.3137432303157306e-05,
|
985 |
+
"loss": 0.9188,
|
986 |
+
"step": 163
|
987 |
+
},
|
988 |
+
{
|
989 |
+
"epoch": 0.42,
|
990 |
+
"learning_rate": 1.3058619166739212e-05,
|
991 |
+
"loss": 0.9866,
|
992 |
+
"step": 164
|
993 |
+
},
|
994 |
+
{
|
995 |
+
"epoch": 0.42,
|
996 |
+
"learning_rate": 1.2979595873135208e-05,
|
997 |
+
"loss": 0.8796,
|
998 |
+
"step": 165
|
999 |
+
},
|
1000 |
+
{
|
1001 |
+
"epoch": 0.42,
|
1002 |
+
"learning_rate": 1.290036785202192e-05,
|
1003 |
+
"loss": 0.9284,
|
1004 |
+
"step": 166
|
1005 |
+
},
|
1006 |
+
{
|
1007 |
+
"epoch": 0.43,
|
1008 |
+
"learning_rate": 1.2820940547142773e-05,
|
1009 |
+
"loss": 1.0485,
|
1010 |
+
"step": 167
|
1011 |
+
},
|
1012 |
+
{
|
1013 |
+
"epoch": 0.43,
|
1014 |
+
"learning_rate": 1.2741319415933934e-05,
|
1015 |
+
"loss": 1.0124,
|
1016 |
+
"step": 168
|
1017 |
+
},
|
1018 |
+
{
|
1019 |
+
"epoch": 0.43,
|
1020 |
+
"learning_rate": 1.2661509929149351e-05,
|
1021 |
+
"loss": 0.9924,
|
1022 |
+
"step": 169
|
1023 |
+
},
|
1024 |
+
{
|
1025 |
+
"epoch": 0.43,
|
1026 |
+
"learning_rate": 1.258151757048485e-05,
|
1027 |
+
"loss": 0.9507,
|
1028 |
+
"step": 170
|
1029 |
+
},
|
1030 |
+
{
|
1031 |
+
"epoch": 0.44,
|
1032 |
+
"learning_rate": 1.2501347836201343e-05,
|
1033 |
+
"loss": 0.9186,
|
1034 |
+
"step": 171
|
1035 |
+
},
|
1036 |
+
{
|
1037 |
+
"epoch": 0.44,
|
1038 |
+
"learning_rate": 1.2421006234747202e-05,
|
1039 |
+
"loss": 0.9893,
|
1040 |
+
"step": 172
|
1041 |
+
},
|
1042 |
+
{
|
1043 |
+
"epoch": 0.44,
|
1044 |
+
"learning_rate": 1.2340498286379757e-05,
|
1045 |
+
"loss": 1.0053,
|
1046 |
+
"step": 173
|
1047 |
+
},
|
1048 |
+
{
|
1049 |
+
"epoch": 0.45,
|
1050 |
+
"learning_rate": 1.2259829522786003e-05,
|
1051 |
+
"loss": 0.9122,
|
1052 |
+
"step": 174
|
1053 |
+
},
|
1054 |
+
{
|
1055 |
+
"epoch": 0.45,
|
1056 |
+
"learning_rate": 1.2179005486702518e-05,
|
1057 |
+
"loss": 0.9937,
|
1058 |
+
"step": 175
|
1059 |
+
},
|
1060 |
+
{
|
1061 |
+
"epoch": 0.45,
|
1062 |
+
"learning_rate": 1.2098031731534636e-05,
|
1063 |
+
"loss": 0.9701,
|
1064 |
+
"step": 176
|
1065 |
+
},
|
1066 |
+
{
|
1067 |
+
"epoch": 0.45,
|
1068 |
+
"learning_rate": 1.2016913820974855e-05,
|
1069 |
+
"loss": 1.0609,
|
1070 |
+
"step": 177
|
1071 |
+
},
|
1072 |
+
{
|
1073 |
+
"epoch": 0.46,
|
1074 |
+
"learning_rate": 1.1935657328620566e-05,
|
1075 |
+
"loss": 0.9231,
|
1076 |
+
"step": 178
|
1077 |
+
},
|
1078 |
+
{
|
1079 |
+
"epoch": 0.46,
|
1080 |
+
"learning_rate": 1.1854267837591095e-05,
|
1081 |
+
"loss": 0.9559,
|
1082 |
+
"step": 179
|
1083 |
+
},
|
1084 |
+
{
|
1085 |
+
"epoch": 0.46,
|
1086 |
+
"learning_rate": 1.1772750940144079e-05,
|
1087 |
+
"loss": 0.8567,
|
1088 |
+
"step": 180
|
1089 |
+
},
|
1090 |
+
{
|
1091 |
+
"epoch": 0.46,
|
1092 |
+
"learning_rate": 1.1691112237291225e-05,
|
1093 |
+
"loss": 0.9289,
|
1094 |
+
"step": 181
|
1095 |
+
},
|
1096 |
+
{
|
1097 |
+
"epoch": 0.47,
|
1098 |
+
"learning_rate": 1.1609357338413476e-05,
|
1099 |
+
"loss": 0.9079,
|
1100 |
+
"step": 182
|
1101 |
+
},
|
1102 |
+
{
|
1103 |
+
"epoch": 0.47,
|
1104 |
+
"learning_rate": 1.1527491860875574e-05,
|
1105 |
+
"loss": 0.9302,
|
1106 |
+
"step": 183
|
1107 |
+
},
|
1108 |
+
{
|
1109 |
+
"epoch": 0.47,
|
1110 |
+
"learning_rate": 1.1445521429640113e-05,
|
1111 |
+
"loss": 0.9477,
|
1112 |
+
"step": 184
|
1113 |
+
},
|
1114 |
+
{
|
1115 |
+
"epoch": 0.47,
|
1116 |
+
"learning_rate": 1.136345167688103e-05,
|
1117 |
+
"loss": 0.921,
|
1118 |
+
"step": 185
|
1119 |
+
},
|
1120 |
+
{
|
1121 |
+
"epoch": 0.48,
|
1122 |
+
"learning_rate": 1.1281288241596624e-05,
|
1123 |
+
"loss": 0.9945,
|
1124 |
+
"step": 186
|
1125 |
+
},
|
1126 |
+
{
|
1127 |
+
"epoch": 0.48,
|
1128 |
+
"learning_rate": 1.1199036769222104e-05,
|
1129 |
+
"loss": 0.9515,
|
1130 |
+
"step": 187
|
1131 |
+
},
|
1132 |
+
{
|
1133 |
+
"epoch": 0.48,
|
1134 |
+
"learning_rate": 1.1116702911241704e-05,
|
1135 |
+
"loss": 1.0157,
|
1136 |
+
"step": 188
|
1137 |
+
},
|
1138 |
+
{
|
1139 |
+
"epoch": 0.48,
|
1140 |
+
"learning_rate": 1.1034292324800342e-05,
|
1141 |
+
"loss": 0.9351,
|
1142 |
+
"step": 189
|
1143 |
+
},
|
1144 |
+
{
|
1145 |
+
"epoch": 0.49,
|
1146 |
+
"learning_rate": 1.0951810672314946e-05,
|
1147 |
+
"loss": 0.9656,
|
1148 |
+
"step": 190
|
1149 |
+
},
|
1150 |
+
{
|
1151 |
+
"epoch": 0.49,
|
1152 |
+
"learning_rate": 1.0869263621085375e-05,
|
1153 |
+
"loss": 0.9291,
|
1154 |
+
"step": 191
|
1155 |
+
},
|
1156 |
+
{
|
1157 |
+
"epoch": 0.49,
|
1158 |
+
"learning_rate": 1.0786656842905028e-05,
|
1159 |
+
"loss": 0.9146,
|
1160 |
+
"step": 192
|
1161 |
+
},
|
1162 |
+
{
|
1163 |
+
"epoch": 0.49,
|
1164 |
+
"learning_rate": 1.0703996013671126e-05,
|
1165 |
+
"loss": 0.9352,
|
1166 |
+
"step": 193
|
1167 |
+
},
|
1168 |
+
{
|
1169 |
+
"epoch": 0.5,
|
1170 |
+
"learning_rate": 1.0621286812994733e-05,
|
1171 |
+
"loss": 0.9889,
|
1172 |
+
"step": 194
|
1173 |
+
},
|
1174 |
+
{
|
1175 |
+
"epoch": 0.5,
|
1176 |
+
"learning_rate": 1.0538534923810506e-05,
|
1177 |
+
"loss": 0.9745,
|
1178 |
+
"step": 195
|
1179 |
+
},
|
1180 |
+
{
|
1181 |
+
"epoch": 0.5,
|
1182 |
+
"learning_rate": 1.0455746031986215e-05,
|
1183 |
+
"loss": 0.9237,
|
1184 |
+
"step": 196
|
1185 |
+
},
|
1186 |
+
{
|
1187 |
+
"epoch": 0.5,
|
1188 |
+
"learning_rate": 1.0372925825932095e-05,
|
1189 |
+
"loss": 0.9206,
|
1190 |
+
"step": 197
|
1191 |
+
},
|
1192 |
+
{
|
1193 |
+
"epoch": 0.51,
|
1194 |
+
"learning_rate": 1.029007999620995e-05,
|
1195 |
+
"loss": 0.9615,
|
1196 |
+
"step": 198
|
1197 |
+
},
|
1198 |
+
{
|
1199 |
+
"epoch": 0.51,
|
1200 |
+
"learning_rate": 1.0207214235142197e-05,
|
1201 |
+
"loss": 1.0152,
|
1202 |
+
"step": 199
|
1203 |
+
},
|
1204 |
+
{
|
1205 |
+
"epoch": 0.51,
|
1206 |
+
"learning_rate": 1.0124334236420735e-05,
|
1207 |
+
"loss": 1.0123,
|
1208 |
+
"step": 200
|
1209 |
+
},
|
1210 |
+
{
|
1211 |
+
"epoch": 0.51,
|
1212 |
+
"learning_rate": 1.0041445694715717e-05,
|
1213 |
+
"loss": 0.9476,
|
1214 |
+
"step": 201
|
1215 |
+
},
|
1216 |
+
{
|
1217 |
+
"epoch": 0.52,
|
1218 |
+
"learning_rate": 9.95855430528429e-06,
|
1219 |
+
"loss": 0.9966,
|
1220 |
+
"step": 202
|
1221 |
+
},
|
1222 |
+
{
|
1223 |
+
"epoch": 0.52,
|
1224 |
+
"learning_rate": 9.87566576357927e-06,
|
1225 |
+
"loss": 1.0205,
|
1226 |
+
"step": 203
|
1227 |
+
},
|
1228 |
+
{
|
1229 |
+
"epoch": 0.52,
|
1230 |
+
"learning_rate": 9.792785764857803e-06,
|
1231 |
+
"loss": 1.0027,
|
1232 |
+
"step": 204
|
1233 |
+
},
|
1234 |
+
{
|
1235 |
+
"epoch": 0.52,
|
1236 |
+
"learning_rate": 9.709920003790054e-06,
|
1237 |
+
"loss": 0.9461,
|
1238 |
+
"step": 205
|
1239 |
+
},
|
1240 |
+
{
|
1241 |
+
"epoch": 0.53,
|
1242 |
+
"learning_rate": 9.627074174067909e-06,
|
1243 |
+
"loss": 1.0176,
|
1244 |
+
"step": 206
|
1245 |
+
},
|
1246 |
+
{
|
1247 |
+
"epoch": 0.53,
|
1248 |
+
"learning_rate": 9.544253968013785e-06,
|
1249 |
+
"loss": 0.9801,
|
1250 |
+
"step": 207
|
1251 |
+
},
|
1252 |
+
{
|
1253 |
+
"epoch": 0.53,
|
1254 |
+
"learning_rate": 9.461465076189499e-06,
|
1255 |
+
"loss": 0.9844,
|
1256 |
+
"step": 208
|
1257 |
+
},
|
1258 |
+
{
|
1259 |
+
"epoch": 0.53,
|
1260 |
+
"learning_rate": 9.37871318700527e-06,
|
1261 |
+
"loss": 0.9968,
|
1262 |
+
"step": 209
|
1263 |
+
},
|
1264 |
+
{
|
1265 |
+
"epoch": 0.54,
|
1266 |
+
"learning_rate": 9.296003986328876e-06,
|
1267 |
+
"loss": 0.9599,
|
1268 |
+
"step": 210
|
1269 |
+
},
|
1270 |
+
{
|
1271 |
+
"epoch": 0.54,
|
1272 |
+
"learning_rate": 9.213343157094975e-06,
|
1273 |
+
"loss": 0.8952,
|
1274 |
+
"step": 211
|
1275 |
+
},
|
1276 |
+
{
|
1277 |
+
"epoch": 0.54,
|
1278 |
+
"learning_rate": 9.130736378914626e-06,
|
1279 |
+
"loss": 0.9511,
|
1280 |
+
"step": 212
|
1281 |
+
},
|
1282 |
+
{
|
1283 |
+
"epoch": 0.54,
|
1284 |
+
"learning_rate": 9.048189327685056e-06,
|
1285 |
+
"loss": 0.8909,
|
1286 |
+
"step": 213
|
1287 |
+
},
|
1288 |
+
{
|
1289 |
+
"epoch": 0.55,
|
1290 |
+
"learning_rate": 8.965707675199661e-06,
|
1291 |
+
"loss": 0.9814,
|
1292 |
+
"step": 214
|
1293 |
+
},
|
1294 |
+
{
|
1295 |
+
"epoch": 0.55,
|
1296 |
+
"learning_rate": 8.883297088758298e-06,
|
1297 |
+
"loss": 0.9199,
|
1298 |
+
"step": 215
|
1299 |
+
},
|
1300 |
+
{
|
1301 |
+
"epoch": 0.55,
|
1302 |
+
"learning_rate": 8.800963230777895e-06,
|
1303 |
+
"loss": 0.9979,
|
1304 |
+
"step": 216
|
1305 |
+
},
|
1306 |
+
{
|
1307 |
+
"epoch": 0.55,
|
1308 |
+
"learning_rate": 8.718711758403382e-06,
|
1309 |
+
"loss": 0.9897,
|
1310 |
+
"step": 217
|
1311 |
+
},
|
1312 |
+
{
|
1313 |
+
"epoch": 0.56,
|
1314 |
+
"learning_rate": 8.636548323118974e-06,
|
1315 |
+
"loss": 0.9501,
|
1316 |
+
"step": 218
|
1317 |
+
},
|
1318 |
+
{
|
1319 |
+
"epoch": 0.56,
|
1320 |
+
"learning_rate": 8.554478570359888e-06,
|
1321 |
+
"loss": 0.8839,
|
1322 |
+
"step": 219
|
1323 |
+
},
|
1324 |
+
{
|
1325 |
+
"epoch": 0.56,
|
1326 |
+
"learning_rate": 8.472508139124427e-06,
|
1327 |
+
"loss": 0.9394,
|
1328 |
+
"step": 220
|
1329 |
+
},
|
1330 |
+
{
|
1331 |
+
"epoch": 0.57,
|
1332 |
+
"learning_rate": 8.390642661586527e-06,
|
1333 |
+
"loss": 0.9877,
|
1334 |
+
"step": 221
|
1335 |
+
},
|
1336 |
+
{
|
1337 |
+
"epoch": 0.57,
|
1338 |
+
"learning_rate": 8.308887762708776e-06,
|
1339 |
+
"loss": 0.969,
|
1340 |
+
"step": 222
|
1341 |
+
},
|
1342 |
+
{
|
1343 |
+
"epoch": 0.57,
|
1344 |
+
"learning_rate": 8.227249059855926e-06,
|
1345 |
+
"loss": 0.8753,
|
1346 |
+
"step": 223
|
1347 |
+
},
|
1348 |
+
{
|
1349 |
+
"epoch": 0.57,
|
1350 |
+
"learning_rate": 8.145732162408906e-06,
|
1351 |
+
"loss": 1.015,
|
1352 |
+
"step": 224
|
1353 |
+
},
|
1354 |
+
{
|
1355 |
+
"epoch": 0.58,
|
1356 |
+
"learning_rate": 8.064342671379436e-06,
|
1357 |
+
"loss": 0.9764,
|
1358 |
+
"step": 225
|
1359 |
+
},
|
1360 |
+
{
|
1361 |
+
"epoch": 0.58,
|
1362 |
+
"learning_rate": 7.983086179025148e-06,
|
1363 |
+
"loss": 0.9725,
|
1364 |
+
"step": 226
|
1365 |
+
},
|
1366 |
+
{
|
1367 |
+
"epoch": 0.58,
|
1368 |
+
"learning_rate": 7.901968268465367e-06,
|
1369 |
+
"loss": 0.8926,
|
1370 |
+
"step": 227
|
1371 |
+
},
|
1372 |
+
{
|
1373 |
+
"epoch": 0.58,
|
1374 |
+
"learning_rate": 7.820994513297484e-06,
|
1375 |
+
"loss": 0.9523,
|
1376 |
+
"step": 228
|
1377 |
+
},
|
1378 |
+
{
|
1379 |
+
"epoch": 0.59,
|
1380 |
+
"learning_rate": 7.740170477214004e-06,
|
1381 |
+
"loss": 1.0031,
|
1382 |
+
"step": 229
|
1383 |
+
},
|
1384 |
+
{
|
1385 |
+
"epoch": 0.59,
|
1386 |
+
"learning_rate": 7.659501713620247e-06,
|
1387 |
+
"loss": 1.0411,
|
1388 |
+
"step": 230
|
1389 |
+
},
|
1390 |
+
{
|
1391 |
+
"epoch": 0.59,
|
1392 |
+
"learning_rate": 7.578993765252799e-06,
|
1393 |
+
"loss": 0.9371,
|
1394 |
+
"step": 231
|
1395 |
+
},
|
1396 |
+
{
|
1397 |
+
"epoch": 0.59,
|
1398 |
+
"learning_rate": 7.498652163798659e-06,
|
1399 |
+
"loss": 0.9316,
|
1400 |
+
"step": 232
|
1401 |
+
},
|
1402 |
+
{
|
1403 |
+
"epoch": 0.6,
|
1404 |
+
"learning_rate": 7.418482429515153e-06,
|
1405 |
+
"loss": 0.9344,
|
1406 |
+
"step": 233
|
1407 |
+
},
|
1408 |
+
{
|
1409 |
+
"epoch": 0.6,
|
1410 |
+
"learning_rate": 7.338490070850649e-06,
|
1411 |
+
"loss": 0.9947,
|
1412 |
+
"step": 234
|
1413 |
+
},
|
1414 |
+
{
|
1415 |
+
"epoch": 0.6,
|
1416 |
+
"learning_rate": 7.258680584066069e-06,
|
1417 |
+
"loss": 0.9614,
|
1418 |
+
"step": 235
|
1419 |
+
},
|
1420 |
+
{
|
1421 |
+
"epoch": 0.6,
|
1422 |
+
"learning_rate": 7.17905945285723e-06,
|
1423 |
+
"loss": 1.008,
|
1424 |
+
"step": 236
|
1425 |
+
},
|
1426 |
+
{
|
1427 |
+
"epoch": 0.61,
|
1428 |
+
"learning_rate": 7.09963214797808e-06,
|
1429 |
+
"loss": 0.9241,
|
1430 |
+
"step": 237
|
1431 |
+
},
|
1432 |
+
{
|
1433 |
+
"epoch": 0.61,
|
1434 |
+
"learning_rate": 7.020404126864795e-06,
|
1435 |
+
"loss": 0.9262,
|
1436 |
+
"step": 238
|
1437 |
+
},
|
1438 |
+
{
|
1439 |
+
"epoch": 0.61,
|
1440 |
+
"learning_rate": 6.94138083326079e-06,
|
1441 |
+
"loss": 0.9748,
|
1442 |
+
"step": 239
|
1443 |
+
},
|
1444 |
+
{
|
1445 |
+
"epoch": 0.61,
|
1446 |
+
"learning_rate": 6.862567696842694e-06,
|
1447 |
+
"loss": 1.0857,
|
1448 |
+
"step": 240
|
1449 |
+
},
|
1450 |
+
{
|
1451 |
+
"epoch": 0.62,
|
1452 |
+
"learning_rate": 6.78397013284728e-06,
|
1453 |
+
"loss": 0.9903,
|
1454 |
+
"step": 241
|
1455 |
+
},
|
1456 |
+
{
|
1457 |
+
"epoch": 0.62,
|
1458 |
+
"learning_rate": 6.705593541699358e-06,
|
1459 |
+
"loss": 0.9693,
|
1460 |
+
"step": 242
|
1461 |
+
},
|
1462 |
+
{
|
1463 |
+
"epoch": 0.62,
|
1464 |
+
"learning_rate": 6.627443308640749e-06,
|
1465 |
+
"loss": 0.8737,
|
1466 |
+
"step": 243
|
1467 |
+
},
|
1468 |
+
{
|
1469 |
+
"epoch": 0.62,
|
1470 |
+
"learning_rate": 6.549524803360249e-06,
|
1471 |
+
"loss": 0.979,
|
1472 |
+
"step": 244
|
1473 |
+
},
|
1474 |
+
{
|
1475 |
+
"epoch": 0.63,
|
1476 |
+
"learning_rate": 6.4718433796246685e-06,
|
1477 |
+
"loss": 0.8629,
|
1478 |
+
"step": 245
|
1479 |
+
},
|
1480 |
+
{
|
1481 |
+
"epoch": 0.63,
|
1482 |
+
"learning_rate": 6.394404374910996e-06,
|
1483 |
+
"loss": 0.9543,
|
1484 |
+
"step": 246
|
1485 |
+
},
|
1486 |
+
{
|
1487 |
+
"epoch": 0.63,
|
1488 |
+
"learning_rate": 6.317213110039652e-06,
|
1489 |
+
"loss": 0.9894,
|
1490 |
+
"step": 247
|
1491 |
+
},
|
1492 |
+
{
|
1493 |
+
"epoch": 0.63,
|
1494 |
+
"learning_rate": 6.240274888808884e-06,
|
1495 |
+
"loss": 0.9522,
|
1496 |
+
"step": 248
|
1497 |
+
},
|
1498 |
+
{
|
1499 |
+
"epoch": 0.64,
|
1500 |
+
"learning_rate": 6.16359499763037e-06,
|
1501 |
+
"loss": 0.9717,
|
1502 |
+
"step": 249
|
1503 |
+
},
|
1504 |
+
{
|
1505 |
+
"epoch": 0.64,
|
1506 |
+
"learning_rate": 6.087178705165969e-06,
|
1507 |
+
"loss": 0.9822,
|
1508 |
+
"step": 250
|
1509 |
+
},
|
1510 |
+
{
|
1511 |
+
"epoch": 0.64,
|
1512 |
+
"learning_rate": 6.011031261965716e-06,
|
1513 |
+
"loss": 0.9542,
|
1514 |
+
"step": 251
|
1515 |
+
},
|
1516 |
+
{
|
1517 |
+
"epoch": 0.64,
|
1518 |
+
"learning_rate": 5.9351579001070655e-06,
|
1519 |
+
"loss": 0.952,
|
1520 |
+
"step": 252
|
1521 |
+
},
|
1522 |
+
{
|
1523 |
+
"epoch": 0.65,
|
1524 |
+
"learning_rate": 5.859563832835393e-06,
|
1525 |
+
"loss": 0.9413,
|
1526 |
+
"step": 253
|
1527 |
+
},
|
1528 |
+
{
|
1529 |
+
"epoch": 0.65,
|
1530 |
+
"learning_rate": 5.784254254205779e-06,
|
1531 |
+
"loss": 0.9441,
|
1532 |
+
"step": 254
|
1533 |
+
},
|
1534 |
+
{
|
1535 |
+
"epoch": 0.65,
|
1536 |
+
"learning_rate": 5.70923433872615e-06,
|
1537 |
+
"loss": 0.9281,
|
1538 |
+
"step": 255
|
1539 |
+
},
|
1540 |
+
{
|
1541 |
+
"epoch": 0.65,
|
1542 |
+
"learning_rate": 5.634509241001736e-06,
|
1543 |
+
"loss": 0.9656,
|
1544 |
+
"step": 256
|
1545 |
+
},
|
1546 |
+
{
|
1547 |
+
"epoch": 0.66,
|
1548 |
+
"learning_rate": 5.5600840953808675e-06,
|
1549 |
+
"loss": 0.9446,
|
1550 |
+
"step": 257
|
1551 |
+
},
|
1552 |
+
{
|
1553 |
+
"epoch": 0.66,
|
1554 |
+
"learning_rate": 5.485964015602243e-06,
|
1555 |
+
"loss": 0.9683,
|
1556 |
+
"step": 258
|
1557 |
+
},
|
1558 |
+
{
|
1559 |
+
"epoch": 0.66,
|
1560 |
+
"learning_rate": 5.412154094443527e-06,
|
1561 |
+
"loss": 0.9644,
|
1562 |
+
"step": 259
|
1563 |
+
},
|
1564 |
+
{
|
1565 |
+
"epoch": 0.66,
|
1566 |
+
"learning_rate": 5.338659403371438e-06,
|
1567 |
+
"loss": 0.9037,
|
1568 |
+
"step": 260
|
1569 |
+
},
|
1570 |
+
{
|
1571 |
+
"epoch": 0.67,
|
1572 |
+
"learning_rate": 5.265484992193302e-06,
|
1573 |
+
"loss": 0.9659,
|
1574 |
+
"step": 261
|
1575 |
+
},
|
1576 |
+
{
|
1577 |
+
"epoch": 0.67,
|
1578 |
+
"learning_rate": 5.19263588871006e-06,
|
1579 |
+
"loss": 0.8981,
|
1580 |
+
"step": 262
|
1581 |
+
},
|
1582 |
+
{
|
1583 |
+
"epoch": 0.67,
|
1584 |
+
"learning_rate": 5.120117098370824e-06,
|
1585 |
+
"loss": 0.9814,
|
1586 |
+
"step": 263
|
1587 |
+
},
|
1588 |
+
{
|
1589 |
+
"epoch": 0.68,
|
1590 |
+
"learning_rate": 5.047933603928936e-06,
|
1591 |
+
"loss": 0.9813,
|
1592 |
+
"step": 264
|
1593 |
+
},
|
1594 |
+
{
|
1595 |
+
"epoch": 0.68,
|
1596 |
+
"learning_rate": 4.976090365099638e-06,
|
1597 |
+
"loss": 0.9629,
|
1598 |
+
"step": 265
|
1599 |
+
},
|
1600 |
+
{
|
1601 |
+
"epoch": 0.68,
|
1602 |
+
"learning_rate": 4.904592318219249e-06,
|
1603 |
+
"loss": 0.9296,
|
1604 |
+
"step": 266
|
1605 |
+
},
|
1606 |
+
{
|
1607 |
+
"epoch": 0.68,
|
1608 |
+
"learning_rate": 4.833444375906013e-06,
|
1609 |
+
"loss": 0.979,
|
1610 |
+
"step": 267
|
1611 |
+
},
|
1612 |
+
{
|
1613 |
+
"epoch": 0.69,
|
1614 |
+
"learning_rate": 4.762651426722566e-06,
|
1615 |
+
"loss": 0.9557,
|
1616 |
+
"step": 268
|
1617 |
+
},
|
1618 |
+
{
|
1619 |
+
"epoch": 0.69,
|
1620 |
+
"learning_rate": 4.6922183348399996e-06,
|
1621 |
+
"loss": 0.9559,
|
1622 |
+
"step": 269
|
1623 |
+
},
|
1624 |
+
{
|
1625 |
+
"epoch": 0.69,
|
1626 |
+
"learning_rate": 4.622149939703704e-06,
|
1627 |
+
"loss": 0.9052,
|
1628 |
+
"step": 270
|
1629 |
+
},
|
1630 |
+
{
|
1631 |
+
"epoch": 0.69,
|
1632 |
+
"learning_rate": 4.552451055700802e-06,
|
1633 |
+
"loss": 0.9409,
|
1634 |
+
"step": 271
|
1635 |
+
},
|
1636 |
+
{
|
1637 |
+
"epoch": 0.7,
|
1638 |
+
"learning_rate": 4.483126471829371e-06,
|
1639 |
+
"loss": 0.9912,
|
1640 |
+
"step": 272
|
1641 |
+
},
|
1642 |
+
{
|
1643 |
+
"epoch": 0.7,
|
1644 |
+
"learning_rate": 4.414180951369405e-06,
|
1645 |
+
"loss": 0.9163,
|
1646 |
+
"step": 273
|
1647 |
+
},
|
1648 |
+
{
|
1649 |
+
"epoch": 0.7,
|
1650 |
+
"learning_rate": 4.345619231555503e-06,
|
1651 |
+
"loss": 1.0064,
|
1652 |
+
"step": 274
|
1653 |
+
},
|
1654 |
+
{
|
1655 |
+
"epoch": 0.7,
|
1656 |
+
"learning_rate": 4.277446023251401e-06,
|
1657 |
+
"loss": 0.9915,
|
1658 |
+
"step": 275
|
1659 |
+
},
|
1660 |
+
{
|
1661 |
+
"epoch": 0.71,
|
1662 |
+
"learning_rate": 4.209666010626262e-06,
|
1663 |
+
"loss": 0.9288,
|
1664 |
+
"step": 276
|
1665 |
+
},
|
1666 |
+
{
|
1667 |
+
"epoch": 0.71,
|
1668 |
+
"learning_rate": 4.142283850832862e-06,
|
1669 |
+
"loss": 0.8852,
|
1670 |
+
"step": 277
|
1671 |
+
},
|
1672 |
+
{
|
1673 |
+
"epoch": 0.71,
|
1674 |
+
"learning_rate": 4.0753041736875675e-06,
|
1675 |
+
"loss": 0.9018,
|
1676 |
+
"step": 278
|
1677 |
+
},
|
1678 |
+
{
|
1679 |
+
"epoch": 0.71,
|
1680 |
+
"learning_rate": 4.008731581352229e-06,
|
1681 |
+
"loss": 0.9481,
|
1682 |
+
"step": 279
|
1683 |
+
},
|
1684 |
+
{
|
1685 |
+
"epoch": 0.72,
|
1686 |
+
"learning_rate": 3.942570648017988e-06,
|
1687 |
+
"loss": 0.9763,
|
1688 |
+
"step": 280
|
1689 |
+
},
|
1690 |
+
{
|
1691 |
+
"epoch": 0.72,
|
1692 |
+
"learning_rate": 3.876825919590944e-06,
|
1693 |
+
"loss": 0.9281,
|
1694 |
+
"step": 281
|
1695 |
+
},
|
1696 |
+
{
|
1697 |
+
"epoch": 0.72,
|
1698 |
+
"learning_rate": 3.8115019133798535e-06,
|
1699 |
+
"loss": 0.9188,
|
1700 |
+
"step": 282
|
1701 |
+
},
|
1702 |
+
{
|
1703 |
+
"epoch": 0.72,
|
1704 |
+
"learning_rate": 3.74660311778571e-06,
|
1705 |
+
"loss": 0.9042,
|
1706 |
+
"step": 283
|
1707 |
+
},
|
1708 |
+
{
|
1709 |
+
"epoch": 0.73,
|
1710 |
+
"learning_rate": 3.682133991993361e-06,
|
1711 |
+
"loss": 0.9654,
|
1712 |
+
"step": 284
|
1713 |
+
},
|
1714 |
+
{
|
1715 |
+
"epoch": 0.73,
|
1716 |
+
"learning_rate": 3.6180989656651268e-06,
|
1717 |
+
"loss": 0.9618,
|
1718 |
+
"step": 285
|
1719 |
+
},
|
1720 |
+
{
|
1721 |
+
"epoch": 0.73,
|
1722 |
+
"learning_rate": 3.5545024386364192e-06,
|
1723 |
+
"loss": 0.9085,
|
1724 |
+
"step": 286
|
1725 |
+
},
|
1726 |
+
{
|
1727 |
+
"epoch": 0.73,
|
1728 |
+
"learning_rate": 3.491348780613444e-06,
|
1729 |
+
"loss": 0.8613,
|
1730 |
+
"step": 287
|
1731 |
+
},
|
1732 |
+
{
|
1733 |
+
"epoch": 0.74,
|
1734 |
+
"learning_rate": 3.4286423308729523e-06,
|
1735 |
+
"loss": 0.9884,
|
1736 |
+
"step": 288
|
1737 |
+
},
|
1738 |
+
{
|
1739 |
+
"epoch": 0.74,
|
1740 |
+
"learning_rate": 3.3663873979641014e-06,
|
1741 |
+
"loss": 0.9601,
|
1742 |
+
"step": 289
|
1743 |
+
},
|
1744 |
+
{
|
1745 |
+
"epoch": 0.74,
|
1746 |
+
"learning_rate": 3.304588259412399e-06,
|
1747 |
+
"loss": 0.8978,
|
1748 |
+
"step": 290
|
1749 |
+
},
|
1750 |
+
{
|
1751 |
+
"epoch": 0.74,
|
1752 |
+
"learning_rate": 3.243249161425801e-06,
|
1753 |
+
"loss": 0.9106,
|
1754 |
+
"step": 291
|
1755 |
+
},
|
1756 |
+
{
|
1757 |
+
"epoch": 0.75,
|
1758 |
+
"learning_rate": 3.1823743186029676e-06,
|
1759 |
+
"loss": 0.9477,
|
1760 |
+
"step": 292
|
1761 |
+
},
|
1762 |
+
{
|
1763 |
+
"epoch": 0.75,
|
1764 |
+
"learning_rate": 3.1219679136436496e-06,
|
1765 |
+
"loss": 0.973,
|
1766 |
+
"step": 293
|
1767 |
+
},
|
1768 |
+
{
|
1769 |
+
"epoch": 0.75,
|
1770 |
+
"learning_rate": 3.062034097061335e-06,
|
1771 |
+
"loss": 0.9847,
|
1772 |
+
"step": 294
|
1773 |
+
},
|
1774 |
+
{
|
1775 |
+
"epoch": 0.75,
|
1776 |
+
"learning_rate": 3.0025769868980337e-06,
|
1777 |
+
"loss": 0.9314,
|
1778 |
+
"step": 295
|
1779 |
+
},
|
1780 |
+
{
|
1781 |
+
"epoch": 0.76,
|
1782 |
+
"learning_rate": 2.9436006684413444e-06,
|
1783 |
+
"loss": 0.9282,
|
1784 |
+
"step": 296
|
1785 |
+
},
|
1786 |
+
{
|
1787 |
+
"epoch": 0.76,
|
1788 |
+
"learning_rate": 2.88510919394376e-06,
|
1789 |
+
"loss": 0.9837,
|
1790 |
+
"step": 297
|
1791 |
+
},
|
1792 |
+
{
|
1793 |
+
"epoch": 0.76,
|
1794 |
+
"learning_rate": 2.827106582344212e-06,
|
1795 |
+
"loss": 0.9015,
|
1796 |
+
"step": 298
|
1797 |
+
},
|
1798 |
+
{
|
1799 |
+
"epoch": 0.76,
|
1800 |
+
"learning_rate": 2.7695968189919686e-06,
|
1801 |
+
"loss": 0.9485,
|
1802 |
+
"step": 299
|
1803 |
+
},
|
1804 |
+
{
|
1805 |
+
"epoch": 0.77,
|
1806 |
+
"learning_rate": 2.712583855372769e-06,
|
1807 |
+
"loss": 0.912,
|
1808 |
+
"step": 300
|
1809 |
+
},
|
1810 |
+
{
|
1811 |
+
"epoch": 0.77,
|
1812 |
+
"learning_rate": 2.6560716088373295e-06,
|
1813 |
+
"loss": 0.9006,
|
1814 |
+
"step": 301
|
1815 |
+
},
|
1816 |
+
{
|
1817 |
+
"epoch": 0.77,
|
1818 |
+
"learning_rate": 2.6000639623321934e-06,
|
1819 |
+
"loss": 0.9065,
|
1820 |
+
"step": 302
|
1821 |
+
},
|
1822 |
+
{
|
1823 |
+
"epoch": 0.77,
|
1824 |
+
"learning_rate": 2.5445647641329154e-06,
|
1825 |
+
"loss": 1.051,
|
1826 |
+
"step": 303
|
1827 |
+
},
|
1828 |
+
{
|
1829 |
+
"epoch": 0.78,
|
1830 |
+
"learning_rate": 2.489577827579659e-06,
|
1831 |
+
"loss": 0.9125,
|
1832 |
+
"step": 304
|
1833 |
+
},
|
1834 |
+
{
|
1835 |
+
"epoch": 0.78,
|
1836 |
+
"learning_rate": 2.4351069308151774e-06,
|
1837 |
+
"loss": 0.9497,
|
1838 |
+
"step": 305
|
1839 |
+
},
|
1840 |
+
{
|
1841 |
+
"epoch": 0.78,
|
1842 |
+
"learning_rate": 2.381155816525228e-06,
|
1843 |
+
"loss": 0.9467,
|
1844 |
+
"step": 306
|
1845 |
+
},
|
1846 |
+
{
|
1847 |
+
"epoch": 0.79,
|
1848 |
+
"learning_rate": 2.3277281916814e-06,
|
1849 |
+
"loss": 0.8899,
|
1850 |
+
"step": 307
|
1851 |
+
},
|
1852 |
+
{
|
1853 |
+
"epoch": 0.79,
|
1854 |
+
"learning_rate": 2.2748277272864108e-06,
|
1855 |
+
"loss": 0.9515,
|
1856 |
+
"step": 308
|
1857 |
+
},
|
1858 |
+
{
|
1859 |
+
"epoch": 0.79,
|
1860 |
+
"learning_rate": 2.222458058121889e-06,
|
1861 |
+
"loss": 0.9185,
|
1862 |
+
"step": 309
|
1863 |
+
},
|
1864 |
+
{
|
1865 |
+
"epoch": 0.79,
|
1866 |
+
"learning_rate": 2.170622782498598e-06,
|
1867 |
+
"loss": 0.9493,
|
1868 |
+
"step": 310
|
1869 |
+
},
|
1870 |
+
{
|
1871 |
+
"epoch": 0.8,
|
1872 |
+
"learning_rate": 2.119325462009233e-06,
|
1873 |
+
"loss": 0.9072,
|
1874 |
+
"step": 311
|
1875 |
+
},
|
1876 |
+
{
|
1877 |
+
"epoch": 0.8,
|
1878 |
+
"learning_rate": 2.0685696212836737e-06,
|
1879 |
+
"loss": 1.0143,
|
1880 |
+
"step": 312
|
1881 |
+
},
|
1882 |
+
{
|
1883 |
+
"epoch": 0.8,
|
1884 |
+
"learning_rate": 2.0183587477468226e-06,
|
1885 |
+
"loss": 0.9501,
|
1886 |
+
"step": 313
|
1887 |
+
},
|
1888 |
+
{
|
1889 |
+
"epoch": 0.8,
|
1890 |
+
"learning_rate": 1.9686962913789897e-06,
|
1891 |
+
"loss": 0.8909,
|
1892 |
+
"step": 314
|
1893 |
+
},
|
1894 |
+
{
|
1895 |
+
"epoch": 0.81,
|
1896 |
+
"learning_rate": 1.91958566447883e-06,
|
1897 |
+
"loss": 0.9468,
|
1898 |
+
"step": 315
|
1899 |
+
},
|
1900 |
+
{
|
1901 |
+
"epoch": 0.81,
|
1902 |
+
"learning_rate": 1.871030241428894e-06,
|
1903 |
+
"loss": 0.9153,
|
1904 |
+
"step": 316
|
1905 |
+
},
|
1906 |
+
{
|
1907 |
+
"epoch": 0.81,
|
1908 |
+
"learning_rate": 1.8230333584637715e-06,
|
1909 |
+
"loss": 0.9079,
|
1910 |
+
"step": 317
|
1911 |
+
},
|
1912 |
+
{
|
1913 |
+
"epoch": 0.81,
|
1914 |
+
"learning_rate": 1.7755983134408706e-06,
|
1915 |
+
"loss": 0.9417,
|
1916 |
+
"step": 318
|
1917 |
+
},
|
1918 |
+
{
|
1919 |
+
"epoch": 0.82,
|
1920 |
+
"learning_rate": 1.7287283656138009e-06,
|
1921 |
+
"loss": 0.9716,
|
1922 |
+
"step": 319
|
1923 |
+
},
|
1924 |
+
{
|
1925 |
+
"epoch": 0.82,
|
1926 |
+
"learning_rate": 1.6824267354084478e-06,
|
1927 |
+
"loss": 0.915,
|
1928 |
+
"step": 320
|
1929 |
+
},
|
1930 |
+
{
|
1931 |
+
"epoch": 0.82,
|
1932 |
+
"learning_rate": 1.6366966042016996e-06,
|
1933 |
+
"loss": 0.9645,
|
1934 |
+
"step": 321
|
1935 |
+
},
|
1936 |
+
{
|
1937 |
+
"epoch": 0.82,
|
1938 |
+
"learning_rate": 1.5915411141028325e-06,
|
1939 |
+
"loss": 0.9699,
|
1940 |
+
"step": 322
|
1941 |
+
},
|
1942 |
+
{
|
1943 |
+
"epoch": 0.83,
|
1944 |
+
"learning_rate": 1.5469633677376494e-06,
|
1945 |
+
"loss": 0.8293,
|
1946 |
+
"step": 323
|
1947 |
+
},
|
1948 |
+
{
|
1949 |
+
"epoch": 0.83,
|
1950 |
+
"learning_rate": 1.502966428035274e-06,
|
1951 |
+
"loss": 0.9596,
|
1952 |
+
"step": 324
|
1953 |
+
},
|
1954 |
+
{
|
1955 |
+
"epoch": 0.83,
|
1956 |
+
"learning_rate": 1.4595533180177058e-06,
|
1957 |
+
"loss": 0.9952,
|
1958 |
+
"step": 325
|
1959 |
+
},
|
1960 |
+
{
|
1961 |
+
"epoch": 0.83,
|
1962 |
+
"learning_rate": 1.4167270205921168e-06,
|
1963 |
+
"loss": 0.9765,
|
1964 |
+
"step": 326
|
1965 |
+
},
|
1966 |
+
{
|
1967 |
+
"epoch": 0.84,
|
1968 |
+
"learning_rate": 1.37449047834588e-06,
|
1969 |
+
"loss": 0.9713,
|
1970 |
+
"step": 327
|
1971 |
+
},
|
1972 |
+
{
|
1973 |
+
"epoch": 0.84,
|
1974 |
+
"learning_rate": 1.332846593344399e-06,
|
1975 |
+
"loss": 0.9937,
|
1976 |
+
"step": 328
|
1977 |
+
},
|
1978 |
+
{
|
1979 |
+
"epoch": 0.84,
|
1980 |
+
"learning_rate": 1.2917982269316975e-06,
|
1981 |
+
"loss": 0.9523,
|
1982 |
+
"step": 329
|
1983 |
+
},
|
1984 |
+
{
|
1985 |
+
"epoch": 0.84,
|
1986 |
+
"learning_rate": 1.2513481995338284e-06,
|
1987 |
+
"loss": 0.8965,
|
1988 |
+
"step": 330
|
1989 |
+
},
|
1990 |
+
{
|
1991 |
+
"epoch": 0.85,
|
1992 |
+
"learning_rate": 1.211499290465069e-06,
|
1993 |
+
"loss": 0.9593,
|
1994 |
+
"step": 331
|
1995 |
+
},
|
1996 |
+
{
|
1997 |
+
"epoch": 0.85,
|
1998 |
+
"learning_rate": 1.1722542377369639e-06,
|
1999 |
+
"loss": 0.9711,
|
2000 |
+
"step": 332
|
2001 |
+
},
|
2002 |
+
{
|
2003 |
+
"epoch": 0.85,
|
2004 |
+
"learning_rate": 1.1336157378702017e-06,
|
2005 |
+
"loss": 0.943,
|
2006 |
+
"step": 333
|
2007 |
+
},
|
2008 |
+
{
|
2009 |
+
"epoch": 0.85,
|
2010 |
+
"learning_rate": 1.0955864457093147e-06,
|
2011 |
+
"loss": 0.9263,
|
2012 |
+
"step": 334
|
2013 |
+
},
|
2014 |
+
{
|
2015 |
+
"epoch": 0.86,
|
2016 |
+
"learning_rate": 1.0581689742402967e-06,
|
2017 |
+
"loss": 0.9515,
|
2018 |
+
"step": 335
|
2019 |
+
},
|
2020 |
+
{
|
2021 |
+
"epoch": 0.86,
|
2022 |
+
"learning_rate": 1.0213658944110406e-06,
|
2023 |
+
"loss": 0.9177,
|
2024 |
+
"step": 336
|
2025 |
+
},
|
2026 |
+
{
|
2027 |
+
"epoch": 0.86,
|
2028 |
+
"learning_rate": 9.851797349546977e-07,
|
2029 |
+
"loss": 0.9557,
|
2030 |
+
"step": 337
|
2031 |
+
},
|
2032 |
+
{
|
2033 |
+
"epoch": 0.86,
|
2034 |
+
"learning_rate": 9.496129822159339e-07,
|
2035 |
+
"loss": 0.9549,
|
2036 |
+
"step": 338
|
2037 |
+
},
|
2038 |
+
{
|
2039 |
+
"epoch": 0.87,
|
2040 |
+
"learning_rate": 9.146680799800833e-07,
|
2041 |
+
"loss": 0.9797,
|
2042 |
+
"step": 339
|
2043 |
+
},
|
2044 |
+
{
|
2045 |
+
"epoch": 0.87,
|
2046 |
+
"learning_rate": 8.803474293052438e-07,
|
2047 |
+
"loss": 0.9899,
|
2048 |
+
"step": 340
|
2049 |
+
},
|
2050 |
+
{
|
2051 |
+
"epoch": 0.87,
|
2052 |
+
"learning_rate": 8.466533883572947e-07,
|
2053 |
+
"loss": 0.9278,
|
2054 |
+
"step": 341
|
2055 |
+
},
|
2056 |
+
{
|
2057 |
+
"epoch": 0.87,
|
2058 |
+
"learning_rate": 8.135882722478772e-07,
|
2059 |
+
"loss": 0.9285,
|
2060 |
+
"step": 342
|
2061 |
+
},
|
2062 |
+
{
|
2063 |
+
"epoch": 0.88,
|
2064 |
+
"learning_rate": 7.811543528753108e-07,
|
2065 |
+
"loss": 0.96,
|
2066 |
+
"step": 343
|
2067 |
+
},
|
2068 |
+
{
|
2069 |
+
"epoch": 0.88,
|
2070 |
+
"learning_rate": 7.493538587685012e-07,
|
2071 |
+
"loss": 0.954,
|
2072 |
+
"step": 344
|
2073 |
+
},
|
2074 |
+
{
|
2075 |
+
"epoch": 0.88,
|
2076 |
+
"learning_rate": 7.181889749338178e-07,
|
2077 |
+
"loss": 0.9191,
|
2078 |
+
"step": 345
|
2079 |
+
},
|
2080 |
+
{
|
2081 |
+
"epoch": 0.88,
|
2082 |
+
"learning_rate": 6.876618427049509e-07,
|
2083 |
+
"loss": 0.9642,
|
2084 |
+
"step": 346
|
2085 |
+
},
|
2086 |
+
{
|
2087 |
+
"epoch": 0.89,
|
2088 |
+
"learning_rate": 6.577745595958018e-07,
|
2089 |
+
"loss": 0.8868,
|
2090 |
+
"step": 347
|
2091 |
+
},
|
2092 |
+
{
|
2093 |
+
"epoch": 0.89,
|
2094 |
+
"learning_rate": 6.285291791563431e-07,
|
2095 |
+
"loss": 0.8651,
|
2096 |
+
"step": 348
|
2097 |
+
},
|
2098 |
+
{
|
2099 |
+
"epoch": 0.89,
|
2100 |
+
"learning_rate": 5.999277108315272e-07,
|
2101 |
+
"loss": 0.99,
|
2102 |
+
"step": 349
|
2103 |
+
},
|
2104 |
+
{
|
2105 |
+
"epoch": 0.9,
|
2106 |
+
"learning_rate": 5.719721198232254e-07,
|
2107 |
+
"loss": 1.0007,
|
2108 |
+
"step": 350
|
2109 |
+
},
|
2110 |
+
{
|
2111 |
+
"epoch": 0.9,
|
2112 |
+
"learning_rate": 5.446643269551854e-07,
|
2113 |
+
"loss": 0.945,
|
2114 |
+
"step": 351
|
2115 |
+
},
|
2116 |
+
{
|
2117 |
+
"epoch": 0.9,
|
2118 |
+
"learning_rate": 5.180062085410609e-07,
|
2119 |
+
"loss": 0.9559,
|
2120 |
+
"step": 352
|
2121 |
+
},
|
2122 |
+
{
|
2123 |
+
"epoch": 0.9,
|
2124 |
+
"learning_rate": 4.919995962554846e-07,
|
2125 |
+
"loss": 0.9214,
|
2126 |
+
"step": 353
|
2127 |
+
},
|
2128 |
+
{
|
2129 |
+
"epoch": 0.91,
|
2130 |
+
"learning_rate": 4.6664627700822475e-07,
|
2131 |
+
"loss": 0.9583,
|
2132 |
+
"step": 354
|
2133 |
+
},
|
2134 |
+
{
|
2135 |
+
"epoch": 0.91,
|
2136 |
+
"learning_rate": 4.4194799282139324e-07,
|
2137 |
+
"loss": 0.9549,
|
2138 |
+
"step": 355
|
2139 |
+
},
|
2140 |
+
{
|
2141 |
+
"epoch": 0.91,
|
2142 |
+
"learning_rate": 4.1790644070975884e-07,
|
2143 |
+
"loss": 0.9257,
|
2144 |
+
"step": 356
|
2145 |
+
},
|
2146 |
+
{
|
2147 |
+
"epoch": 0.91,
|
2148 |
+
"learning_rate": 3.94523272564149e-07,
|
2149 |
+
"loss": 0.926,
|
2150 |
+
"step": 357
|
2151 |
+
},
|
2152 |
+
{
|
2153 |
+
"epoch": 0.92,
|
2154 |
+
"learning_rate": 3.7180009503793745e-07,
|
2155 |
+
"loss": 0.9393,
|
2156 |
+
"step": 358
|
2157 |
+
},
|
2158 |
+
{
|
2159 |
+
"epoch": 0.92,
|
2160 |
+
"learning_rate": 3.4973846943666567e-07,
|
2161 |
+
"loss": 0.881,
|
2162 |
+
"step": 359
|
2163 |
+
},
|
2164 |
+
{
|
2165 |
+
"epoch": 0.92,
|
2166 |
+
"learning_rate": 3.283399116107533e-07,
|
2167 |
+
"loss": 0.9014,
|
2168 |
+
"step": 360
|
2169 |
+
},
|
2170 |
+
{
|
2171 |
+
"epoch": 0.92,
|
2172 |
+
"learning_rate": 3.076058918513503e-07,
|
2173 |
+
"loss": 0.8659,
|
2174 |
+
"step": 361
|
2175 |
+
},
|
2176 |
+
{
|
2177 |
+
"epoch": 0.93,
|
2178 |
+
"learning_rate": 2.875378347893165e-07,
|
2179 |
+
"loss": 0.9538,
|
2180 |
+
"step": 362
|
2181 |
+
},
|
2182 |
+
{
|
2183 |
+
"epoch": 0.93,
|
2184 |
+
"learning_rate": 2.681371192973281e-07,
|
2185 |
+
"loss": 0.9879,
|
2186 |
+
"step": 363
|
2187 |
+
},
|
2188 |
+
{
|
2189 |
+
"epoch": 0.93,
|
2190 |
+
"learning_rate": 2.494050783951396e-07,
|
2191 |
+
"loss": 0.9421,
|
2192 |
+
"step": 364
|
2193 |
+
},
|
2194 |
+
{
|
2195 |
+
"epoch": 0.93,
|
2196 |
+
"learning_rate": 2.3134299915799185e-07,
|
2197 |
+
"loss": 0.8896,
|
2198 |
+
"step": 365
|
2199 |
+
},
|
2200 |
+
{
|
2201 |
+
"epoch": 0.94,
|
2202 |
+
"learning_rate": 2.1395212262817933e-07,
|
2203 |
+
"loss": 0.9288,
|
2204 |
+
"step": 366
|
2205 |
+
},
|
2206 |
+
{
|
2207 |
+
"epoch": 0.94,
|
2208 |
+
"learning_rate": 1.9723364372977395e-07,
|
2209 |
+
"loss": 0.8502,
|
2210 |
+
"step": 367
|
2211 |
+
},
|
2212 |
+
{
|
2213 |
+
"epoch": 0.94,
|
2214 |
+
"learning_rate": 1.8118871118652516e-07,
|
2215 |
+
"loss": 0.9598,
|
2216 |
+
"step": 368
|
2217 |
+
},
|
2218 |
+
{
|
2219 |
+
"epoch": 0.94,
|
2220 |
+
"learning_rate": 1.6581842744293309e-07,
|
2221 |
+
"loss": 0.9199,
|
2222 |
+
"step": 369
|
2223 |
+
},
|
2224 |
+
{
|
2225 |
+
"epoch": 0.95,
|
2226 |
+
"learning_rate": 1.511238485884914e-07,
|
2227 |
+
"loss": 0.9733,
|
2228 |
+
"step": 370
|
2229 |
+
},
|
2230 |
+
{
|
2231 |
+
"epoch": 0.95,
|
2232 |
+
"learning_rate": 1.3710598428513634e-07,
|
2233 |
+
"loss": 0.921,
|
2234 |
+
"step": 371
|
2235 |
+
},
|
2236 |
+
{
|
2237 |
+
"epoch": 0.95,
|
2238 |
+
"learning_rate": 1.2376579769786124e-07,
|
2239 |
+
"loss": 1.0368,
|
2240 |
+
"step": 372
|
2241 |
+
},
|
2242 |
+
{
|
2243 |
+
"epoch": 0.95,
|
2244 |
+
"learning_rate": 1.1110420542854383e-07,
|
2245 |
+
"loss": 0.9523,
|
2246 |
+
"step": 373
|
2247 |
+
},
|
2248 |
+
{
|
2249 |
+
"epoch": 0.96,
|
2250 |
+
"learning_rate": 9.912207745296665e-08,
|
2251 |
+
"loss": 0.9292,
|
2252 |
+
"step": 374
|
2253 |
+
},
|
2254 |
+
{
|
2255 |
+
"epoch": 0.96,
|
2256 |
+
"learning_rate": 8.782023706103926e-08,
|
2257 |
+
"loss": 0.9394,
|
2258 |
+
"step": 375
|
2259 |
+
},
|
2260 |
+
{
|
2261 |
+
"epoch": 0.96,
|
2262 |
+
"learning_rate": 7.719946080023022e-08,
|
2263 |
+
"loss": 0.9688,
|
2264 |
+
"step": 376
|
2265 |
+
},
|
2266 |
+
{
|
2267 |
+
"epoch": 0.96,
|
2268 |
+
"learning_rate": 6.726047842221083e-08,
|
2269 |
+
"loss": 0.9018,
|
2270 |
+
"step": 377
|
2271 |
+
},
|
2272 |
+
{
|
2273 |
+
"epoch": 0.97,
|
2274 |
+
"learning_rate": 5.800397283271753e-08,
|
2275 |
+
"loss": 0.8867,
|
2276 |
+
"step": 378
|
2277 |
+
},
|
2278 |
+
{
|
2279 |
+
"epoch": 0.97,
|
2280 |
+
"learning_rate": 4.9430580044620425e-08,
|
2281 |
+
"loss": 0.9259,
|
2282 |
+
"step": 379
|
2283 |
+
},
|
2284 |
+
{
|
2285 |
+
"epoch": 0.97,
|
2286 |
+
"learning_rate": 4.154088913423615e-08,
|
2287 |
+
"loss": 0.9395,
|
2288 |
+
"step": 380
|
2289 |
+
},
|
2290 |
+
{
|
2291 |
+
"epoch": 0.97,
|
2292 |
+
"learning_rate": 3.433544220084017e-08,
|
2293 |
+
"loss": 0.9209,
|
2294 |
+
"step": 381
|
2295 |
+
},
|
2296 |
+
{
|
2297 |
+
"epoch": 0.98,
|
2298 |
+
"learning_rate": 2.7814734329426607e-08,
|
2299 |
+
"loss": 0.9403,
|
2300 |
+
"step": 382
|
2301 |
+
},
|
2302 |
+
{
|
2303 |
+
"epoch": 0.98,
|
2304 |
+
"learning_rate": 2.197921355668875e-08,
|
2305 |
+
"loss": 0.9948,
|
2306 |
+
"step": 383
|
2307 |
+
},
|
2308 |
+
{
|
2309 |
+
"epoch": 0.98,
|
2310 |
+
"learning_rate": 1.682928084023261e-08,
|
2311 |
+
"loss": 0.8827,
|
2312 |
+
"step": 384
|
2313 |
+
},
|
2314 |
+
{
|
2315 |
+
"epoch": 0.98,
|
2316 |
+
"learning_rate": 1.2365290031032261e-08,
|
2317 |
+
"loss": 0.898,
|
2318 |
+
"step": 385
|
2319 |
+
},
|
2320 |
+
{
|
2321 |
+
"epoch": 0.99,
|
2322 |
+
"learning_rate": 8.587547849112643e-09,
|
2323 |
+
"loss": 0.9732,
|
2324 |
+
"step": 386
|
2325 |
+
},
|
2326 |
+
{
|
2327 |
+
"epoch": 0.99,
|
2328 |
+
"learning_rate": 5.496313862476399e-09,
|
2329 |
+
"loss": 0.9832,
|
2330 |
+
"step": 387
|
2331 |
+
},
|
2332 |
+
{
|
2333 |
+
"epoch": 0.99,
|
2334 |
+
"learning_rate": 3.0918004692648273e-09,
|
2335 |
+
"loss": 0.9955,
|
2336 |
+
"step": 388
|
2337 |
+
},
|
2338 |
+
{
|
2339 |
+
"epoch": 0.99,
|
2340 |
+
"learning_rate": 1.3741728831750956e-09,
|
2341 |
+
"loss": 0.9345,
|
2342 |
+
"step": 389
|
2343 |
+
},
|
2344 |
+
{
|
2345 |
+
"epoch": 1.0,
|
2346 |
+
"learning_rate": 3.435491220937781e-10,
|
2347 |
+
"loss": 0.9343,
|
2348 |
+
"step": 390
|
2349 |
+
},
|
2350 |
+
{
|
2351 |
+
"epoch": 1.0,
|
2352 |
+
"learning_rate": 0.0,
|
2353 |
+
"loss": 0.9641,
|
2354 |
+
"step": 391
|
2355 |
+
},
|
2356 |
+
{
|
2357 |
+
"epoch": 1.0,
|
2358 |
+
"step": 391,
|
2359 |
+
"total_flos": 7.271287463472005e+17,
|
2360 |
+
"train_loss": 0.9852171239950468,
|
2361 |
+
"train_runtime": 2316.1577,
|
2362 |
+
"train_samples_per_second": 21.607,
|
2363 |
+
"train_steps_per_second": 0.169
|
2364 |
+
}
|
2365 |
+
],
|
2366 |
+
"max_steps": 391,
|
2367 |
+
"num_train_epochs": 1,
|
2368 |
+
"total_flos": 7.271287463472005e+17,
|
2369 |
+
"trial_name": null,
|
2370 |
+
"trial_params": null
|
2371 |
+
}
|
VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-activitynet-stage5/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: ./checkpoints/vtimellm/vicuna-7b-v1.5
|
3 |
+
library_name: peft
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.13.2
|
VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-activitynet-stage5/adapter_config.json
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "./checkpoints/vtimellm/vicuna-7b-v1.5",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 128,
|
14 |
+
"lora_dropout": 0.05,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 64,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"down_proj",
|
24 |
+
"v_proj",
|
25 |
+
"gate_proj",
|
26 |
+
"q_proj",
|
27 |
+
"o_proj",
|
28 |
+
"k_proj",
|
29 |
+
"up_proj"
|
30 |
+
],
|
31 |
+
"task_type": "CAUSAL_LM",
|
32 |
+
"use_dora": false,
|
33 |
+
"use_rslora": false
|
34 |
+
}
|
VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-activitynet-stage5/adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e6cf716c9e99abb2ece9aac6b8e744f4bea03e8283ffc1f527f2d7a6aef8a9bd
|
3 |
+
size 319876480
|
VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-activitynet-stage5/config.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "./checkpoints/vtimellm/vicuna-7b-v1.5",
|
3 |
+
"architectures": [
|
4 |
+
"LlamaForCausalLM"
|
5 |
+
],
|
6 |
+
"bos_token_id": 1,
|
7 |
+
"eos_token_id": 2,
|
8 |
+
"freeze_mm_mlp_adapter": true,
|
9 |
+
"hidden_act": "silu",
|
10 |
+
"hidden_size": 4096,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"intermediate_size": 11008,
|
13 |
+
"max_position_embeddings": 4096,
|
14 |
+
"model_type": "VTimeLLM",
|
15 |
+
"num_attention_heads": 32,
|
16 |
+
"num_hidden_layers": 32,
|
17 |
+
"num_key_value_heads": 32,
|
18 |
+
"pad_token_id": 0,
|
19 |
+
"pretraining_tp": 1,
|
20 |
+
"rms_norm_eps": 1e-05,
|
21 |
+
"rope_scaling": null,
|
22 |
+
"tie_word_embeddings": false,
|
23 |
+
"torch_dtype": "float16",
|
24 |
+
"transformers_version": "4.31.0",
|
25 |
+
"tune_mm_mlp_adapter": false,
|
26 |
+
"use_cache": true,
|
27 |
+
"vocab_size": 32000
|
28 |
+
}
|
VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-activitynet-stage5/log/capfirst.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-activitynet-stage5/log/grounding.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-activitynet-stage5/log/metric/capfirst.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
soda_c: 6.90
|
2 |
+
METEOR: 7.13
|
3 |
+
CIDEr: 29.08
|
4 |
+
Num samples: 4885
|
VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-activitynet-stage5/log/metric/grounding.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
mIoU: 43.45
|
2 |
+
[email protected]: 61.41
|
3 |
+
[email protected]: 43.81
|
4 |
+
[email protected]: 25.68
|
5 |
+
Num samples: 17031
|
VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-activitynet-stage5/log/metric/timefirst.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
soda_c: 7.15
|
2 |
+
METEOR: 7.71
|
3 |
+
CIDEr: 34.65
|
4 |
+
Num samples: 4885
|
VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-activitynet-stage5/log/timefirst.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-activitynet-stage5/non_lora_trainables.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:60fb82c3660319e6d0b239950b20c28181e97f1ade117dc0660b40e2ad94a89b
|
3 |
+
size 912
|
VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-activitynet-stage5/trainer_state.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-stage1/config.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "/DATA/DATANAS2/bhuang/data/vicuna-7b-v1.5",
|
3 |
+
"architectures": [
|
4 |
+
"LlamaForCausalLM"
|
5 |
+
],
|
6 |
+
"bos_token_id": 1,
|
7 |
+
"eos_token_id": 2,
|
8 |
+
"freeze_mm_mlp_adapter": false,
|
9 |
+
"hidden_act": "silu",
|
10 |
+
"hidden_size": 4096,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"intermediate_size": 11008,
|
13 |
+
"max_position_embeddings": 4096,
|
14 |
+
"model_type": "VTimeLLM",
|
15 |
+
"num_attention_heads": 32,
|
16 |
+
"num_hidden_layers": 32,
|
17 |
+
"num_key_value_heads": 32,
|
18 |
+
"pad_token_id": 0,
|
19 |
+
"pretraining_tp": 1,
|
20 |
+
"rms_norm_eps": 1e-05,
|
21 |
+
"rope_scaling": null,
|
22 |
+
"tie_word_embeddings": false,
|
23 |
+
"torch_dtype": "float16",
|
24 |
+
"transformers_version": "4.31.0",
|
25 |
+
"tune_mm_mlp_adapter": true,
|
26 |
+
"use_cache": true,
|
27 |
+
"vocab_size": 32000
|
28 |
+
}
|
VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-stage1/mm_projector.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e54f0e59806b2f8f724338560fefaf48a4be82f48f73200ca89d3eca6f4ca8fb
|
3 |
+
size 6300731
|
VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-stage1/trainer_state.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-stage2/README.md
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
---
|
4 |
+
## Training procedure
|
5 |
+
|
6 |
+
### Framework versions
|
7 |
+
|
8 |
+
|
9 |
+
- PEFT 0.4.0
|
VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-stage2/adapter_config.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"auto_mapping": null,
|
3 |
+
"base_model_name_or_path": "/DATA/DATANAS2/bhuang/data/vicuna-7b-v1.5",
|
4 |
+
"bias": "none",
|
5 |
+
"fan_in_fan_out": false,
|
6 |
+
"inference_mode": true,
|
7 |
+
"init_lora_weights": true,
|
8 |
+
"layers_pattern": null,
|
9 |
+
"layers_to_transform": null,
|
10 |
+
"lora_alpha": 128,
|
11 |
+
"lora_dropout": 0.05,
|
12 |
+
"modules_to_save": null,
|
13 |
+
"peft_type": "LORA",
|
14 |
+
"r": 64,
|
15 |
+
"revision": null,
|
16 |
+
"target_modules": [
|
17 |
+
"down_proj",
|
18 |
+
"k_proj",
|
19 |
+
"o_proj",
|
20 |
+
"q_proj",
|
21 |
+
"up_proj",
|
22 |
+
"gate_proj",
|
23 |
+
"v_proj"
|
24 |
+
],
|
25 |
+
"task_type": "CAUSAL_LM"
|
26 |
+
}
|
VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-stage2/adapter_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b7fef69a5a81d0ac7f16a78fd3ce22e4c8731fbc79df69f767473a2eb175e992
|
3 |
+
size 319970957
|
VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-stage2/config.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "/DATA/DATANAS2/bhuang/data/vicuna-7b-v1.5",
|
3 |
+
"architectures": [
|
4 |
+
"LlamaForCausalLM"
|
5 |
+
],
|
6 |
+
"bos_token_id": 1,
|
7 |
+
"eos_token_id": 2,
|
8 |
+
"freeze_mm_mlp_adapter": true,
|
9 |
+
"hidden_act": "silu",
|
10 |
+
"hidden_size": 4096,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"intermediate_size": 11008,
|
13 |
+
"max_position_embeddings": 4096,
|
14 |
+
"model_type": "VTimeLLM",
|
15 |
+
"num_attention_heads": 32,
|
16 |
+
"num_hidden_layers": 32,
|
17 |
+
"num_key_value_heads": 32,
|
18 |
+
"pad_token_id": 0,
|
19 |
+
"pretraining_tp": 1,
|
20 |
+
"rms_norm_eps": 1e-05,
|
21 |
+
"rope_scaling": null,
|
22 |
+
"tie_word_embeddings": false,
|
23 |
+
"torch_dtype": "float16",
|
24 |
+
"transformers_version": "4.31.0",
|
25 |
+
"tune_mm_mlp_adapter": false,
|
26 |
+
"use_cache": true,
|
27 |
+
"vocab_size": 32000
|
28 |
+
}
|
VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-stage2/non_lora_trainables.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cc6b9cc23771073378c3887f3524986a3b61cac85cbc085f322b318241bc6845
|
3 |
+
size 455
|
VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-stage2/trainer_state.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-stage3/README.md
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
---
|
4 |
+
## Training procedure
|
5 |
+
|
6 |
+
### Framework versions
|
7 |
+
|
8 |
+
|
9 |
+
- PEFT 0.4.0
|
VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-stage3/adapter_config.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"auto_mapping": null,
|
3 |
+
"base_model_name_or_path": "/DATA/DATANAS2/bhuang/data/vicuna-7b-v1.5",
|
4 |
+
"bias": "none",
|
5 |
+
"fan_in_fan_out": false,
|
6 |
+
"inference_mode": true,
|
7 |
+
"init_lora_weights": true,
|
8 |
+
"layers_pattern": null,
|
9 |
+
"layers_to_transform": null,
|
10 |
+
"lora_alpha": 128,
|
11 |
+
"lora_dropout": 0.05,
|
12 |
+
"modules_to_save": null,
|
13 |
+
"peft_type": "LORA",
|
14 |
+
"r": 64,
|
15 |
+
"revision": null,
|
16 |
+
"target_modules": [
|
17 |
+
"o_proj",
|
18 |
+
"q_proj",
|
19 |
+
"down_proj",
|
20 |
+
"v_proj",
|
21 |
+
"k_proj",
|
22 |
+
"gate_proj",
|
23 |
+
"up_proj"
|
24 |
+
],
|
25 |
+
"task_type": "CAUSAL_LM"
|
26 |
+
}
|
VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-stage3/adapter_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4c5baa8b413e44c9a4db5e1fadc6df7e960dd0fe6b5ed7eb6778b58e4f968c50
|
3 |
+
size 319970957
|
VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-stage3/config.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "/DATA/DATANAS2/bhuang/data/vicuna-7b-v1.5",
|
3 |
+
"architectures": [
|
4 |
+
"LlamaForCausalLM"
|
5 |
+
],
|
6 |
+
"bos_token_id": 1,
|
7 |
+
"eos_token_id": 2,
|
8 |
+
"freeze_mm_mlp_adapter": true,
|
9 |
+
"hidden_act": "silu",
|
10 |
+
"hidden_size": 4096,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"intermediate_size": 11008,
|
13 |
+
"max_position_embeddings": 4096,
|
14 |
+
"model_type": "VTimeLLM",
|
15 |
+
"num_attention_heads": 32,
|
16 |
+
"num_hidden_layers": 32,
|
17 |
+
"num_key_value_heads": 32,
|
18 |
+
"pad_token_id": 0,
|
19 |
+
"pretraining_tp": 1,
|
20 |
+
"rms_norm_eps": 1e-05,
|
21 |
+
"rope_scaling": null,
|
22 |
+
"tie_word_embeddings": false,
|
23 |
+
"torch_dtype": "float16",
|
24 |
+
"transformers_version": "4.31.0",
|
25 |
+
"tune_mm_mlp_adapter": false,
|
26 |
+
"use_cache": true,
|
27 |
+
"vocab_size": 32000
|
28 |
+
}
|