simplecloud commited on
Commit
fca4fc0
·
verified ·
1 Parent(s): ab6bb2c

Upload folder using huggingface_hub

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +3 -0
  2. VTimeLLM/.vscode/launch.json +102 -0
  3. VTimeLLM/.vscode/settings.json +39 -0
  4. VTimeLLM/checkpoints/ViT-L-14.pt +3 -0
  5. VTimeLLM/checkpoints/vicuna-7b-v1.5/.gitattributes +35 -0
  6. VTimeLLM/checkpoints/vicuna-7b-v1.5/README.md +48 -0
  7. VTimeLLM/checkpoints/vicuna-7b-v1.5/config.json +26 -0
  8. VTimeLLM/checkpoints/vicuna-7b-v1.5/generation_config.json +9 -0
  9. VTimeLLM/checkpoints/vicuna-7b-v1.5/pytorch_model-00001-of-00002.bin +3 -0
  10. VTimeLLM/checkpoints/vicuna-7b-v1.5/pytorch_model-00002-of-00002.bin +3 -0
  11. VTimeLLM/checkpoints/vicuna-7b-v1.5/pytorch_model.bin.index.json +330 -0
  12. VTimeLLM/checkpoints/vicuna-7b-v1.5/special_tokens_map.json +24 -0
  13. VTimeLLM/checkpoints/vicuna-7b-v1.5/tokenizer.model +3 -0
  14. VTimeLLM/checkpoints/vicuna-7b-v1.5/tokenizer_config.json +35 -0
  15. VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-activitynet-stage4/README.md +202 -0
  16. VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-activitynet-stage4/adapter_config.json +34 -0
  17. VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-activitynet-stage4/adapter_model.safetensors +3 -0
  18. VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-activitynet-stage4/config.json +28 -0
  19. VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-activitynet-stage4/log/capfirst.txt +0 -0
  20. VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-activitynet-stage4/log/metric/capfirst.txt +4 -0
  21. VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-activitynet-stage4/log/metric/grounding.txt +5 -0
  22. VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-activitynet-stage4/log/metric/timefirst.txt +4 -0
  23. VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-activitynet-stage4/log/timefirst.txt +0 -0
  24. VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-activitynet-stage4/non_lora_trainables.bin +3 -0
  25. VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-activitynet-stage4/trainer_state.json +2371 -0
  26. VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-activitynet-stage5/README.md +202 -0
  27. VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-activitynet-stage5/adapter_config.json +34 -0
  28. VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-activitynet-stage5/adapter_model.safetensors +3 -0
  29. VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-activitynet-stage5/config.json +28 -0
  30. VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-activitynet-stage5/log/capfirst.txt +0 -0
  31. VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-activitynet-stage5/log/grounding.txt +0 -0
  32. VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-activitynet-stage5/log/metric/capfirst.txt +4 -0
  33. VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-activitynet-stage5/log/metric/grounding.txt +5 -0
  34. VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-activitynet-stage5/log/metric/timefirst.txt +4 -0
  35. VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-activitynet-stage5/log/timefirst.txt +0 -0
  36. VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-activitynet-stage5/non_lora_trainables.bin +3 -0
  37. VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-activitynet-stage5/trainer_state.json +0 -0
  38. VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-stage1/config.json +28 -0
  39. VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-stage1/mm_projector.bin +3 -0
  40. VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-stage1/trainer_state.json +0 -0
  41. VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-stage2/README.md +9 -0
  42. VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-stage2/adapter_config.json +26 -0
  43. VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-stage2/adapter_model.bin +3 -0
  44. VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-stage2/config.json +28 -0
  45. VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-stage2/non_lora_trainables.bin +3 -0
  46. VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-stage2/trainer_state.json +0 -0
  47. VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-stage3/README.md +9 -0
  48. VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-stage3/adapter_config.json +26 -0
  49. VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-stage3/adapter_model.bin +3 -0
  50. VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-stage3/config.json +28 -0
.gitattributes CHANGED
@@ -57,3 +57,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
57
  # Video files - compressed
58
  *.mp4 filter=lfs diff=lfs merge=lfs -text
59
  *.webm filter=lfs diff=lfs merge=lfs -text
 
 
 
 
57
  # Video files - compressed
58
  *.mp4 filter=lfs diff=lfs merge=lfs -text
59
  *.webm filter=lfs diff=lfs merge=lfs -text
60
+ VTimeLLM/data/activitynet/mdpo-train.json filter=lfs diff=lfs merge=lfs -text
61
+ VTimeLLM/flash-attention/assets/flashattn_banner.pdf filter=lfs diff=lfs merge=lfs -text
62
+ VTimeLLM/flash-attention/flash_attn-2.8.3+cu12torch2.8cxx11abiTRUE-cp310-cp310-linux_x86_64.whl filter=lfs diff=lfs merge=lfs -text
VTimeLLM/.vscode/launch.json ADDED
@@ -0,0 +1,102 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "version": "0.2.0",
3
+ "configurations": [
4
+ {
5
+ "name": "Debug MDPO Training",
6
+ "type": "python",
7
+ "request": "launch",
8
+ "program": "${workspaceFolder}/scripts/train/debug_mdpo_train.sh",
9
+ "console": "integratedTerminal",
10
+ "cwd": "${workspaceFolder}",
11
+ "env": {
12
+ "PYTHONPATH": "${workspaceFolder}:${env:PYTHONPATH}",
13
+ "CUDA_VISIBLE_DEVICES": "1",
14
+ "TRANSFORMERS_OFFLINE": "1",
15
+ "WANDB_PROJECT": "vtimellm"
16
+ },
17
+ "args": [],
18
+ "justMyCode": false,
19
+ "stopOnEntry": false
20
+ },
21
+ {
22
+ "name": "Debug Python Training Direct",
23
+ "type": "python",
24
+ "request": "launch",
25
+ "module": "vtimellm.train.train_dpo_mem",
26
+ "console": "integratedTerminal",
27
+ "cwd": "${workspaceFolder}",
28
+ "env": {
29
+ "PYTHONPATH": "${workspaceFolder}:${env:PYTHONPATH}",
30
+ "CUDA_VISIBLE_DEVICES": "1",
31
+ "TRANSFORMERS_OFFLINE": "1",
32
+ "WANDB_PROJECT": "vtimellm",
33
+ "RANK": "1",
34
+ "MASTER_PORT": "29571"
35
+ },
36
+ "args": [
37
+ "--deepspeed", "./scripts/zero2.json",
38
+ "--lora_enable", "True",
39
+ "--lora_r", "8",
40
+ "--lora_alpha", "128",
41
+ "--training_stage", "3",
42
+ "--finetuning", "True",
43
+ "--model_name_or_path", "./checkpoints/vicuna-7b-v1.5",
44
+ "--version", "v1",
45
+ "--data_path", "./data/activitynet/mdpo-train.json",
46
+ "--data_folder", "./data/activitynet/videos/train",
47
+ "--feat_folder", "./data/activitynet/clipvitl14-vtimellm.pth",
48
+ "--pretrain_mm_mlp_adapter", "./checkpoints/vtimellm-vicuna-v1-5-7b-stage1/mm_projector.bin",
49
+ "--stage2_path", "./checkpoints/vtimellm-vicuna-v1-5-7b-stage2",
50
+ "--stage3_path", "./checkpoints/vtimellm-vicuna-v1-5-7b-stage3",
51
+ "--stage4_path", "checkpoints/vtimellm-vicuna-v1-5-7b-activitynet-stage4",
52
+ "--output_dir", "./outputs/vtimellm-vicuna-v1-5-7b-activitynet-stage5",
53
+ "--bf16", "True",
54
+ "--max_steps", "100",
55
+ "--per_device_train_batch_size", "2",
56
+ "--gradient_accumulation_steps", "4",
57
+ "--evaluation_strategy", "no",
58
+ "--save_strategy", "no",
59
+ "--save_steps", "50000",
60
+ "--save_total_limit", "10",
61
+ "--learning_rate", "1e-6",
62
+ "--freeze_mm_mlp_adapter", "True",
63
+ "--weight_decay", "0.",
64
+ "--warmup_ratio", "0.1",
65
+ "--lr_scheduler_type", "cosine",
66
+ "--logging_steps", "1",
67
+ "--tf32", "True",
68
+ "--model_max_length", "2048",
69
+ "--gradient_checkpointing", "True",
70
+ "--dataloader_num_workers", "4",
71
+ "--lazy_preprocess", "True",
72
+ "--report_to", "none",
73
+ "--run_name", "vtimellm-vicuna-v1-5-7b-activitynet-stage5",
74
+ "--gamma", "0.0",
75
+ "--beta", "0.5",
76
+ "--dpo_alpha", "1.0",
77
+ "--train4dpo"
78
+ ],
79
+ "justMyCode": false,
80
+ "stopOnEntry": false
81
+ },
82
+ {
83
+ "name": "Debug with DeepSpeed",
84
+ "type": "python",
85
+ "request": "launch",
86
+ "program": "${workspaceFolder}/scripts/train/debug_deepspeed.py",
87
+ "console": "integratedTerminal",
88
+ "cwd": "${workspaceFolder}",
89
+ "env": {
90
+ "PYTHONPATH": "${workspaceFolder}:${env:PYTHONPATH}",
91
+ "CUDA_VISIBLE_DEVICES": "1",
92
+ "TRANSFORMERS_OFFLINE": "1",
93
+ "WANDB_PROJECT": "vtimellm",
94
+ "RANK": "1",
95
+ "MASTER_PORT": "29571"
96
+ },
97
+ "args": [],
98
+ "justMyCode": false,
99
+ "stopOnEntry": false
100
+ }
101
+ ]
102
+ }
VTimeLLM/.vscode/settings.json ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "python.defaultInterpreterPath": "/home/jisoo/.conda/envs/vtimellm/bin/python",
3
+ "python.terminal.activateEnvironment": true,
4
+ "python.condaPath": "/home/jisoo/.conda/bin/conda",
5
+ "python.envFile": "${workspaceFolder}/.env",
6
+ "python.analysis.extraPaths": [
7
+ "${workspaceFolder}",
8
+ "${workspaceFolder}/vtimellm",
9
+ "${workspaceFolder}/vtimellm/train",
10
+ "${workspaceFolder}/vtimellm/model"
11
+ ],
12
+ "python.analysis.autoImportCompletions": true,
13
+ "python.analysis.typeCheckingMode": "basic",
14
+ "python.analysis.autoSearchPaths": true,
15
+ "python.analysis.diagnosticMode": "workspace",
16
+ "python.analysis.stubPath": "${workspaceFolder}/typings",
17
+ "python.linting.enabled": true,
18
+ "python.linting.pylintEnabled": false,
19
+ "python.linting.flake8Enabled": true,
20
+ "python.linting.mypyEnabled": false,
21
+ "python.formatting.provider": "black",
22
+ "python.sortImports.args": ["--profile", "black"],
23
+ "files.associations": {
24
+ "*.py": "python"
25
+ },
26
+ "terminal.integrated.env.linux": {
27
+ "PYTHONPATH": "${workspaceFolder}:${env:PYTHONPATH}",
28
+ "CUDA_VISIBLE_DEVICES": "1",
29
+ "TRANSFORMERS_OFFLINE": "1",
30
+ "WANDB_PROJECT": "vtimellm"
31
+ },
32
+ "terminal.integrated.defaultProfile.linux": "bash",
33
+ "terminal.integrated.profiles.linux": {
34
+ "bash": {
35
+ "path": "/bin/bash",
36
+ "args": ["-l"]
37
+ }
38
+ }
39
+ }
VTimeLLM/checkpoints/ViT-L-14.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b8cca3fd41ae0c99ba7e8951adf17d267cdb84cd88be6f7c2e0eca1737a03836
3
+ size 932768134
VTimeLLM/checkpoints/vicuna-7b-v1.5/.gitattributes ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar filter=lfs diff=lfs merge=lfs -text
29
+ *.tflite filter=lfs diff=lfs merge=lfs -text
30
+ *.tgz filter=lfs diff=lfs merge=lfs -text
31
+ *.wasm filter=lfs diff=lfs merge=lfs -text
32
+ *.xz filter=lfs diff=lfs merge=lfs -text
33
+ *.zip filter=lfs diff=lfs merge=lfs -text
34
+ *.zst filter=lfs diff=lfs merge=lfs -text
35
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
VTimeLLM/checkpoints/vicuna-7b-v1.5/README.md ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ inference: false
3
+ license: llama2
4
+ ---
5
+
6
+ # Vicuna Model Card
7
+
8
+ ## Model Details
9
+
10
+ Vicuna is a chat assistant trained by fine-tuning Llama 2 on user-shared conversations collected from ShareGPT.
11
+
12
+ - **Developed by:** [LMSYS](https://lmsys.org/)
13
+ - **Model type:** An auto-regressive language model based on the transformer architecture
14
+ - **License:** Llama 2 Community License Agreement
15
+ - **Finetuned from model:** [Llama 2](https://arxiv.org/abs/2307.09288)
16
+
17
+ ### Model Sources
18
+
19
+ - **Repository:** https://github.com/lm-sys/FastChat
20
+ - **Blog:** https://lmsys.org/blog/2023-03-30-vicuna/
21
+ - **Paper:** https://arxiv.org/abs/2306.05685
22
+ - **Demo:** https://chat.lmsys.org/
23
+
24
+ ## Uses
25
+
26
+ The primary use of Vicuna is research on large language models and chatbots.
27
+ The primary intended users of the model are researchers and hobbyists in natural language processing, machine learning, and artificial intelligence.
28
+
29
+ ## How to Get Started with the Model
30
+
31
+ - Command line interface: https://github.com/lm-sys/FastChat#vicuna-weights
32
+ - APIs (OpenAI API, Huggingface API): https://github.com/lm-sys/FastChat/tree/main#api
33
+
34
+ ## Training Details
35
+
36
+ Vicuna v1.5 is fine-tuned from Llama 2 with supervised instruction fine-tuning.
37
+ The training data is around 125K conversations collected from ShareGPT.com.
38
+ See more details in the "Training Details of Vicuna Models" section in the appendix of this [paper](https://arxiv.org/pdf/2306.05685.pdf).
39
+
40
+ ## Evaluation
41
+
42
+ ![Evaluation Results](https://github.com/lm-sys/lm-sys.github.io/blob/main/public/images/webdata/vicuna_v1.5_eval.png?raw=true)
43
+
44
+ Vicuna is evaluated with standard benchmarks, human preference, and LLM-as-a-judge. See more details in this [paper](https://arxiv.org/pdf/2306.05685.pdf) and [leaderboard](https://huggingface.co/spaces/lmsys/chatbot-arena-leaderboard).
45
+
46
+ ## Difference between different versions of Vicuna
47
+
48
+ See [vicuna_weights_version.md](https://github.com/lm-sys/FastChat/blob/main/docs/vicuna_weights_version.md)
VTimeLLM/checkpoints/vicuna-7b-v1.5/config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "vicuna-7b-v1.5",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "bos_token_id": 1,
7
+ "eos_token_id": 2,
8
+ "hidden_act": "silu",
9
+ "hidden_size": 4096,
10
+ "initializer_range": 0.02,
11
+ "intermediate_size": 11008,
12
+ "max_position_embeddings": 4096,
13
+ "model_type": "llama",
14
+ "num_attention_heads": 32,
15
+ "num_hidden_layers": 32,
16
+ "num_key_value_heads": 32,
17
+ "pad_token_id": 0,
18
+ "pretraining_tp": 1,
19
+ "rms_norm_eps": 1e-05,
20
+ "rope_scaling": null,
21
+ "tie_word_embeddings": false,
22
+ "torch_dtype": "float16",
23
+ "transformers_version": "4.31.0",
24
+ "use_cache": true,
25
+ "vocab_size": 32000
26
+ }
VTimeLLM/checkpoints/vicuna-7b-v1.5/generation_config.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 1,
3
+ "eos_token_id": 2,
4
+ "max_length": 4096,
5
+ "pad_token_id": 0,
6
+ "temperature": 0.9,
7
+ "top_p": 0.6,
8
+ "transformers_version": "4.31.0"
9
+ }
VTimeLLM/checkpoints/vicuna-7b-v1.5/pytorch_model-00001-of-00002.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4133d2fcc5f31286881ea50806d95b721d016b533036a99dedce3f8fe88520e6
3
+ size 9976634558
VTimeLLM/checkpoints/vicuna-7b-v1.5/pytorch_model-00002-of-00002.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d261d3c35e92d3070d1e61ed821ebfca812a847d2a880757d82728acf005c5ac
3
+ size 3500315539
VTimeLLM/checkpoints/vicuna-7b-v1.5/pytorch_model.bin.index.json ADDED
@@ -0,0 +1,330 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 13476839424
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "pytorch_model-00002-of-00002.bin",
7
+ "model.embed_tokens.weight": "pytorch_model-00001-of-00002.bin",
8
+ "model.layers.0.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
9
+ "model.layers.0.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
10
+ "model.layers.0.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
11
+ "model.layers.0.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
12
+ "model.layers.0.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
13
+ "model.layers.0.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
14
+ "model.layers.0.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
15
+ "model.layers.0.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
16
+ "model.layers.0.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
17
+ "model.layers.0.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
18
+ "model.layers.1.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
19
+ "model.layers.1.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
20
+ "model.layers.1.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
21
+ "model.layers.1.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
22
+ "model.layers.1.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
23
+ "model.layers.1.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
24
+ "model.layers.1.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
25
+ "model.layers.1.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
26
+ "model.layers.1.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
27
+ "model.layers.1.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
28
+ "model.layers.10.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
29
+ "model.layers.10.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
30
+ "model.layers.10.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
31
+ "model.layers.10.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
32
+ "model.layers.10.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
33
+ "model.layers.10.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
34
+ "model.layers.10.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
35
+ "model.layers.10.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
36
+ "model.layers.10.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
37
+ "model.layers.10.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
38
+ "model.layers.11.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
39
+ "model.layers.11.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
40
+ "model.layers.11.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
41
+ "model.layers.11.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
42
+ "model.layers.11.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
43
+ "model.layers.11.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
44
+ "model.layers.11.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
45
+ "model.layers.11.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
46
+ "model.layers.11.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
47
+ "model.layers.11.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
48
+ "model.layers.12.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
49
+ "model.layers.12.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
50
+ "model.layers.12.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
51
+ "model.layers.12.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
52
+ "model.layers.12.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
53
+ "model.layers.12.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
54
+ "model.layers.12.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
55
+ "model.layers.12.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
56
+ "model.layers.12.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
57
+ "model.layers.12.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
58
+ "model.layers.13.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
59
+ "model.layers.13.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
60
+ "model.layers.13.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
61
+ "model.layers.13.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
62
+ "model.layers.13.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
63
+ "model.layers.13.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
64
+ "model.layers.13.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
65
+ "model.layers.13.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
66
+ "model.layers.13.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
67
+ "model.layers.13.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
68
+ "model.layers.14.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
69
+ "model.layers.14.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
70
+ "model.layers.14.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
71
+ "model.layers.14.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
72
+ "model.layers.14.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
73
+ "model.layers.14.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
74
+ "model.layers.14.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
75
+ "model.layers.14.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
76
+ "model.layers.14.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
77
+ "model.layers.14.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
78
+ "model.layers.15.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
79
+ "model.layers.15.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
80
+ "model.layers.15.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
81
+ "model.layers.15.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
82
+ "model.layers.15.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
83
+ "model.layers.15.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
84
+ "model.layers.15.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
85
+ "model.layers.15.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
86
+ "model.layers.15.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
87
+ "model.layers.15.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
88
+ "model.layers.16.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
89
+ "model.layers.16.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
90
+ "model.layers.16.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
91
+ "model.layers.16.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
92
+ "model.layers.16.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
93
+ "model.layers.16.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
94
+ "model.layers.16.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
95
+ "model.layers.16.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
96
+ "model.layers.16.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
97
+ "model.layers.16.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
98
+ "model.layers.17.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
99
+ "model.layers.17.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
100
+ "model.layers.17.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
101
+ "model.layers.17.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
102
+ "model.layers.17.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
103
+ "model.layers.17.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
104
+ "model.layers.17.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
105
+ "model.layers.17.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
106
+ "model.layers.17.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
107
+ "model.layers.17.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
108
+ "model.layers.18.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
109
+ "model.layers.18.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
110
+ "model.layers.18.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
111
+ "model.layers.18.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
112
+ "model.layers.18.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
113
+ "model.layers.18.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
114
+ "model.layers.18.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
115
+ "model.layers.18.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
116
+ "model.layers.18.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
117
+ "model.layers.18.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
118
+ "model.layers.19.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
119
+ "model.layers.19.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
120
+ "model.layers.19.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
121
+ "model.layers.19.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
122
+ "model.layers.19.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
123
+ "model.layers.19.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
124
+ "model.layers.19.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
125
+ "model.layers.19.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
126
+ "model.layers.19.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
127
+ "model.layers.19.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
128
+ "model.layers.2.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
129
+ "model.layers.2.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
130
+ "model.layers.2.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
131
+ "model.layers.2.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
132
+ "model.layers.2.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
133
+ "model.layers.2.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
134
+ "model.layers.2.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
135
+ "model.layers.2.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
136
+ "model.layers.2.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
137
+ "model.layers.2.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
138
+ "model.layers.20.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
139
+ "model.layers.20.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
140
+ "model.layers.20.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
141
+ "model.layers.20.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
142
+ "model.layers.20.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
143
+ "model.layers.20.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
144
+ "model.layers.20.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
145
+ "model.layers.20.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
146
+ "model.layers.20.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
147
+ "model.layers.20.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
148
+ "model.layers.21.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
149
+ "model.layers.21.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
150
+ "model.layers.21.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
151
+ "model.layers.21.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
152
+ "model.layers.21.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
153
+ "model.layers.21.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
154
+ "model.layers.21.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
155
+ "model.layers.21.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
156
+ "model.layers.21.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
157
+ "model.layers.21.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
158
+ "model.layers.22.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
159
+ "model.layers.22.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
160
+ "model.layers.22.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
161
+ "model.layers.22.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
162
+ "model.layers.22.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
163
+ "model.layers.22.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
164
+ "model.layers.22.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
165
+ "model.layers.22.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
166
+ "model.layers.22.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
167
+ "model.layers.22.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
168
+ "model.layers.23.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
169
+ "model.layers.23.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
170
+ "model.layers.23.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
171
+ "model.layers.23.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
172
+ "model.layers.23.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
173
+ "model.layers.23.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
174
+ "model.layers.23.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
175
+ "model.layers.23.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
176
+ "model.layers.23.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
177
+ "model.layers.23.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
178
+ "model.layers.24.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
179
+ "model.layers.24.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
180
+ "model.layers.24.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
181
+ "model.layers.24.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
182
+ "model.layers.24.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
183
+ "model.layers.24.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
184
+ "model.layers.24.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
185
+ "model.layers.24.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
186
+ "model.layers.24.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
187
+ "model.layers.24.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
188
+ "model.layers.25.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
189
+ "model.layers.25.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
190
+ "model.layers.25.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
191
+ "model.layers.25.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
192
+ "model.layers.25.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
193
+ "model.layers.25.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
194
+ "model.layers.25.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
195
+ "model.layers.25.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
196
+ "model.layers.25.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
197
+ "model.layers.25.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
198
+ "model.layers.26.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
199
+ "model.layers.26.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
200
+ "model.layers.26.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
201
+ "model.layers.26.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
202
+ "model.layers.26.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
203
+ "model.layers.26.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
204
+ "model.layers.26.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
205
+ "model.layers.26.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
206
+ "model.layers.26.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
207
+ "model.layers.26.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
208
+ "model.layers.27.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
209
+ "model.layers.27.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
210
+ "model.layers.27.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
211
+ "model.layers.27.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
212
+ "model.layers.27.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
213
+ "model.layers.27.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
214
+ "model.layers.27.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
215
+ "model.layers.27.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
216
+ "model.layers.27.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
217
+ "model.layers.27.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
218
+ "model.layers.28.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
219
+ "model.layers.28.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
220
+ "model.layers.28.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
221
+ "model.layers.28.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
222
+ "model.layers.28.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
223
+ "model.layers.28.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
224
+ "model.layers.28.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
225
+ "model.layers.28.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
226
+ "model.layers.28.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
227
+ "model.layers.28.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
228
+ "model.layers.29.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
229
+ "model.layers.29.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
230
+ "model.layers.29.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
231
+ "model.layers.29.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
232
+ "model.layers.29.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
233
+ "model.layers.29.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
234
+ "model.layers.29.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
235
+ "model.layers.29.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
236
+ "model.layers.29.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
237
+ "model.layers.29.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
238
+ "model.layers.3.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
239
+ "model.layers.3.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
240
+ "model.layers.3.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
241
+ "model.layers.3.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
242
+ "model.layers.3.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
243
+ "model.layers.3.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
244
+ "model.layers.3.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
245
+ "model.layers.3.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
246
+ "model.layers.3.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
247
+ "model.layers.3.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
248
+ "model.layers.30.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
249
+ "model.layers.30.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
250
+ "model.layers.30.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
251
+ "model.layers.30.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
252
+ "model.layers.30.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
253
+ "model.layers.30.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
254
+ "model.layers.30.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
255
+ "model.layers.30.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
256
+ "model.layers.30.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
257
+ "model.layers.30.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
258
+ "model.layers.31.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
259
+ "model.layers.31.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
260
+ "model.layers.31.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
261
+ "model.layers.31.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
262
+ "model.layers.31.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
263
+ "model.layers.31.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
264
+ "model.layers.31.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
265
+ "model.layers.31.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
266
+ "model.layers.31.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
267
+ "model.layers.31.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
268
+ "model.layers.4.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
269
+ "model.layers.4.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
270
+ "model.layers.4.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
271
+ "model.layers.4.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
272
+ "model.layers.4.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
273
+ "model.layers.4.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
274
+ "model.layers.4.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
275
+ "model.layers.4.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
276
+ "model.layers.4.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
277
+ "model.layers.4.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
278
+ "model.layers.5.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
279
+ "model.layers.5.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
280
+ "model.layers.5.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
281
+ "model.layers.5.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
282
+ "model.layers.5.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
283
+ "model.layers.5.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
284
+ "model.layers.5.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
285
+ "model.layers.5.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
286
+ "model.layers.5.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
287
+ "model.layers.5.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
288
+ "model.layers.6.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
289
+ "model.layers.6.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
290
+ "model.layers.6.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
291
+ "model.layers.6.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
292
+ "model.layers.6.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
293
+ "model.layers.6.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
294
+ "model.layers.6.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
295
+ "model.layers.6.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
296
+ "model.layers.6.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
297
+ "model.layers.6.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
298
+ "model.layers.7.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
299
+ "model.layers.7.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
300
+ "model.layers.7.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
301
+ "model.layers.7.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
302
+ "model.layers.7.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
303
+ "model.layers.7.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
304
+ "model.layers.7.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
305
+ "model.layers.7.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
306
+ "model.layers.7.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
307
+ "model.layers.7.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
308
+ "model.layers.8.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
309
+ "model.layers.8.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
310
+ "model.layers.8.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
311
+ "model.layers.8.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
312
+ "model.layers.8.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
313
+ "model.layers.8.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
314
+ "model.layers.8.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
315
+ "model.layers.8.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
316
+ "model.layers.8.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
317
+ "model.layers.8.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
318
+ "model.layers.9.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
319
+ "model.layers.9.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
320
+ "model.layers.9.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
321
+ "model.layers.9.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
322
+ "model.layers.9.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
323
+ "model.layers.9.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
324
+ "model.layers.9.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
325
+ "model.layers.9.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
326
+ "model.layers.9.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
327
+ "model.layers.9.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
328
+ "model.norm.weight": "pytorch_model-00002-of-00002.bin"
329
+ }
330
+ }
VTimeLLM/checkpoints/vicuna-7b-v1.5/special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "<unk>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
VTimeLLM/checkpoints/vicuna-7b-v1.5/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
3
+ size 499723
VTimeLLM/checkpoints/vicuna-7b-v1.5/tokenizer_config.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "bos_token": {
5
+ "__type": "AddedToken",
6
+ "content": "<s>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false
11
+ },
12
+ "clean_up_tokenization_spaces": false,
13
+ "eos_token": {
14
+ "__type": "AddedToken",
15
+ "content": "</s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false
20
+ },
21
+ "legacy": false,
22
+ "model_max_length": 4096,
23
+ "pad_token": null,
24
+ "padding_side": "right",
25
+ "sp_model_kwargs": {},
26
+ "tokenizer_class": "LlamaTokenizer",
27
+ "unk_token": {
28
+ "__type": "AddedToken",
29
+ "content": "<unk>",
30
+ "lstrip": false,
31
+ "normalized": false,
32
+ "rstrip": false,
33
+ "single_word": false
34
+ }
35
+ }
VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-activitynet-stage4/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: ./checkpoints/vtimellm/vicuna-7b-v1.5
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.2
VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-activitynet-stage4/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "./checkpoints/vtimellm/vicuna-7b-v1.5",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 128,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 64,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "o_proj",
24
+ "gate_proj",
25
+ "v_proj",
26
+ "up_proj",
27
+ "q_proj",
28
+ "down_proj",
29
+ "k_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-activitynet-stage4/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c5a1f385fa4355354e4397555aa4717926ce1691edce0cdcd36831f89148ae1
3
+ size 319876480
VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-activitynet-stage4/config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "./checkpoints/vtimellm/vicuna-7b-v1.5",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "bos_token_id": 1,
7
+ "eos_token_id": 2,
8
+ "freeze_mm_mlp_adapter": true,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 4096,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 11008,
13
+ "max_position_embeddings": 4096,
14
+ "model_type": "VTimeLLM",
15
+ "num_attention_heads": 32,
16
+ "num_hidden_layers": 32,
17
+ "num_key_value_heads": 32,
18
+ "pad_token_id": 0,
19
+ "pretraining_tp": 1,
20
+ "rms_norm_eps": 1e-05,
21
+ "rope_scaling": null,
22
+ "tie_word_embeddings": false,
23
+ "torch_dtype": "float16",
24
+ "transformers_version": "4.31.0",
25
+ "tune_mm_mlp_adapter": false,
26
+ "use_cache": true,
27
+ "vocab_size": 32000
28
+ }
VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-activitynet-stage4/log/capfirst.txt ADDED
The diff for this file is too large to render. See raw diff
 
VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-activitynet-stage4/log/metric/capfirst.txt ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ soda_c: 6.48
2
+ METEOR: 7.38
3
+ CIDEr: 29.14
4
+ Num samples: 4885
VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-activitynet-stage4/log/metric/grounding.txt ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ mIoU: 41.21
2
3
4
5
+ Num samples: 17031
VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-activitynet-stage4/log/metric/timefirst.txt ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ soda_c: 6.69
2
+ METEOR: 7.58
3
+ CIDEr: 28.33
4
+ Num samples: 4885
VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-activitynet-stage4/log/timefirst.txt ADDED
The diff for this file is too large to render. See raw diff
 
VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-activitynet-stage4/non_lora_trainables.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:60fb82c3660319e6d0b239950b20c28181e97f1ade117dc0660b40e2ad94a89b
3
+ size 912
VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-activitynet-stage4/trainer_state.json ADDED
@@ -0,0 +1,2371 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.0,
5
+ "global_step": 391,
6
+ "is_hyper_param_search": false,
7
+ "is_local_process_zero": true,
8
+ "is_world_process_zero": true,
9
+ "log_history": [
10
+ {
11
+ "epoch": 0.0,
12
+ "learning_rate": 1.6666666666666667e-06,
13
+ "loss": 1.3645,
14
+ "step": 1
15
+ },
16
+ {
17
+ "epoch": 0.01,
18
+ "learning_rate": 3.3333333333333333e-06,
19
+ "loss": 1.3684,
20
+ "step": 2
21
+ },
22
+ {
23
+ "epoch": 0.01,
24
+ "learning_rate": 5e-06,
25
+ "loss": 1.2526,
26
+ "step": 3
27
+ },
28
+ {
29
+ "epoch": 0.01,
30
+ "learning_rate": 6.666666666666667e-06,
31
+ "loss": 1.3323,
32
+ "step": 4
33
+ },
34
+ {
35
+ "epoch": 0.01,
36
+ "learning_rate": 8.333333333333334e-06,
37
+ "loss": 1.3115,
38
+ "step": 5
39
+ },
40
+ {
41
+ "epoch": 0.02,
42
+ "learning_rate": 1e-05,
43
+ "loss": 1.2538,
44
+ "step": 6
45
+ },
46
+ {
47
+ "epoch": 0.02,
48
+ "learning_rate": 1.1666666666666668e-05,
49
+ "loss": 1.3902,
50
+ "step": 7
51
+ },
52
+ {
53
+ "epoch": 0.02,
54
+ "learning_rate": 1.3333333333333333e-05,
55
+ "loss": 1.2545,
56
+ "step": 8
57
+ },
58
+ {
59
+ "epoch": 0.02,
60
+ "learning_rate": 1.5000000000000002e-05,
61
+ "loss": 1.2489,
62
+ "step": 9
63
+ },
64
+ {
65
+ "epoch": 0.03,
66
+ "learning_rate": 1.6666666666666667e-05,
67
+ "loss": 1.2843,
68
+ "step": 10
69
+ },
70
+ {
71
+ "epoch": 0.03,
72
+ "learning_rate": 1.8333333333333333e-05,
73
+ "loss": 1.2717,
74
+ "step": 11
75
+ },
76
+ {
77
+ "epoch": 0.03,
78
+ "learning_rate": 2e-05,
79
+ "loss": 1.2765,
80
+ "step": 12
81
+ },
82
+ {
83
+ "epoch": 0.03,
84
+ "learning_rate": 1.999965645087791e-05,
85
+ "loss": 1.1861,
86
+ "step": 13
87
+ },
88
+ {
89
+ "epoch": 0.04,
90
+ "learning_rate": 1.9998625827116828e-05,
91
+ "loss": 1.2493,
92
+ "step": 14
93
+ },
94
+ {
95
+ "epoch": 0.04,
96
+ "learning_rate": 1.9996908199530737e-05,
97
+ "loss": 1.1681,
98
+ "step": 15
99
+ },
100
+ {
101
+ "epoch": 0.04,
102
+ "learning_rate": 1.9994503686137526e-05,
103
+ "loss": 1.1345,
104
+ "step": 16
105
+ },
106
+ {
107
+ "epoch": 0.04,
108
+ "learning_rate": 1.999141245215089e-05,
109
+ "loss": 1.1421,
110
+ "step": 17
111
+ },
112
+ {
113
+ "epoch": 0.05,
114
+ "learning_rate": 1.998763470996897e-05,
115
+ "loss": 1.1518,
116
+ "step": 18
117
+ },
118
+ {
119
+ "epoch": 0.05,
120
+ "learning_rate": 1.998317071915977e-05,
121
+ "loss": 1.1099,
122
+ "step": 19
123
+ },
124
+ {
125
+ "epoch": 0.05,
126
+ "learning_rate": 1.9978020786443314e-05,
127
+ "loss": 1.1448,
128
+ "step": 20
129
+ },
130
+ {
131
+ "epoch": 0.05,
132
+ "learning_rate": 1.9972185265670573e-05,
133
+ "loss": 1.1106,
134
+ "step": 21
135
+ },
136
+ {
137
+ "epoch": 0.06,
138
+ "learning_rate": 1.9965664557799164e-05,
139
+ "loss": 1.099,
140
+ "step": 22
141
+ },
142
+ {
143
+ "epoch": 0.06,
144
+ "learning_rate": 1.9958459110865767e-05,
145
+ "loss": 1.0345,
146
+ "step": 23
147
+ },
148
+ {
149
+ "epoch": 0.06,
150
+ "learning_rate": 1.995056941995538e-05,
151
+ "loss": 1.105,
152
+ "step": 24
153
+ },
154
+ {
155
+ "epoch": 0.06,
156
+ "learning_rate": 1.9941996027167286e-05,
157
+ "loss": 1.0901,
158
+ "step": 25
159
+ },
160
+ {
161
+ "epoch": 0.07,
162
+ "learning_rate": 1.993273952157779e-05,
163
+ "loss": 1.0549,
164
+ "step": 26
165
+ },
166
+ {
167
+ "epoch": 0.07,
168
+ "learning_rate": 1.992280053919977e-05,
169
+ "loss": 1.0424,
170
+ "step": 27
171
+ },
172
+ {
173
+ "epoch": 0.07,
174
+ "learning_rate": 1.9912179762938962e-05,
175
+ "loss": 1.0631,
176
+ "step": 28
177
+ },
178
+ {
179
+ "epoch": 0.07,
180
+ "learning_rate": 1.9900877922547034e-05,
181
+ "loss": 1.0341,
182
+ "step": 29
183
+ },
184
+ {
185
+ "epoch": 0.08,
186
+ "learning_rate": 1.988889579457146e-05,
187
+ "loss": 1.0353,
188
+ "step": 30
189
+ },
190
+ {
191
+ "epoch": 0.08,
192
+ "learning_rate": 1.987623420230214e-05,
193
+ "loss": 1.0658,
194
+ "step": 31
195
+ },
196
+ {
197
+ "epoch": 0.08,
198
+ "learning_rate": 1.9862894015714866e-05,
199
+ "loss": 1.1181,
200
+ "step": 32
201
+ },
202
+ {
203
+ "epoch": 0.08,
204
+ "learning_rate": 1.984887615141151e-05,
205
+ "loss": 1.0635,
206
+ "step": 33
207
+ },
208
+ {
209
+ "epoch": 0.09,
210
+ "learning_rate": 1.9834181572557066e-05,
211
+ "loss": 1.1001,
212
+ "step": 34
213
+ },
214
+ {
215
+ "epoch": 0.09,
216
+ "learning_rate": 1.9818811288813475e-05,
217
+ "loss": 1.0327,
218
+ "step": 35
219
+ },
220
+ {
221
+ "epoch": 0.09,
222
+ "learning_rate": 1.9802766356270226e-05,
223
+ "loss": 1.0402,
224
+ "step": 36
225
+ },
226
+ {
227
+ "epoch": 0.09,
228
+ "learning_rate": 1.9786047877371823e-05,
229
+ "loss": 1.1246,
230
+ "step": 37
231
+ },
232
+ {
233
+ "epoch": 0.1,
234
+ "learning_rate": 1.976865700084201e-05,
235
+ "loss": 1.0863,
236
+ "step": 38
237
+ },
238
+ {
239
+ "epoch": 0.1,
240
+ "learning_rate": 1.975059492160486e-05,
241
+ "loss": 1.0068,
242
+ "step": 39
243
+ },
244
+ {
245
+ "epoch": 0.1,
246
+ "learning_rate": 1.9731862880702676e-05,
247
+ "loss": 0.9806,
248
+ "step": 40
249
+ },
250
+ {
251
+ "epoch": 0.1,
252
+ "learning_rate": 1.9712462165210687e-05,
253
+ "loss": 0.9874,
254
+ "step": 41
255
+ },
256
+ {
257
+ "epoch": 0.11,
258
+ "learning_rate": 1.969239410814865e-05,
259
+ "loss": 1.0439,
260
+ "step": 42
261
+ },
262
+ {
263
+ "epoch": 0.11,
264
+ "learning_rate": 1.967166008838925e-05,
265
+ "loss": 1.0838,
266
+ "step": 43
267
+ },
268
+ {
269
+ "epoch": 0.11,
270
+ "learning_rate": 1.9650261530563336e-05,
271
+ "loss": 0.9728,
272
+ "step": 44
273
+ },
274
+ {
275
+ "epoch": 0.12,
276
+ "learning_rate": 1.9628199904962063e-05,
277
+ "loss": 1.0489,
278
+ "step": 45
279
+ },
280
+ {
281
+ "epoch": 0.12,
282
+ "learning_rate": 1.9605476727435854e-05,
283
+ "loss": 0.9422,
284
+ "step": 46
285
+ },
286
+ {
287
+ "epoch": 0.12,
288
+ "learning_rate": 1.9582093559290242e-05,
289
+ "loss": 0.993,
290
+ "step": 47
291
+ },
292
+ {
293
+ "epoch": 0.12,
294
+ "learning_rate": 1.9558052007178608e-05,
295
+ "loss": 0.9845,
296
+ "step": 48
297
+ },
298
+ {
299
+ "epoch": 0.13,
300
+ "learning_rate": 1.9533353722991775e-05,
301
+ "loss": 1.0499,
302
+ "step": 49
303
+ },
304
+ {
305
+ "epoch": 0.13,
306
+ "learning_rate": 1.9508000403744516e-05,
307
+ "loss": 1.1251,
308
+ "step": 50
309
+ },
310
+ {
311
+ "epoch": 0.13,
312
+ "learning_rate": 1.948199379145894e-05,
313
+ "loss": 1.0186,
314
+ "step": 51
315
+ },
316
+ {
317
+ "epoch": 0.13,
318
+ "learning_rate": 1.9455335673044817e-05,
319
+ "loss": 1.0046,
320
+ "step": 52
321
+ },
322
+ {
323
+ "epoch": 0.14,
324
+ "learning_rate": 1.9428027880176775e-05,
325
+ "loss": 1.0096,
326
+ "step": 53
327
+ },
328
+ {
329
+ "epoch": 0.14,
330
+ "learning_rate": 1.9400072289168474e-05,
331
+ "loss": 1.0032,
332
+ "step": 54
333
+ },
334
+ {
335
+ "epoch": 0.14,
336
+ "learning_rate": 1.937147082084366e-05,
337
+ "loss": 0.99,
338
+ "step": 55
339
+ },
340
+ {
341
+ "epoch": 0.14,
342
+ "learning_rate": 1.93422254404042e-05,
343
+ "loss": 1.0222,
344
+ "step": 56
345
+ },
346
+ {
347
+ "epoch": 0.15,
348
+ "learning_rate": 1.931233815729505e-05,
349
+ "loss": 0.9811,
350
+ "step": 57
351
+ },
352
+ {
353
+ "epoch": 0.15,
354
+ "learning_rate": 1.9281811025066184e-05,
355
+ "loss": 1.0403,
356
+ "step": 58
357
+ },
358
+ {
359
+ "epoch": 0.15,
360
+ "learning_rate": 1.9250646141231503e-05,
361
+ "loss": 0.9889,
362
+ "step": 59
363
+ },
364
+ {
365
+ "epoch": 0.15,
366
+ "learning_rate": 1.921884564712469e-05,
367
+ "loss": 0.9928,
368
+ "step": 60
369
+ },
370
+ {
371
+ "epoch": 0.16,
372
+ "learning_rate": 1.9186411727752124e-05,
373
+ "loss": 1.039,
374
+ "step": 61
375
+ },
376
+ {
377
+ "epoch": 0.16,
378
+ "learning_rate": 1.9153346611642706e-05,
379
+ "loss": 1.0045,
380
+ "step": 62
381
+ },
382
+ {
383
+ "epoch": 0.16,
384
+ "learning_rate": 1.911965257069476e-05,
385
+ "loss": 1.0537,
386
+ "step": 63
387
+ },
388
+ {
389
+ "epoch": 0.16,
390
+ "learning_rate": 1.908533192001992e-05,
391
+ "loss": 1.0228,
392
+ "step": 64
393
+ },
394
+ {
395
+ "epoch": 0.17,
396
+ "learning_rate": 1.9050387017784067e-05,
397
+ "loss": 1.0228,
398
+ "step": 65
399
+ },
400
+ {
401
+ "epoch": 0.17,
402
+ "learning_rate": 1.9014820265045304e-05,
403
+ "loss": 1.0907,
404
+ "step": 66
405
+ },
406
+ {
407
+ "epoch": 0.17,
408
+ "learning_rate": 1.8978634105588963e-05,
409
+ "loss": 1.0749,
410
+ "step": 67
411
+ },
412
+ {
413
+ "epoch": 0.17,
414
+ "learning_rate": 1.8941831025759705e-05,
415
+ "loss": 0.9774,
416
+ "step": 68
417
+ },
418
+ {
419
+ "epoch": 0.18,
420
+ "learning_rate": 1.8904413554290687e-05,
421
+ "loss": 1.062,
422
+ "step": 69
423
+ },
424
+ {
425
+ "epoch": 0.18,
426
+ "learning_rate": 1.88663842621298e-05,
427
+ "loss": 1.0407,
428
+ "step": 70
429
+ },
430
+ {
431
+ "epoch": 0.18,
432
+ "learning_rate": 1.8827745762263038e-05,
433
+ "loss": 0.9572,
434
+ "step": 71
435
+ },
436
+ {
437
+ "epoch": 0.18,
438
+ "learning_rate": 1.8788500709534934e-05,
439
+ "loss": 1.0043,
440
+ "step": 72
441
+ },
442
+ {
443
+ "epoch": 0.19,
444
+ "learning_rate": 1.8748651800466174e-05,
445
+ "loss": 1.0551,
446
+ "step": 73
447
+ },
448
+ {
449
+ "epoch": 0.19,
450
+ "learning_rate": 1.8708201773068303e-05,
451
+ "loss": 0.9995,
452
+ "step": 74
453
+ },
454
+ {
455
+ "epoch": 0.19,
456
+ "learning_rate": 1.8667153406655606e-05,
457
+ "loss": 0.9252,
458
+ "step": 75
459
+ },
460
+ {
461
+ "epoch": 0.19,
462
+ "learning_rate": 1.8625509521654122e-05,
463
+ "loss": 0.9991,
464
+ "step": 76
465
+ },
466
+ {
467
+ "epoch": 0.2,
468
+ "learning_rate": 1.8583272979407885e-05,
469
+ "loss": 1.0187,
470
+ "step": 77
471
+ },
472
+ {
473
+ "epoch": 0.2,
474
+ "learning_rate": 1.8540446681982295e-05,
475
+ "loss": 1.0334,
476
+ "step": 78
477
+ },
478
+ {
479
+ "epoch": 0.2,
480
+ "learning_rate": 1.849703357196473e-05,
481
+ "loss": 0.9912,
482
+ "step": 79
483
+ },
484
+ {
485
+ "epoch": 0.2,
486
+ "learning_rate": 1.8453036632262352e-05,
487
+ "loss": 0.9045,
488
+ "step": 80
489
+ },
490
+ {
491
+ "epoch": 0.21,
492
+ "learning_rate": 1.840845888589717e-05,
493
+ "loss": 1.0177,
494
+ "step": 81
495
+ },
496
+ {
497
+ "epoch": 0.21,
498
+ "learning_rate": 1.8363303395798305e-05,
499
+ "loss": 1.023,
500
+ "step": 82
501
+ },
502
+ {
503
+ "epoch": 0.21,
504
+ "learning_rate": 1.8317573264591553e-05,
505
+ "loss": 1.0425,
506
+ "step": 83
507
+ },
508
+ {
509
+ "epoch": 0.21,
510
+ "learning_rate": 1.82712716343862e-05,
511
+ "loss": 0.9558,
512
+ "step": 84
513
+ },
514
+ {
515
+ "epoch": 0.22,
516
+ "learning_rate": 1.822440168655913e-05,
517
+ "loss": 1.0546,
518
+ "step": 85
519
+ },
520
+ {
521
+ "epoch": 0.22,
522
+ "learning_rate": 1.8176966641536228e-05,
523
+ "loss": 1.0546,
524
+ "step": 86
525
+ },
526
+ {
527
+ "epoch": 0.22,
528
+ "learning_rate": 1.812896975857111e-05,
529
+ "loss": 0.9943,
530
+ "step": 87
531
+ },
532
+ {
533
+ "epoch": 0.23,
534
+ "learning_rate": 1.8080414335521174e-05,
535
+ "loss": 1.0328,
536
+ "step": 88
537
+ },
538
+ {
539
+ "epoch": 0.23,
540
+ "learning_rate": 1.803130370862101e-05,
541
+ "loss": 0.9891,
542
+ "step": 89
543
+ },
544
+ {
545
+ "epoch": 0.23,
546
+ "learning_rate": 1.798164125225318e-05,
547
+ "loss": 0.9626,
548
+ "step": 90
549
+ },
550
+ {
551
+ "epoch": 0.23,
552
+ "learning_rate": 1.793143037871633e-05,
553
+ "loss": 1.0983,
554
+ "step": 91
555
+ },
556
+ {
557
+ "epoch": 0.24,
558
+ "learning_rate": 1.788067453799077e-05,
559
+ "loss": 0.9924,
560
+ "step": 92
561
+ },
562
+ {
563
+ "epoch": 0.24,
564
+ "learning_rate": 1.78293772175014e-05,
565
+ "loss": 1.0694,
566
+ "step": 93
567
+ },
568
+ {
569
+ "epoch": 0.24,
570
+ "learning_rate": 1.7777541941878116e-05,
571
+ "loss": 1.0714,
572
+ "step": 94
573
+ },
574
+ {
575
+ "epoch": 0.24,
576
+ "learning_rate": 1.772517227271359e-05,
577
+ "loss": 1.0333,
578
+ "step": 95
579
+ },
580
+ {
581
+ "epoch": 0.25,
582
+ "learning_rate": 1.7672271808318603e-05,
583
+ "loss": 0.9615,
584
+ "step": 96
585
+ },
586
+ {
587
+ "epoch": 0.25,
588
+ "learning_rate": 1.7618844183474775e-05,
589
+ "loss": 1.0454,
590
+ "step": 97
591
+ },
592
+ {
593
+ "epoch": 0.25,
594
+ "learning_rate": 1.7564893069184824e-05,
595
+ "loss": 1.0001,
596
+ "step": 98
597
+ },
598
+ {
599
+ "epoch": 0.25,
600
+ "learning_rate": 1.7510422172420344e-05,
601
+ "loss": 1.0092,
602
+ "step": 99
603
+ },
604
+ {
605
+ "epoch": 0.26,
606
+ "learning_rate": 1.745543523586709e-05,
607
+ "loss": 0.9421,
608
+ "step": 100
609
+ },
610
+ {
611
+ "epoch": 0.26,
612
+ "learning_rate": 1.7399936037667807e-05,
613
+ "loss": 0.989,
614
+ "step": 101
615
+ },
616
+ {
617
+ "epoch": 0.26,
618
+ "learning_rate": 1.7343928391162673e-05,
619
+ "loss": 1.0102,
620
+ "step": 102
621
+ },
622
+ {
623
+ "epoch": 0.26,
624
+ "learning_rate": 1.7287416144627237e-05,
625
+ "loss": 1.0589,
626
+ "step": 103
627
+ },
628
+ {
629
+ "epoch": 0.27,
630
+ "learning_rate": 1.7230403181008032e-05,
631
+ "loss": 1.0357,
632
+ "step": 104
633
+ },
634
+ {
635
+ "epoch": 0.27,
636
+ "learning_rate": 1.7172893417655792e-05,
637
+ "loss": 0.9683,
638
+ "step": 105
639
+ },
640
+ {
641
+ "epoch": 0.27,
642
+ "learning_rate": 1.7114890806056245e-05,
643
+ "loss": 1.0118,
644
+ "step": 106
645
+ },
646
+ {
647
+ "epoch": 0.27,
648
+ "learning_rate": 1.705639933155866e-05,
649
+ "loss": 0.9315,
650
+ "step": 107
651
+ },
652
+ {
653
+ "epoch": 0.28,
654
+ "learning_rate": 1.6997423013101967e-05,
655
+ "loss": 0.976,
656
+ "step": 108
657
+ },
658
+ {
659
+ "epoch": 0.28,
660
+ "learning_rate": 1.6937965902938667e-05,
661
+ "loss": 0.9231,
662
+ "step": 109
663
+ },
664
+ {
665
+ "epoch": 0.28,
666
+ "learning_rate": 1.687803208635635e-05,
667
+ "loss": 1.0081,
668
+ "step": 110
669
+ },
670
+ {
671
+ "epoch": 0.28,
672
+ "learning_rate": 1.6817625681397035e-05,
673
+ "loss": 0.9469,
674
+ "step": 111
675
+ },
676
+ {
677
+ "epoch": 0.29,
678
+ "learning_rate": 1.6756750838574197e-05,
679
+ "loss": 0.9626,
680
+ "step": 112
681
+ },
682
+ {
683
+ "epoch": 0.29,
684
+ "learning_rate": 1.66954117405876e-05,
685
+ "loss": 1.0383,
686
+ "step": 113
687
+ },
688
+ {
689
+ "epoch": 0.29,
690
+ "learning_rate": 1.66336126020359e-05,
691
+ "loss": 0.9196,
692
+ "step": 114
693
+ },
694
+ {
695
+ "epoch": 0.29,
696
+ "learning_rate": 1.6571357669127047e-05,
697
+ "loss": 1.0651,
698
+ "step": 115
699
+ },
700
+ {
701
+ "epoch": 0.3,
702
+ "learning_rate": 1.650865121938656e-05,
703
+ "loss": 1.0137,
704
+ "step": 116
705
+ },
706
+ {
707
+ "epoch": 0.3,
708
+ "learning_rate": 1.644549756136358e-05,
709
+ "loss": 1.0439,
710
+ "step": 117
711
+ },
712
+ {
713
+ "epoch": 0.3,
714
+ "learning_rate": 1.6381901034334876e-05,
715
+ "loss": 1.02,
716
+ "step": 118
717
+ },
718
+ {
719
+ "epoch": 0.3,
720
+ "learning_rate": 1.631786600800664e-05,
721
+ "loss": 0.9758,
722
+ "step": 119
723
+ },
724
+ {
725
+ "epoch": 0.31,
726
+ "learning_rate": 1.6253396882214293e-05,
727
+ "loss": 0.9368,
728
+ "step": 120
729
+ },
730
+ {
731
+ "epoch": 0.31,
732
+ "learning_rate": 1.6188498086620148e-05,
733
+ "loss": 0.9571,
734
+ "step": 121
735
+ },
736
+ {
737
+ "epoch": 0.31,
738
+ "learning_rate": 1.6123174080409055e-05,
739
+ "loss": 0.9936,
740
+ "step": 122
741
+ },
742
+ {
743
+ "epoch": 0.31,
744
+ "learning_rate": 1.6057429351982016e-05,
745
+ "loss": 0.9667,
746
+ "step": 123
747
+ },
748
+ {
749
+ "epoch": 0.32,
750
+ "learning_rate": 1.5991268418647772e-05,
751
+ "loss": 0.9729,
752
+ "step": 124
753
+ },
754
+ {
755
+ "epoch": 0.32,
756
+ "learning_rate": 1.5924695826312434e-05,
757
+ "loss": 0.9807,
758
+ "step": 125
759
+ },
760
+ {
761
+ "epoch": 0.32,
762
+ "learning_rate": 1.585771614916714e-05,
763
+ "loss": 0.9502,
764
+ "step": 126
765
+ },
766
+ {
767
+ "epoch": 0.32,
768
+ "learning_rate": 1.5790333989373738e-05,
769
+ "loss": 1.0288,
770
+ "step": 127
771
+ },
772
+ {
773
+ "epoch": 0.33,
774
+ "learning_rate": 1.5722553976748605e-05,
775
+ "loss": 0.9315,
776
+ "step": 128
777
+ },
778
+ {
779
+ "epoch": 0.33,
780
+ "learning_rate": 1.5654380768444498e-05,
781
+ "loss": 0.9576,
782
+ "step": 129
783
+ },
784
+ {
785
+ "epoch": 0.33,
786
+ "learning_rate": 1.55858190486306e-05,
787
+ "loss": 0.9538,
788
+ "step": 130
789
+ },
790
+ {
791
+ "epoch": 0.34,
792
+ "learning_rate": 1.551687352817063e-05,
793
+ "loss": 1.0317,
794
+ "step": 131
795
+ },
796
+ {
797
+ "epoch": 0.34,
798
+ "learning_rate": 1.5447548944299203e-05,
799
+ "loss": 0.9839,
800
+ "step": 132
801
+ },
802
+ {
803
+ "epoch": 0.34,
804
+ "learning_rate": 1.53778500602963e-05,
805
+ "loss": 0.9363,
806
+ "step": 133
807
+ },
808
+ {
809
+ "epoch": 0.34,
810
+ "learning_rate": 1.5307781665160005e-05,
811
+ "loss": 0.9423,
812
+ "step": 134
813
+ },
814
+ {
815
+ "epoch": 0.35,
816
+ "learning_rate": 1.523734857327744e-05,
817
+ "loss": 0.9763,
818
+ "step": 135
819
+ },
820
+ {
821
+ "epoch": 0.35,
822
+ "learning_rate": 1.5166555624093986e-05,
823
+ "loss": 0.9833,
824
+ "step": 136
825
+ },
826
+ {
827
+ "epoch": 0.35,
828
+ "learning_rate": 1.5095407681780753e-05,
829
+ "loss": 0.9967,
830
+ "step": 137
831
+ },
832
+ {
833
+ "epoch": 0.35,
834
+ "learning_rate": 1.5023909634900362e-05,
835
+ "loss": 0.9926,
836
+ "step": 138
837
+ },
838
+ {
839
+ "epoch": 0.36,
840
+ "learning_rate": 1.4952066396071064e-05,
841
+ "loss": 0.9541,
842
+ "step": 139
843
+ },
844
+ {
845
+ "epoch": 0.36,
846
+ "learning_rate": 1.4879882901629181e-05,
847
+ "loss": 0.9846,
848
+ "step": 140
849
+ },
850
+ {
851
+ "epoch": 0.36,
852
+ "learning_rate": 1.4807364111289941e-05,
853
+ "loss": 1.0408,
854
+ "step": 141
855
+ },
856
+ {
857
+ "epoch": 0.36,
858
+ "learning_rate": 1.4734515007806698e-05,
859
+ "loss": 1.016,
860
+ "step": 142
861
+ },
862
+ {
863
+ "epoch": 0.37,
864
+ "learning_rate": 1.4661340596628564e-05,
865
+ "loss": 0.926,
866
+ "step": 143
867
+ },
868
+ {
869
+ "epoch": 0.37,
870
+ "learning_rate": 1.4587845905556477e-05,
871
+ "loss": 1.0554,
872
+ "step": 144
873
+ },
874
+ {
875
+ "epoch": 0.37,
876
+ "learning_rate": 1.4514035984397759e-05,
877
+ "loss": 0.9519,
878
+ "step": 145
879
+ },
880
+ {
881
+ "epoch": 0.37,
882
+ "learning_rate": 1.4439915904619136e-05,
883
+ "loss": 0.9837,
884
+ "step": 146
885
+ },
886
+ {
887
+ "epoch": 0.38,
888
+ "learning_rate": 1.4365490758998268e-05,
889
+ "loss": 0.9919,
890
+ "step": 147
891
+ },
892
+ {
893
+ "epoch": 0.38,
894
+ "learning_rate": 1.429076566127385e-05,
895
+ "loss": 1.0057,
896
+ "step": 148
897
+ },
898
+ {
899
+ "epoch": 0.38,
900
+ "learning_rate": 1.4215745745794224e-05,
901
+ "loss": 0.9869,
902
+ "step": 149
903
+ },
904
+ {
905
+ "epoch": 0.38,
906
+ "learning_rate": 1.4140436167164611e-05,
907
+ "loss": 0.9596,
908
+ "step": 150
909
+ },
910
+ {
911
+ "epoch": 0.39,
912
+ "learning_rate": 1.4064842099892934e-05,
913
+ "loss": 1.0185,
914
+ "step": 151
915
+ },
916
+ {
917
+ "epoch": 0.39,
918
+ "learning_rate": 1.3988968738034285e-05,
919
+ "loss": 0.9345,
920
+ "step": 152
921
+ },
922
+ {
923
+ "epoch": 0.39,
924
+ "learning_rate": 1.3912821294834033e-05,
925
+ "loss": 0.948,
926
+ "step": 153
927
+ },
928
+ {
929
+ "epoch": 0.39,
930
+ "learning_rate": 1.3836405002369631e-05,
931
+ "loss": 0.9397,
932
+ "step": 154
933
+ },
934
+ {
935
+ "epoch": 0.4,
936
+ "learning_rate": 1.3759725111191118e-05,
937
+ "loss": 1.0747,
938
+ "step": 155
939
+ },
940
+ {
941
+ "epoch": 0.4,
942
+ "learning_rate": 1.3682786889960354e-05,
943
+ "loss": 0.9821,
944
+ "step": 156
945
+ },
946
+ {
947
+ "epoch": 0.4,
948
+ "learning_rate": 1.3605595625089006e-05,
949
+ "loss": 0.9395,
950
+ "step": 157
951
+ },
952
+ {
953
+ "epoch": 0.4,
954
+ "learning_rate": 1.3528156620375335e-05,
955
+ "loss": 0.9629,
956
+ "step": 158
957
+ },
958
+ {
959
+ "epoch": 0.41,
960
+ "learning_rate": 1.3450475196639753e-05,
961
+ "loss": 0.9918,
962
+ "step": 159
963
+ },
964
+ {
965
+ "epoch": 0.41,
966
+ "learning_rate": 1.3372556691359251e-05,
967
+ "loss": 0.9241,
968
+ "step": 160
969
+ },
970
+ {
971
+ "epoch": 0.41,
972
+ "learning_rate": 1.3294406458300646e-05,
973
+ "loss": 0.9903,
974
+ "step": 161
975
+ },
976
+ {
977
+ "epoch": 0.41,
978
+ "learning_rate": 1.3216029867152724e-05,
979
+ "loss": 0.8982,
980
+ "step": 162
981
+ },
982
+ {
983
+ "epoch": 0.42,
984
+ "learning_rate": 1.3137432303157306e-05,
985
+ "loss": 0.9188,
986
+ "step": 163
987
+ },
988
+ {
989
+ "epoch": 0.42,
990
+ "learning_rate": 1.3058619166739212e-05,
991
+ "loss": 0.9866,
992
+ "step": 164
993
+ },
994
+ {
995
+ "epoch": 0.42,
996
+ "learning_rate": 1.2979595873135208e-05,
997
+ "loss": 0.8796,
998
+ "step": 165
999
+ },
1000
+ {
1001
+ "epoch": 0.42,
1002
+ "learning_rate": 1.290036785202192e-05,
1003
+ "loss": 0.9284,
1004
+ "step": 166
1005
+ },
1006
+ {
1007
+ "epoch": 0.43,
1008
+ "learning_rate": 1.2820940547142773e-05,
1009
+ "loss": 1.0485,
1010
+ "step": 167
1011
+ },
1012
+ {
1013
+ "epoch": 0.43,
1014
+ "learning_rate": 1.2741319415933934e-05,
1015
+ "loss": 1.0124,
1016
+ "step": 168
1017
+ },
1018
+ {
1019
+ "epoch": 0.43,
1020
+ "learning_rate": 1.2661509929149351e-05,
1021
+ "loss": 0.9924,
1022
+ "step": 169
1023
+ },
1024
+ {
1025
+ "epoch": 0.43,
1026
+ "learning_rate": 1.258151757048485e-05,
1027
+ "loss": 0.9507,
1028
+ "step": 170
1029
+ },
1030
+ {
1031
+ "epoch": 0.44,
1032
+ "learning_rate": 1.2501347836201343e-05,
1033
+ "loss": 0.9186,
1034
+ "step": 171
1035
+ },
1036
+ {
1037
+ "epoch": 0.44,
1038
+ "learning_rate": 1.2421006234747202e-05,
1039
+ "loss": 0.9893,
1040
+ "step": 172
1041
+ },
1042
+ {
1043
+ "epoch": 0.44,
1044
+ "learning_rate": 1.2340498286379757e-05,
1045
+ "loss": 1.0053,
1046
+ "step": 173
1047
+ },
1048
+ {
1049
+ "epoch": 0.45,
1050
+ "learning_rate": 1.2259829522786003e-05,
1051
+ "loss": 0.9122,
1052
+ "step": 174
1053
+ },
1054
+ {
1055
+ "epoch": 0.45,
1056
+ "learning_rate": 1.2179005486702518e-05,
1057
+ "loss": 0.9937,
1058
+ "step": 175
1059
+ },
1060
+ {
1061
+ "epoch": 0.45,
1062
+ "learning_rate": 1.2098031731534636e-05,
1063
+ "loss": 0.9701,
1064
+ "step": 176
1065
+ },
1066
+ {
1067
+ "epoch": 0.45,
1068
+ "learning_rate": 1.2016913820974855e-05,
1069
+ "loss": 1.0609,
1070
+ "step": 177
1071
+ },
1072
+ {
1073
+ "epoch": 0.46,
1074
+ "learning_rate": 1.1935657328620566e-05,
1075
+ "loss": 0.9231,
1076
+ "step": 178
1077
+ },
1078
+ {
1079
+ "epoch": 0.46,
1080
+ "learning_rate": 1.1854267837591095e-05,
1081
+ "loss": 0.9559,
1082
+ "step": 179
1083
+ },
1084
+ {
1085
+ "epoch": 0.46,
1086
+ "learning_rate": 1.1772750940144079e-05,
1087
+ "loss": 0.8567,
1088
+ "step": 180
1089
+ },
1090
+ {
1091
+ "epoch": 0.46,
1092
+ "learning_rate": 1.1691112237291225e-05,
1093
+ "loss": 0.9289,
1094
+ "step": 181
1095
+ },
1096
+ {
1097
+ "epoch": 0.47,
1098
+ "learning_rate": 1.1609357338413476e-05,
1099
+ "loss": 0.9079,
1100
+ "step": 182
1101
+ },
1102
+ {
1103
+ "epoch": 0.47,
1104
+ "learning_rate": 1.1527491860875574e-05,
1105
+ "loss": 0.9302,
1106
+ "step": 183
1107
+ },
1108
+ {
1109
+ "epoch": 0.47,
1110
+ "learning_rate": 1.1445521429640113e-05,
1111
+ "loss": 0.9477,
1112
+ "step": 184
1113
+ },
1114
+ {
1115
+ "epoch": 0.47,
1116
+ "learning_rate": 1.136345167688103e-05,
1117
+ "loss": 0.921,
1118
+ "step": 185
1119
+ },
1120
+ {
1121
+ "epoch": 0.48,
1122
+ "learning_rate": 1.1281288241596624e-05,
1123
+ "loss": 0.9945,
1124
+ "step": 186
1125
+ },
1126
+ {
1127
+ "epoch": 0.48,
1128
+ "learning_rate": 1.1199036769222104e-05,
1129
+ "loss": 0.9515,
1130
+ "step": 187
1131
+ },
1132
+ {
1133
+ "epoch": 0.48,
1134
+ "learning_rate": 1.1116702911241704e-05,
1135
+ "loss": 1.0157,
1136
+ "step": 188
1137
+ },
1138
+ {
1139
+ "epoch": 0.48,
1140
+ "learning_rate": 1.1034292324800342e-05,
1141
+ "loss": 0.9351,
1142
+ "step": 189
1143
+ },
1144
+ {
1145
+ "epoch": 0.49,
1146
+ "learning_rate": 1.0951810672314946e-05,
1147
+ "loss": 0.9656,
1148
+ "step": 190
1149
+ },
1150
+ {
1151
+ "epoch": 0.49,
1152
+ "learning_rate": 1.0869263621085375e-05,
1153
+ "loss": 0.9291,
1154
+ "step": 191
1155
+ },
1156
+ {
1157
+ "epoch": 0.49,
1158
+ "learning_rate": 1.0786656842905028e-05,
1159
+ "loss": 0.9146,
1160
+ "step": 192
1161
+ },
1162
+ {
1163
+ "epoch": 0.49,
1164
+ "learning_rate": 1.0703996013671126e-05,
1165
+ "loss": 0.9352,
1166
+ "step": 193
1167
+ },
1168
+ {
1169
+ "epoch": 0.5,
1170
+ "learning_rate": 1.0621286812994733e-05,
1171
+ "loss": 0.9889,
1172
+ "step": 194
1173
+ },
1174
+ {
1175
+ "epoch": 0.5,
1176
+ "learning_rate": 1.0538534923810506e-05,
1177
+ "loss": 0.9745,
1178
+ "step": 195
1179
+ },
1180
+ {
1181
+ "epoch": 0.5,
1182
+ "learning_rate": 1.0455746031986215e-05,
1183
+ "loss": 0.9237,
1184
+ "step": 196
1185
+ },
1186
+ {
1187
+ "epoch": 0.5,
1188
+ "learning_rate": 1.0372925825932095e-05,
1189
+ "loss": 0.9206,
1190
+ "step": 197
1191
+ },
1192
+ {
1193
+ "epoch": 0.51,
1194
+ "learning_rate": 1.029007999620995e-05,
1195
+ "loss": 0.9615,
1196
+ "step": 198
1197
+ },
1198
+ {
1199
+ "epoch": 0.51,
1200
+ "learning_rate": 1.0207214235142197e-05,
1201
+ "loss": 1.0152,
1202
+ "step": 199
1203
+ },
1204
+ {
1205
+ "epoch": 0.51,
1206
+ "learning_rate": 1.0124334236420735e-05,
1207
+ "loss": 1.0123,
1208
+ "step": 200
1209
+ },
1210
+ {
1211
+ "epoch": 0.51,
1212
+ "learning_rate": 1.0041445694715717e-05,
1213
+ "loss": 0.9476,
1214
+ "step": 201
1215
+ },
1216
+ {
1217
+ "epoch": 0.52,
1218
+ "learning_rate": 9.95855430528429e-06,
1219
+ "loss": 0.9966,
1220
+ "step": 202
1221
+ },
1222
+ {
1223
+ "epoch": 0.52,
1224
+ "learning_rate": 9.87566576357927e-06,
1225
+ "loss": 1.0205,
1226
+ "step": 203
1227
+ },
1228
+ {
1229
+ "epoch": 0.52,
1230
+ "learning_rate": 9.792785764857803e-06,
1231
+ "loss": 1.0027,
1232
+ "step": 204
1233
+ },
1234
+ {
1235
+ "epoch": 0.52,
1236
+ "learning_rate": 9.709920003790054e-06,
1237
+ "loss": 0.9461,
1238
+ "step": 205
1239
+ },
1240
+ {
1241
+ "epoch": 0.53,
1242
+ "learning_rate": 9.627074174067909e-06,
1243
+ "loss": 1.0176,
1244
+ "step": 206
1245
+ },
1246
+ {
1247
+ "epoch": 0.53,
1248
+ "learning_rate": 9.544253968013785e-06,
1249
+ "loss": 0.9801,
1250
+ "step": 207
1251
+ },
1252
+ {
1253
+ "epoch": 0.53,
1254
+ "learning_rate": 9.461465076189499e-06,
1255
+ "loss": 0.9844,
1256
+ "step": 208
1257
+ },
1258
+ {
1259
+ "epoch": 0.53,
1260
+ "learning_rate": 9.37871318700527e-06,
1261
+ "loss": 0.9968,
1262
+ "step": 209
1263
+ },
1264
+ {
1265
+ "epoch": 0.54,
1266
+ "learning_rate": 9.296003986328876e-06,
1267
+ "loss": 0.9599,
1268
+ "step": 210
1269
+ },
1270
+ {
1271
+ "epoch": 0.54,
1272
+ "learning_rate": 9.213343157094975e-06,
1273
+ "loss": 0.8952,
1274
+ "step": 211
1275
+ },
1276
+ {
1277
+ "epoch": 0.54,
1278
+ "learning_rate": 9.130736378914626e-06,
1279
+ "loss": 0.9511,
1280
+ "step": 212
1281
+ },
1282
+ {
1283
+ "epoch": 0.54,
1284
+ "learning_rate": 9.048189327685056e-06,
1285
+ "loss": 0.8909,
1286
+ "step": 213
1287
+ },
1288
+ {
1289
+ "epoch": 0.55,
1290
+ "learning_rate": 8.965707675199661e-06,
1291
+ "loss": 0.9814,
1292
+ "step": 214
1293
+ },
1294
+ {
1295
+ "epoch": 0.55,
1296
+ "learning_rate": 8.883297088758298e-06,
1297
+ "loss": 0.9199,
1298
+ "step": 215
1299
+ },
1300
+ {
1301
+ "epoch": 0.55,
1302
+ "learning_rate": 8.800963230777895e-06,
1303
+ "loss": 0.9979,
1304
+ "step": 216
1305
+ },
1306
+ {
1307
+ "epoch": 0.55,
1308
+ "learning_rate": 8.718711758403382e-06,
1309
+ "loss": 0.9897,
1310
+ "step": 217
1311
+ },
1312
+ {
1313
+ "epoch": 0.56,
1314
+ "learning_rate": 8.636548323118974e-06,
1315
+ "loss": 0.9501,
1316
+ "step": 218
1317
+ },
1318
+ {
1319
+ "epoch": 0.56,
1320
+ "learning_rate": 8.554478570359888e-06,
1321
+ "loss": 0.8839,
1322
+ "step": 219
1323
+ },
1324
+ {
1325
+ "epoch": 0.56,
1326
+ "learning_rate": 8.472508139124427e-06,
1327
+ "loss": 0.9394,
1328
+ "step": 220
1329
+ },
1330
+ {
1331
+ "epoch": 0.57,
1332
+ "learning_rate": 8.390642661586527e-06,
1333
+ "loss": 0.9877,
1334
+ "step": 221
1335
+ },
1336
+ {
1337
+ "epoch": 0.57,
1338
+ "learning_rate": 8.308887762708776e-06,
1339
+ "loss": 0.969,
1340
+ "step": 222
1341
+ },
1342
+ {
1343
+ "epoch": 0.57,
1344
+ "learning_rate": 8.227249059855926e-06,
1345
+ "loss": 0.8753,
1346
+ "step": 223
1347
+ },
1348
+ {
1349
+ "epoch": 0.57,
1350
+ "learning_rate": 8.145732162408906e-06,
1351
+ "loss": 1.015,
1352
+ "step": 224
1353
+ },
1354
+ {
1355
+ "epoch": 0.58,
1356
+ "learning_rate": 8.064342671379436e-06,
1357
+ "loss": 0.9764,
1358
+ "step": 225
1359
+ },
1360
+ {
1361
+ "epoch": 0.58,
1362
+ "learning_rate": 7.983086179025148e-06,
1363
+ "loss": 0.9725,
1364
+ "step": 226
1365
+ },
1366
+ {
1367
+ "epoch": 0.58,
1368
+ "learning_rate": 7.901968268465367e-06,
1369
+ "loss": 0.8926,
1370
+ "step": 227
1371
+ },
1372
+ {
1373
+ "epoch": 0.58,
1374
+ "learning_rate": 7.820994513297484e-06,
1375
+ "loss": 0.9523,
1376
+ "step": 228
1377
+ },
1378
+ {
1379
+ "epoch": 0.59,
1380
+ "learning_rate": 7.740170477214004e-06,
1381
+ "loss": 1.0031,
1382
+ "step": 229
1383
+ },
1384
+ {
1385
+ "epoch": 0.59,
1386
+ "learning_rate": 7.659501713620247e-06,
1387
+ "loss": 1.0411,
1388
+ "step": 230
1389
+ },
1390
+ {
1391
+ "epoch": 0.59,
1392
+ "learning_rate": 7.578993765252799e-06,
1393
+ "loss": 0.9371,
1394
+ "step": 231
1395
+ },
1396
+ {
1397
+ "epoch": 0.59,
1398
+ "learning_rate": 7.498652163798659e-06,
1399
+ "loss": 0.9316,
1400
+ "step": 232
1401
+ },
1402
+ {
1403
+ "epoch": 0.6,
1404
+ "learning_rate": 7.418482429515153e-06,
1405
+ "loss": 0.9344,
1406
+ "step": 233
1407
+ },
1408
+ {
1409
+ "epoch": 0.6,
1410
+ "learning_rate": 7.338490070850649e-06,
1411
+ "loss": 0.9947,
1412
+ "step": 234
1413
+ },
1414
+ {
1415
+ "epoch": 0.6,
1416
+ "learning_rate": 7.258680584066069e-06,
1417
+ "loss": 0.9614,
1418
+ "step": 235
1419
+ },
1420
+ {
1421
+ "epoch": 0.6,
1422
+ "learning_rate": 7.17905945285723e-06,
1423
+ "loss": 1.008,
1424
+ "step": 236
1425
+ },
1426
+ {
1427
+ "epoch": 0.61,
1428
+ "learning_rate": 7.09963214797808e-06,
1429
+ "loss": 0.9241,
1430
+ "step": 237
1431
+ },
1432
+ {
1433
+ "epoch": 0.61,
1434
+ "learning_rate": 7.020404126864795e-06,
1435
+ "loss": 0.9262,
1436
+ "step": 238
1437
+ },
1438
+ {
1439
+ "epoch": 0.61,
1440
+ "learning_rate": 6.94138083326079e-06,
1441
+ "loss": 0.9748,
1442
+ "step": 239
1443
+ },
1444
+ {
1445
+ "epoch": 0.61,
1446
+ "learning_rate": 6.862567696842694e-06,
1447
+ "loss": 1.0857,
1448
+ "step": 240
1449
+ },
1450
+ {
1451
+ "epoch": 0.62,
1452
+ "learning_rate": 6.78397013284728e-06,
1453
+ "loss": 0.9903,
1454
+ "step": 241
1455
+ },
1456
+ {
1457
+ "epoch": 0.62,
1458
+ "learning_rate": 6.705593541699358e-06,
1459
+ "loss": 0.9693,
1460
+ "step": 242
1461
+ },
1462
+ {
1463
+ "epoch": 0.62,
1464
+ "learning_rate": 6.627443308640749e-06,
1465
+ "loss": 0.8737,
1466
+ "step": 243
1467
+ },
1468
+ {
1469
+ "epoch": 0.62,
1470
+ "learning_rate": 6.549524803360249e-06,
1471
+ "loss": 0.979,
1472
+ "step": 244
1473
+ },
1474
+ {
1475
+ "epoch": 0.63,
1476
+ "learning_rate": 6.4718433796246685e-06,
1477
+ "loss": 0.8629,
1478
+ "step": 245
1479
+ },
1480
+ {
1481
+ "epoch": 0.63,
1482
+ "learning_rate": 6.394404374910996e-06,
1483
+ "loss": 0.9543,
1484
+ "step": 246
1485
+ },
1486
+ {
1487
+ "epoch": 0.63,
1488
+ "learning_rate": 6.317213110039652e-06,
1489
+ "loss": 0.9894,
1490
+ "step": 247
1491
+ },
1492
+ {
1493
+ "epoch": 0.63,
1494
+ "learning_rate": 6.240274888808884e-06,
1495
+ "loss": 0.9522,
1496
+ "step": 248
1497
+ },
1498
+ {
1499
+ "epoch": 0.64,
1500
+ "learning_rate": 6.16359499763037e-06,
1501
+ "loss": 0.9717,
1502
+ "step": 249
1503
+ },
1504
+ {
1505
+ "epoch": 0.64,
1506
+ "learning_rate": 6.087178705165969e-06,
1507
+ "loss": 0.9822,
1508
+ "step": 250
1509
+ },
1510
+ {
1511
+ "epoch": 0.64,
1512
+ "learning_rate": 6.011031261965716e-06,
1513
+ "loss": 0.9542,
1514
+ "step": 251
1515
+ },
1516
+ {
1517
+ "epoch": 0.64,
1518
+ "learning_rate": 5.9351579001070655e-06,
1519
+ "loss": 0.952,
1520
+ "step": 252
1521
+ },
1522
+ {
1523
+ "epoch": 0.65,
1524
+ "learning_rate": 5.859563832835393e-06,
1525
+ "loss": 0.9413,
1526
+ "step": 253
1527
+ },
1528
+ {
1529
+ "epoch": 0.65,
1530
+ "learning_rate": 5.784254254205779e-06,
1531
+ "loss": 0.9441,
1532
+ "step": 254
1533
+ },
1534
+ {
1535
+ "epoch": 0.65,
1536
+ "learning_rate": 5.70923433872615e-06,
1537
+ "loss": 0.9281,
1538
+ "step": 255
1539
+ },
1540
+ {
1541
+ "epoch": 0.65,
1542
+ "learning_rate": 5.634509241001736e-06,
1543
+ "loss": 0.9656,
1544
+ "step": 256
1545
+ },
1546
+ {
1547
+ "epoch": 0.66,
1548
+ "learning_rate": 5.5600840953808675e-06,
1549
+ "loss": 0.9446,
1550
+ "step": 257
1551
+ },
1552
+ {
1553
+ "epoch": 0.66,
1554
+ "learning_rate": 5.485964015602243e-06,
1555
+ "loss": 0.9683,
1556
+ "step": 258
1557
+ },
1558
+ {
1559
+ "epoch": 0.66,
1560
+ "learning_rate": 5.412154094443527e-06,
1561
+ "loss": 0.9644,
1562
+ "step": 259
1563
+ },
1564
+ {
1565
+ "epoch": 0.66,
1566
+ "learning_rate": 5.338659403371438e-06,
1567
+ "loss": 0.9037,
1568
+ "step": 260
1569
+ },
1570
+ {
1571
+ "epoch": 0.67,
1572
+ "learning_rate": 5.265484992193302e-06,
1573
+ "loss": 0.9659,
1574
+ "step": 261
1575
+ },
1576
+ {
1577
+ "epoch": 0.67,
1578
+ "learning_rate": 5.19263588871006e-06,
1579
+ "loss": 0.8981,
1580
+ "step": 262
1581
+ },
1582
+ {
1583
+ "epoch": 0.67,
1584
+ "learning_rate": 5.120117098370824e-06,
1585
+ "loss": 0.9814,
1586
+ "step": 263
1587
+ },
1588
+ {
1589
+ "epoch": 0.68,
1590
+ "learning_rate": 5.047933603928936e-06,
1591
+ "loss": 0.9813,
1592
+ "step": 264
1593
+ },
1594
+ {
1595
+ "epoch": 0.68,
1596
+ "learning_rate": 4.976090365099638e-06,
1597
+ "loss": 0.9629,
1598
+ "step": 265
1599
+ },
1600
+ {
1601
+ "epoch": 0.68,
1602
+ "learning_rate": 4.904592318219249e-06,
1603
+ "loss": 0.9296,
1604
+ "step": 266
1605
+ },
1606
+ {
1607
+ "epoch": 0.68,
1608
+ "learning_rate": 4.833444375906013e-06,
1609
+ "loss": 0.979,
1610
+ "step": 267
1611
+ },
1612
+ {
1613
+ "epoch": 0.69,
1614
+ "learning_rate": 4.762651426722566e-06,
1615
+ "loss": 0.9557,
1616
+ "step": 268
1617
+ },
1618
+ {
1619
+ "epoch": 0.69,
1620
+ "learning_rate": 4.6922183348399996e-06,
1621
+ "loss": 0.9559,
1622
+ "step": 269
1623
+ },
1624
+ {
1625
+ "epoch": 0.69,
1626
+ "learning_rate": 4.622149939703704e-06,
1627
+ "loss": 0.9052,
1628
+ "step": 270
1629
+ },
1630
+ {
1631
+ "epoch": 0.69,
1632
+ "learning_rate": 4.552451055700802e-06,
1633
+ "loss": 0.9409,
1634
+ "step": 271
1635
+ },
1636
+ {
1637
+ "epoch": 0.7,
1638
+ "learning_rate": 4.483126471829371e-06,
1639
+ "loss": 0.9912,
1640
+ "step": 272
1641
+ },
1642
+ {
1643
+ "epoch": 0.7,
1644
+ "learning_rate": 4.414180951369405e-06,
1645
+ "loss": 0.9163,
1646
+ "step": 273
1647
+ },
1648
+ {
1649
+ "epoch": 0.7,
1650
+ "learning_rate": 4.345619231555503e-06,
1651
+ "loss": 1.0064,
1652
+ "step": 274
1653
+ },
1654
+ {
1655
+ "epoch": 0.7,
1656
+ "learning_rate": 4.277446023251401e-06,
1657
+ "loss": 0.9915,
1658
+ "step": 275
1659
+ },
1660
+ {
1661
+ "epoch": 0.71,
1662
+ "learning_rate": 4.209666010626262e-06,
1663
+ "loss": 0.9288,
1664
+ "step": 276
1665
+ },
1666
+ {
1667
+ "epoch": 0.71,
1668
+ "learning_rate": 4.142283850832862e-06,
1669
+ "loss": 0.8852,
1670
+ "step": 277
1671
+ },
1672
+ {
1673
+ "epoch": 0.71,
1674
+ "learning_rate": 4.0753041736875675e-06,
1675
+ "loss": 0.9018,
1676
+ "step": 278
1677
+ },
1678
+ {
1679
+ "epoch": 0.71,
1680
+ "learning_rate": 4.008731581352229e-06,
1681
+ "loss": 0.9481,
1682
+ "step": 279
1683
+ },
1684
+ {
1685
+ "epoch": 0.72,
1686
+ "learning_rate": 3.942570648017988e-06,
1687
+ "loss": 0.9763,
1688
+ "step": 280
1689
+ },
1690
+ {
1691
+ "epoch": 0.72,
1692
+ "learning_rate": 3.876825919590944e-06,
1693
+ "loss": 0.9281,
1694
+ "step": 281
1695
+ },
1696
+ {
1697
+ "epoch": 0.72,
1698
+ "learning_rate": 3.8115019133798535e-06,
1699
+ "loss": 0.9188,
1700
+ "step": 282
1701
+ },
1702
+ {
1703
+ "epoch": 0.72,
1704
+ "learning_rate": 3.74660311778571e-06,
1705
+ "loss": 0.9042,
1706
+ "step": 283
1707
+ },
1708
+ {
1709
+ "epoch": 0.73,
1710
+ "learning_rate": 3.682133991993361e-06,
1711
+ "loss": 0.9654,
1712
+ "step": 284
1713
+ },
1714
+ {
1715
+ "epoch": 0.73,
1716
+ "learning_rate": 3.6180989656651268e-06,
1717
+ "loss": 0.9618,
1718
+ "step": 285
1719
+ },
1720
+ {
1721
+ "epoch": 0.73,
1722
+ "learning_rate": 3.5545024386364192e-06,
1723
+ "loss": 0.9085,
1724
+ "step": 286
1725
+ },
1726
+ {
1727
+ "epoch": 0.73,
1728
+ "learning_rate": 3.491348780613444e-06,
1729
+ "loss": 0.8613,
1730
+ "step": 287
1731
+ },
1732
+ {
1733
+ "epoch": 0.74,
1734
+ "learning_rate": 3.4286423308729523e-06,
1735
+ "loss": 0.9884,
1736
+ "step": 288
1737
+ },
1738
+ {
1739
+ "epoch": 0.74,
1740
+ "learning_rate": 3.3663873979641014e-06,
1741
+ "loss": 0.9601,
1742
+ "step": 289
1743
+ },
1744
+ {
1745
+ "epoch": 0.74,
1746
+ "learning_rate": 3.304588259412399e-06,
1747
+ "loss": 0.8978,
1748
+ "step": 290
1749
+ },
1750
+ {
1751
+ "epoch": 0.74,
1752
+ "learning_rate": 3.243249161425801e-06,
1753
+ "loss": 0.9106,
1754
+ "step": 291
1755
+ },
1756
+ {
1757
+ "epoch": 0.75,
1758
+ "learning_rate": 3.1823743186029676e-06,
1759
+ "loss": 0.9477,
1760
+ "step": 292
1761
+ },
1762
+ {
1763
+ "epoch": 0.75,
1764
+ "learning_rate": 3.1219679136436496e-06,
1765
+ "loss": 0.973,
1766
+ "step": 293
1767
+ },
1768
+ {
1769
+ "epoch": 0.75,
1770
+ "learning_rate": 3.062034097061335e-06,
1771
+ "loss": 0.9847,
1772
+ "step": 294
1773
+ },
1774
+ {
1775
+ "epoch": 0.75,
1776
+ "learning_rate": 3.0025769868980337e-06,
1777
+ "loss": 0.9314,
1778
+ "step": 295
1779
+ },
1780
+ {
1781
+ "epoch": 0.76,
1782
+ "learning_rate": 2.9436006684413444e-06,
1783
+ "loss": 0.9282,
1784
+ "step": 296
1785
+ },
1786
+ {
1787
+ "epoch": 0.76,
1788
+ "learning_rate": 2.88510919394376e-06,
1789
+ "loss": 0.9837,
1790
+ "step": 297
1791
+ },
1792
+ {
1793
+ "epoch": 0.76,
1794
+ "learning_rate": 2.827106582344212e-06,
1795
+ "loss": 0.9015,
1796
+ "step": 298
1797
+ },
1798
+ {
1799
+ "epoch": 0.76,
1800
+ "learning_rate": 2.7695968189919686e-06,
1801
+ "loss": 0.9485,
1802
+ "step": 299
1803
+ },
1804
+ {
1805
+ "epoch": 0.77,
1806
+ "learning_rate": 2.712583855372769e-06,
1807
+ "loss": 0.912,
1808
+ "step": 300
1809
+ },
1810
+ {
1811
+ "epoch": 0.77,
1812
+ "learning_rate": 2.6560716088373295e-06,
1813
+ "loss": 0.9006,
1814
+ "step": 301
1815
+ },
1816
+ {
1817
+ "epoch": 0.77,
1818
+ "learning_rate": 2.6000639623321934e-06,
1819
+ "loss": 0.9065,
1820
+ "step": 302
1821
+ },
1822
+ {
1823
+ "epoch": 0.77,
1824
+ "learning_rate": 2.5445647641329154e-06,
1825
+ "loss": 1.051,
1826
+ "step": 303
1827
+ },
1828
+ {
1829
+ "epoch": 0.78,
1830
+ "learning_rate": 2.489577827579659e-06,
1831
+ "loss": 0.9125,
1832
+ "step": 304
1833
+ },
1834
+ {
1835
+ "epoch": 0.78,
1836
+ "learning_rate": 2.4351069308151774e-06,
1837
+ "loss": 0.9497,
1838
+ "step": 305
1839
+ },
1840
+ {
1841
+ "epoch": 0.78,
1842
+ "learning_rate": 2.381155816525228e-06,
1843
+ "loss": 0.9467,
1844
+ "step": 306
1845
+ },
1846
+ {
1847
+ "epoch": 0.79,
1848
+ "learning_rate": 2.3277281916814e-06,
1849
+ "loss": 0.8899,
1850
+ "step": 307
1851
+ },
1852
+ {
1853
+ "epoch": 0.79,
1854
+ "learning_rate": 2.2748277272864108e-06,
1855
+ "loss": 0.9515,
1856
+ "step": 308
1857
+ },
1858
+ {
1859
+ "epoch": 0.79,
1860
+ "learning_rate": 2.222458058121889e-06,
1861
+ "loss": 0.9185,
1862
+ "step": 309
1863
+ },
1864
+ {
1865
+ "epoch": 0.79,
1866
+ "learning_rate": 2.170622782498598e-06,
1867
+ "loss": 0.9493,
1868
+ "step": 310
1869
+ },
1870
+ {
1871
+ "epoch": 0.8,
1872
+ "learning_rate": 2.119325462009233e-06,
1873
+ "loss": 0.9072,
1874
+ "step": 311
1875
+ },
1876
+ {
1877
+ "epoch": 0.8,
1878
+ "learning_rate": 2.0685696212836737e-06,
1879
+ "loss": 1.0143,
1880
+ "step": 312
1881
+ },
1882
+ {
1883
+ "epoch": 0.8,
1884
+ "learning_rate": 2.0183587477468226e-06,
1885
+ "loss": 0.9501,
1886
+ "step": 313
1887
+ },
1888
+ {
1889
+ "epoch": 0.8,
1890
+ "learning_rate": 1.9686962913789897e-06,
1891
+ "loss": 0.8909,
1892
+ "step": 314
1893
+ },
1894
+ {
1895
+ "epoch": 0.81,
1896
+ "learning_rate": 1.91958566447883e-06,
1897
+ "loss": 0.9468,
1898
+ "step": 315
1899
+ },
1900
+ {
1901
+ "epoch": 0.81,
1902
+ "learning_rate": 1.871030241428894e-06,
1903
+ "loss": 0.9153,
1904
+ "step": 316
1905
+ },
1906
+ {
1907
+ "epoch": 0.81,
1908
+ "learning_rate": 1.8230333584637715e-06,
1909
+ "loss": 0.9079,
1910
+ "step": 317
1911
+ },
1912
+ {
1913
+ "epoch": 0.81,
1914
+ "learning_rate": 1.7755983134408706e-06,
1915
+ "loss": 0.9417,
1916
+ "step": 318
1917
+ },
1918
+ {
1919
+ "epoch": 0.82,
1920
+ "learning_rate": 1.7287283656138009e-06,
1921
+ "loss": 0.9716,
1922
+ "step": 319
1923
+ },
1924
+ {
1925
+ "epoch": 0.82,
1926
+ "learning_rate": 1.6824267354084478e-06,
1927
+ "loss": 0.915,
1928
+ "step": 320
1929
+ },
1930
+ {
1931
+ "epoch": 0.82,
1932
+ "learning_rate": 1.6366966042016996e-06,
1933
+ "loss": 0.9645,
1934
+ "step": 321
1935
+ },
1936
+ {
1937
+ "epoch": 0.82,
1938
+ "learning_rate": 1.5915411141028325e-06,
1939
+ "loss": 0.9699,
1940
+ "step": 322
1941
+ },
1942
+ {
1943
+ "epoch": 0.83,
1944
+ "learning_rate": 1.5469633677376494e-06,
1945
+ "loss": 0.8293,
1946
+ "step": 323
1947
+ },
1948
+ {
1949
+ "epoch": 0.83,
1950
+ "learning_rate": 1.502966428035274e-06,
1951
+ "loss": 0.9596,
1952
+ "step": 324
1953
+ },
1954
+ {
1955
+ "epoch": 0.83,
1956
+ "learning_rate": 1.4595533180177058e-06,
1957
+ "loss": 0.9952,
1958
+ "step": 325
1959
+ },
1960
+ {
1961
+ "epoch": 0.83,
1962
+ "learning_rate": 1.4167270205921168e-06,
1963
+ "loss": 0.9765,
1964
+ "step": 326
1965
+ },
1966
+ {
1967
+ "epoch": 0.84,
1968
+ "learning_rate": 1.37449047834588e-06,
1969
+ "loss": 0.9713,
1970
+ "step": 327
1971
+ },
1972
+ {
1973
+ "epoch": 0.84,
1974
+ "learning_rate": 1.332846593344399e-06,
1975
+ "loss": 0.9937,
1976
+ "step": 328
1977
+ },
1978
+ {
1979
+ "epoch": 0.84,
1980
+ "learning_rate": 1.2917982269316975e-06,
1981
+ "loss": 0.9523,
1982
+ "step": 329
1983
+ },
1984
+ {
1985
+ "epoch": 0.84,
1986
+ "learning_rate": 1.2513481995338284e-06,
1987
+ "loss": 0.8965,
1988
+ "step": 330
1989
+ },
1990
+ {
1991
+ "epoch": 0.85,
1992
+ "learning_rate": 1.211499290465069e-06,
1993
+ "loss": 0.9593,
1994
+ "step": 331
1995
+ },
1996
+ {
1997
+ "epoch": 0.85,
1998
+ "learning_rate": 1.1722542377369639e-06,
1999
+ "loss": 0.9711,
2000
+ "step": 332
2001
+ },
2002
+ {
2003
+ "epoch": 0.85,
2004
+ "learning_rate": 1.1336157378702017e-06,
2005
+ "loss": 0.943,
2006
+ "step": 333
2007
+ },
2008
+ {
2009
+ "epoch": 0.85,
2010
+ "learning_rate": 1.0955864457093147e-06,
2011
+ "loss": 0.9263,
2012
+ "step": 334
2013
+ },
2014
+ {
2015
+ "epoch": 0.86,
2016
+ "learning_rate": 1.0581689742402967e-06,
2017
+ "loss": 0.9515,
2018
+ "step": 335
2019
+ },
2020
+ {
2021
+ "epoch": 0.86,
2022
+ "learning_rate": 1.0213658944110406e-06,
2023
+ "loss": 0.9177,
2024
+ "step": 336
2025
+ },
2026
+ {
2027
+ "epoch": 0.86,
2028
+ "learning_rate": 9.851797349546977e-07,
2029
+ "loss": 0.9557,
2030
+ "step": 337
2031
+ },
2032
+ {
2033
+ "epoch": 0.86,
2034
+ "learning_rate": 9.496129822159339e-07,
2035
+ "loss": 0.9549,
2036
+ "step": 338
2037
+ },
2038
+ {
2039
+ "epoch": 0.87,
2040
+ "learning_rate": 9.146680799800833e-07,
2041
+ "loss": 0.9797,
2042
+ "step": 339
2043
+ },
2044
+ {
2045
+ "epoch": 0.87,
2046
+ "learning_rate": 8.803474293052438e-07,
2047
+ "loss": 0.9899,
2048
+ "step": 340
2049
+ },
2050
+ {
2051
+ "epoch": 0.87,
2052
+ "learning_rate": 8.466533883572947e-07,
2053
+ "loss": 0.9278,
2054
+ "step": 341
2055
+ },
2056
+ {
2057
+ "epoch": 0.87,
2058
+ "learning_rate": 8.135882722478772e-07,
2059
+ "loss": 0.9285,
2060
+ "step": 342
2061
+ },
2062
+ {
2063
+ "epoch": 0.88,
2064
+ "learning_rate": 7.811543528753108e-07,
2065
+ "loss": 0.96,
2066
+ "step": 343
2067
+ },
2068
+ {
2069
+ "epoch": 0.88,
2070
+ "learning_rate": 7.493538587685012e-07,
2071
+ "loss": 0.954,
2072
+ "step": 344
2073
+ },
2074
+ {
2075
+ "epoch": 0.88,
2076
+ "learning_rate": 7.181889749338178e-07,
2077
+ "loss": 0.9191,
2078
+ "step": 345
2079
+ },
2080
+ {
2081
+ "epoch": 0.88,
2082
+ "learning_rate": 6.876618427049509e-07,
2083
+ "loss": 0.9642,
2084
+ "step": 346
2085
+ },
2086
+ {
2087
+ "epoch": 0.89,
2088
+ "learning_rate": 6.577745595958018e-07,
2089
+ "loss": 0.8868,
2090
+ "step": 347
2091
+ },
2092
+ {
2093
+ "epoch": 0.89,
2094
+ "learning_rate": 6.285291791563431e-07,
2095
+ "loss": 0.8651,
2096
+ "step": 348
2097
+ },
2098
+ {
2099
+ "epoch": 0.89,
2100
+ "learning_rate": 5.999277108315272e-07,
2101
+ "loss": 0.99,
2102
+ "step": 349
2103
+ },
2104
+ {
2105
+ "epoch": 0.9,
2106
+ "learning_rate": 5.719721198232254e-07,
2107
+ "loss": 1.0007,
2108
+ "step": 350
2109
+ },
2110
+ {
2111
+ "epoch": 0.9,
2112
+ "learning_rate": 5.446643269551854e-07,
2113
+ "loss": 0.945,
2114
+ "step": 351
2115
+ },
2116
+ {
2117
+ "epoch": 0.9,
2118
+ "learning_rate": 5.180062085410609e-07,
2119
+ "loss": 0.9559,
2120
+ "step": 352
2121
+ },
2122
+ {
2123
+ "epoch": 0.9,
2124
+ "learning_rate": 4.919995962554846e-07,
2125
+ "loss": 0.9214,
2126
+ "step": 353
2127
+ },
2128
+ {
2129
+ "epoch": 0.91,
2130
+ "learning_rate": 4.6664627700822475e-07,
2131
+ "loss": 0.9583,
2132
+ "step": 354
2133
+ },
2134
+ {
2135
+ "epoch": 0.91,
2136
+ "learning_rate": 4.4194799282139324e-07,
2137
+ "loss": 0.9549,
2138
+ "step": 355
2139
+ },
2140
+ {
2141
+ "epoch": 0.91,
2142
+ "learning_rate": 4.1790644070975884e-07,
2143
+ "loss": 0.9257,
2144
+ "step": 356
2145
+ },
2146
+ {
2147
+ "epoch": 0.91,
2148
+ "learning_rate": 3.94523272564149e-07,
2149
+ "loss": 0.926,
2150
+ "step": 357
2151
+ },
2152
+ {
2153
+ "epoch": 0.92,
2154
+ "learning_rate": 3.7180009503793745e-07,
2155
+ "loss": 0.9393,
2156
+ "step": 358
2157
+ },
2158
+ {
2159
+ "epoch": 0.92,
2160
+ "learning_rate": 3.4973846943666567e-07,
2161
+ "loss": 0.881,
2162
+ "step": 359
2163
+ },
2164
+ {
2165
+ "epoch": 0.92,
2166
+ "learning_rate": 3.283399116107533e-07,
2167
+ "loss": 0.9014,
2168
+ "step": 360
2169
+ },
2170
+ {
2171
+ "epoch": 0.92,
2172
+ "learning_rate": 3.076058918513503e-07,
2173
+ "loss": 0.8659,
2174
+ "step": 361
2175
+ },
2176
+ {
2177
+ "epoch": 0.93,
2178
+ "learning_rate": 2.875378347893165e-07,
2179
+ "loss": 0.9538,
2180
+ "step": 362
2181
+ },
2182
+ {
2183
+ "epoch": 0.93,
2184
+ "learning_rate": 2.681371192973281e-07,
2185
+ "loss": 0.9879,
2186
+ "step": 363
2187
+ },
2188
+ {
2189
+ "epoch": 0.93,
2190
+ "learning_rate": 2.494050783951396e-07,
2191
+ "loss": 0.9421,
2192
+ "step": 364
2193
+ },
2194
+ {
2195
+ "epoch": 0.93,
2196
+ "learning_rate": 2.3134299915799185e-07,
2197
+ "loss": 0.8896,
2198
+ "step": 365
2199
+ },
2200
+ {
2201
+ "epoch": 0.94,
2202
+ "learning_rate": 2.1395212262817933e-07,
2203
+ "loss": 0.9288,
2204
+ "step": 366
2205
+ },
2206
+ {
2207
+ "epoch": 0.94,
2208
+ "learning_rate": 1.9723364372977395e-07,
2209
+ "loss": 0.8502,
2210
+ "step": 367
2211
+ },
2212
+ {
2213
+ "epoch": 0.94,
2214
+ "learning_rate": 1.8118871118652516e-07,
2215
+ "loss": 0.9598,
2216
+ "step": 368
2217
+ },
2218
+ {
2219
+ "epoch": 0.94,
2220
+ "learning_rate": 1.6581842744293309e-07,
2221
+ "loss": 0.9199,
2222
+ "step": 369
2223
+ },
2224
+ {
2225
+ "epoch": 0.95,
2226
+ "learning_rate": 1.511238485884914e-07,
2227
+ "loss": 0.9733,
2228
+ "step": 370
2229
+ },
2230
+ {
2231
+ "epoch": 0.95,
2232
+ "learning_rate": 1.3710598428513634e-07,
2233
+ "loss": 0.921,
2234
+ "step": 371
2235
+ },
2236
+ {
2237
+ "epoch": 0.95,
2238
+ "learning_rate": 1.2376579769786124e-07,
2239
+ "loss": 1.0368,
2240
+ "step": 372
2241
+ },
2242
+ {
2243
+ "epoch": 0.95,
2244
+ "learning_rate": 1.1110420542854383e-07,
2245
+ "loss": 0.9523,
2246
+ "step": 373
2247
+ },
2248
+ {
2249
+ "epoch": 0.96,
2250
+ "learning_rate": 9.912207745296665e-08,
2251
+ "loss": 0.9292,
2252
+ "step": 374
2253
+ },
2254
+ {
2255
+ "epoch": 0.96,
2256
+ "learning_rate": 8.782023706103926e-08,
2257
+ "loss": 0.9394,
2258
+ "step": 375
2259
+ },
2260
+ {
2261
+ "epoch": 0.96,
2262
+ "learning_rate": 7.719946080023022e-08,
2263
+ "loss": 0.9688,
2264
+ "step": 376
2265
+ },
2266
+ {
2267
+ "epoch": 0.96,
2268
+ "learning_rate": 6.726047842221083e-08,
2269
+ "loss": 0.9018,
2270
+ "step": 377
2271
+ },
2272
+ {
2273
+ "epoch": 0.97,
2274
+ "learning_rate": 5.800397283271753e-08,
2275
+ "loss": 0.8867,
2276
+ "step": 378
2277
+ },
2278
+ {
2279
+ "epoch": 0.97,
2280
+ "learning_rate": 4.9430580044620425e-08,
2281
+ "loss": 0.9259,
2282
+ "step": 379
2283
+ },
2284
+ {
2285
+ "epoch": 0.97,
2286
+ "learning_rate": 4.154088913423615e-08,
2287
+ "loss": 0.9395,
2288
+ "step": 380
2289
+ },
2290
+ {
2291
+ "epoch": 0.97,
2292
+ "learning_rate": 3.433544220084017e-08,
2293
+ "loss": 0.9209,
2294
+ "step": 381
2295
+ },
2296
+ {
2297
+ "epoch": 0.98,
2298
+ "learning_rate": 2.7814734329426607e-08,
2299
+ "loss": 0.9403,
2300
+ "step": 382
2301
+ },
2302
+ {
2303
+ "epoch": 0.98,
2304
+ "learning_rate": 2.197921355668875e-08,
2305
+ "loss": 0.9948,
2306
+ "step": 383
2307
+ },
2308
+ {
2309
+ "epoch": 0.98,
2310
+ "learning_rate": 1.682928084023261e-08,
2311
+ "loss": 0.8827,
2312
+ "step": 384
2313
+ },
2314
+ {
2315
+ "epoch": 0.98,
2316
+ "learning_rate": 1.2365290031032261e-08,
2317
+ "loss": 0.898,
2318
+ "step": 385
2319
+ },
2320
+ {
2321
+ "epoch": 0.99,
2322
+ "learning_rate": 8.587547849112643e-09,
2323
+ "loss": 0.9732,
2324
+ "step": 386
2325
+ },
2326
+ {
2327
+ "epoch": 0.99,
2328
+ "learning_rate": 5.496313862476399e-09,
2329
+ "loss": 0.9832,
2330
+ "step": 387
2331
+ },
2332
+ {
2333
+ "epoch": 0.99,
2334
+ "learning_rate": 3.0918004692648273e-09,
2335
+ "loss": 0.9955,
2336
+ "step": 388
2337
+ },
2338
+ {
2339
+ "epoch": 0.99,
2340
+ "learning_rate": 1.3741728831750956e-09,
2341
+ "loss": 0.9345,
2342
+ "step": 389
2343
+ },
2344
+ {
2345
+ "epoch": 1.0,
2346
+ "learning_rate": 3.435491220937781e-10,
2347
+ "loss": 0.9343,
2348
+ "step": 390
2349
+ },
2350
+ {
2351
+ "epoch": 1.0,
2352
+ "learning_rate": 0.0,
2353
+ "loss": 0.9641,
2354
+ "step": 391
2355
+ },
2356
+ {
2357
+ "epoch": 1.0,
2358
+ "step": 391,
2359
+ "total_flos": 7.271287463472005e+17,
2360
+ "train_loss": 0.9852171239950468,
2361
+ "train_runtime": 2316.1577,
2362
+ "train_samples_per_second": 21.607,
2363
+ "train_steps_per_second": 0.169
2364
+ }
2365
+ ],
2366
+ "max_steps": 391,
2367
+ "num_train_epochs": 1,
2368
+ "total_flos": 7.271287463472005e+17,
2369
+ "trial_name": null,
2370
+ "trial_params": null
2371
+ }
VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-activitynet-stage5/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: ./checkpoints/vtimellm/vicuna-7b-v1.5
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.2
VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-activitynet-stage5/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "./checkpoints/vtimellm/vicuna-7b-v1.5",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 128,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 64,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "down_proj",
24
+ "v_proj",
25
+ "gate_proj",
26
+ "q_proj",
27
+ "o_proj",
28
+ "k_proj",
29
+ "up_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-activitynet-stage5/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e6cf716c9e99abb2ece9aac6b8e744f4bea03e8283ffc1f527f2d7a6aef8a9bd
3
+ size 319876480
VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-activitynet-stage5/config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "./checkpoints/vtimellm/vicuna-7b-v1.5",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "bos_token_id": 1,
7
+ "eos_token_id": 2,
8
+ "freeze_mm_mlp_adapter": true,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 4096,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 11008,
13
+ "max_position_embeddings": 4096,
14
+ "model_type": "VTimeLLM",
15
+ "num_attention_heads": 32,
16
+ "num_hidden_layers": 32,
17
+ "num_key_value_heads": 32,
18
+ "pad_token_id": 0,
19
+ "pretraining_tp": 1,
20
+ "rms_norm_eps": 1e-05,
21
+ "rope_scaling": null,
22
+ "tie_word_embeddings": false,
23
+ "torch_dtype": "float16",
24
+ "transformers_version": "4.31.0",
25
+ "tune_mm_mlp_adapter": false,
26
+ "use_cache": true,
27
+ "vocab_size": 32000
28
+ }
VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-activitynet-stage5/log/capfirst.txt ADDED
The diff for this file is too large to render. See raw diff
 
VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-activitynet-stage5/log/grounding.txt ADDED
The diff for this file is too large to render. See raw diff
 
VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-activitynet-stage5/log/metric/capfirst.txt ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ soda_c: 6.90
2
+ METEOR: 7.13
3
+ CIDEr: 29.08
4
+ Num samples: 4885
VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-activitynet-stage5/log/metric/grounding.txt ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ mIoU: 43.45
2
3
4
5
+ Num samples: 17031
VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-activitynet-stage5/log/metric/timefirst.txt ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ soda_c: 7.15
2
+ METEOR: 7.71
3
+ CIDEr: 34.65
4
+ Num samples: 4885
VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-activitynet-stage5/log/timefirst.txt ADDED
The diff for this file is too large to render. See raw diff
 
VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-activitynet-stage5/non_lora_trainables.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:60fb82c3660319e6d0b239950b20c28181e97f1ade117dc0660b40e2ad94a89b
3
+ size 912
VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-activitynet-stage5/trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-stage1/config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/DATA/DATANAS2/bhuang/data/vicuna-7b-v1.5",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "bos_token_id": 1,
7
+ "eos_token_id": 2,
8
+ "freeze_mm_mlp_adapter": false,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 4096,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 11008,
13
+ "max_position_embeddings": 4096,
14
+ "model_type": "VTimeLLM",
15
+ "num_attention_heads": 32,
16
+ "num_hidden_layers": 32,
17
+ "num_key_value_heads": 32,
18
+ "pad_token_id": 0,
19
+ "pretraining_tp": 1,
20
+ "rms_norm_eps": 1e-05,
21
+ "rope_scaling": null,
22
+ "tie_word_embeddings": false,
23
+ "torch_dtype": "float16",
24
+ "transformers_version": "4.31.0",
25
+ "tune_mm_mlp_adapter": true,
26
+ "use_cache": true,
27
+ "vocab_size": 32000
28
+ }
VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-stage1/mm_projector.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e54f0e59806b2f8f724338560fefaf48a4be82f48f73200ca89d3eca6f4ca8fb
3
+ size 6300731
VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-stage1/trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-stage2/README.md ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ ---
4
+ ## Training procedure
5
+
6
+ ### Framework versions
7
+
8
+
9
+ - PEFT 0.4.0
VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-stage2/adapter_config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "auto_mapping": null,
3
+ "base_model_name_or_path": "/DATA/DATANAS2/bhuang/data/vicuna-7b-v1.5",
4
+ "bias": "none",
5
+ "fan_in_fan_out": false,
6
+ "inference_mode": true,
7
+ "init_lora_weights": true,
8
+ "layers_pattern": null,
9
+ "layers_to_transform": null,
10
+ "lora_alpha": 128,
11
+ "lora_dropout": 0.05,
12
+ "modules_to_save": null,
13
+ "peft_type": "LORA",
14
+ "r": 64,
15
+ "revision": null,
16
+ "target_modules": [
17
+ "down_proj",
18
+ "k_proj",
19
+ "o_proj",
20
+ "q_proj",
21
+ "up_proj",
22
+ "gate_proj",
23
+ "v_proj"
24
+ ],
25
+ "task_type": "CAUSAL_LM"
26
+ }
VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-stage2/adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b7fef69a5a81d0ac7f16a78fd3ce22e4c8731fbc79df69f767473a2eb175e992
3
+ size 319970957
VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-stage2/config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/DATA/DATANAS2/bhuang/data/vicuna-7b-v1.5",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "bos_token_id": 1,
7
+ "eos_token_id": 2,
8
+ "freeze_mm_mlp_adapter": true,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 4096,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 11008,
13
+ "max_position_embeddings": 4096,
14
+ "model_type": "VTimeLLM",
15
+ "num_attention_heads": 32,
16
+ "num_hidden_layers": 32,
17
+ "num_key_value_heads": 32,
18
+ "pad_token_id": 0,
19
+ "pretraining_tp": 1,
20
+ "rms_norm_eps": 1e-05,
21
+ "rope_scaling": null,
22
+ "tie_word_embeddings": false,
23
+ "torch_dtype": "float16",
24
+ "transformers_version": "4.31.0",
25
+ "tune_mm_mlp_adapter": false,
26
+ "use_cache": true,
27
+ "vocab_size": 32000
28
+ }
VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-stage2/non_lora_trainables.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cc6b9cc23771073378c3887f3524986a3b61cac85cbc085f322b318241bc6845
3
+ size 455
VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-stage2/trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-stage3/README.md ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ ---
4
+ ## Training procedure
5
+
6
+ ### Framework versions
7
+
8
+
9
+ - PEFT 0.4.0
VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-stage3/adapter_config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "auto_mapping": null,
3
+ "base_model_name_or_path": "/DATA/DATANAS2/bhuang/data/vicuna-7b-v1.5",
4
+ "bias": "none",
5
+ "fan_in_fan_out": false,
6
+ "inference_mode": true,
7
+ "init_lora_weights": true,
8
+ "layers_pattern": null,
9
+ "layers_to_transform": null,
10
+ "lora_alpha": 128,
11
+ "lora_dropout": 0.05,
12
+ "modules_to_save": null,
13
+ "peft_type": "LORA",
14
+ "r": 64,
15
+ "revision": null,
16
+ "target_modules": [
17
+ "o_proj",
18
+ "q_proj",
19
+ "down_proj",
20
+ "v_proj",
21
+ "k_proj",
22
+ "gate_proj",
23
+ "up_proj"
24
+ ],
25
+ "task_type": "CAUSAL_LM"
26
+ }
VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-stage3/adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4c5baa8b413e44c9a4db5e1fadc6df7e960dd0fe6b5ed7eb6778b58e4f968c50
3
+ size 319970957
VTimeLLM/checkpoints/vtimellm-vicuna-v1-5-7b-stage3/config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/DATA/DATANAS2/bhuang/data/vicuna-7b-v1.5",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "bos_token_id": 1,
7
+ "eos_token_id": 2,
8
+ "freeze_mm_mlp_adapter": true,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 4096,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 11008,
13
+ "max_position_embeddings": 4096,
14
+ "model_type": "VTimeLLM",
15
+ "num_attention_heads": 32,
16
+ "num_hidden_layers": 32,
17
+ "num_key_value_heads": 32,
18
+ "pad_token_id": 0,
19
+ "pretraining_tp": 1,
20
+ "rms_norm_eps": 1e-05,
21
+ "rope_scaling": null,
22
+ "tie_word_embeddings": false,
23
+ "torch_dtype": "float16",
24
+ "transformers_version": "4.31.0",
25
+ "tune_mm_mlp_adapter": false,
26
+ "use_cache": true,
27
+ "vocab_size": 32000
28
+ }