Upload 2 files
Browse files- Test.ipynb +612 -0
- make_data_v2.ipynb +0 -0
Test.ipynb
ADDED
@@ -0,0 +1,612 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"id": "a2a88bfa",
|
6 |
+
"metadata": {},
|
7 |
+
"source": [
|
8 |
+
"# 测试脚本\n",
|
9 |
+
"\n",
|
10 |
+
"使用此脚本需要打开 RWKV Runner,通过调用 API 接口进行批量测试。\n",
|
11 |
+
"\n",
|
12 |
+
"使用该脚本时,被测试的 jsonl 文件需要是和训练集相同的单论问答对话;\n",
|
13 |
+
"\n",
|
14 |
+
"测试时,会同时生成一个‘测试结果’和‘正确答案’的对比到指定 jsonl 中。"
|
15 |
+
]
|
16 |
+
},
|
17 |
+
{
|
18 |
+
"cell_type": "markdown",
|
19 |
+
"id": "139fd74a",
|
20 |
+
"metadata": {},
|
21 |
+
"source": [
|
22 |
+
"## 测试指定 jsonl 文件"
|
23 |
+
]
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"cell_type": "code",
|
27 |
+
"execution_count": null,
|
28 |
+
"id": "11af4de0",
|
29 |
+
"metadata": {},
|
30 |
+
"outputs": [],
|
31 |
+
"source": [
|
32 |
+
"# %% [markdown]\n",
|
33 |
+
"# # 模型测试脚本 (单单元格, 简化逐行结果, 更新请求参数)\n",
|
34 |
+
"#\n",
|
35 |
+
"# 请按以下步骤操作:\n",
|
36 |
+
"# **1.** **修改配置部分**: 找到下面的 `--- 配置 ---` 部分,并更新 `JSONL_FILE_PATH`, `OUTPUT_JSONL_PATH`, `API_URL`, `HEADERS`。`REQUEST_PARAMS` 已根据您的要求更新。\n",
|
37 |
+
"# **2.** **检查 API 响应解析**: 在 `get_model_completion` 函数内部,找到标记为 `!!! 重要 !!!` 的部分,确保代码能正确解析你的模型 API 返回的 JSON 数据以提取文本输出。\n",
|
38 |
+
"# **3.** **运行此单元格**: 执行这个单元格开始测试。结果将逐行写入指定的 `OUTPUT_JSONL_PATH` 文件。\n",
|
39 |
+
"\n",
|
40 |
+
"# %%\n",
|
41 |
+
"import requests\n",
|
42 |
+
"import json\n",
|
43 |
+
"import sys\n",
|
44 |
+
"import os\n",
|
45 |
+
"from tqdm.notebook import tqdm # 使用 notebook 版本的 tqdm\n",
|
46 |
+
"from datetime import datetime # 用于添加时间戳\n",
|
47 |
+
"\n",
|
48 |
+
"# --- 配置 ---\n",
|
49 |
+
"# vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv\n",
|
50 |
+
"# vvvvvvvvvvvvvvvvv 请在这里修改你的配置 vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv\n",
|
51 |
+
"\n",
|
52 |
+
"JSONL_FILE_PATH = \"./Test/ADD_base_test.jsonl\" # <--- 替换为你的 **输入** JSONL 文件路径\n",
|
53 |
+
"OUTPUT_JSONL_PATH = \"./Test/result/ADD_base_test-20250526.jsonl\" # <--- 设置 **输出** JSONL 文件的路径\n",
|
54 |
+
"API_URL = \"http://19**2.**168.0.103:8022/v1/completions\"\n",
|
55 |
+
"\n",
|
56 |
+
"# API 请求的 Headers (如果需要身份验证等,在这里添加)\n",
|
57 |
+
"HEADERS = {\n",
|
58 |
+
" 'Content-Type': 'application/json',\n",
|
59 |
+
" # 'Authorization': 'Bearer YOUR_API_KEY' # 如果需要 API Key\n",
|
60 |
+
"}\n",
|
61 |
+
"\n",
|
62 |
+
"# API 请求的参数 (根据您的要求更新)\n",
|
63 |
+
"# !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\n",
|
64 |
+
"# !!! 这里是更新后的请求参数 !!!\n",
|
65 |
+
"# !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\n",
|
66 |
+
"REQUEST_PARAMS = {\n",
|
67 |
+
" \"max_tokens\": 100,\n",
|
68 |
+
" \"temperature\": 0.4,\n",
|
69 |
+
" \"top_p\": 0, # 注意:top_p=0 比较少见,通常接近 1 或等于 1,请确认是否符合预期\n",
|
70 |
+
" \"presence_penalty\": 0,\n",
|
71 |
+
" \"frequency_penalty\": 0,\n",
|
72 |
+
" \"stop\": [\"\\n\", \"User:\"]\n",
|
73 |
+
"}\n",
|
74 |
+
"# !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\n",
|
75 |
+
"\n",
|
76 |
+
"# ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
|
77 |
+
"# ^^^^^^^^^^^^^^^^^^^^^^^^^ 配置结束 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
|
78 |
+
"# --- 配置结束 ---\n",
|
79 |
+
"\n",
|
80 |
+
"print(\"--- 配置加载 ---\")\n",
|
81 |
+
"print(f\"输入测试文件路径: {JSONL_FILE_PATH}\")\n",
|
82 |
+
"print(f\"输出结果文件路径: {OUTPUT_JSONL_PATH} (仅包含: expected, actual, is_correct)\")\n",
|
83 |
+
"print(f\"API 地址: {API_URL}\")\n",
|
84 |
+
"print(f\"请求参数 (已更新): {REQUEST_PARAMS}\") # 确认参数已更新\n",
|
85 |
+
"print(\"-\" * 30)\n",
|
86 |
+
"\n",
|
87 |
+
"# --- 辅助函数 (与之前相同) ---\n",
|
88 |
+
"\n",
|
89 |
+
"def process_jsonl_line(line):\n",
|
90 |
+
" \"\"\"解析 JSONL 行,提取 prompt 和 expected_answer\"\"\"\n",
|
91 |
+
" try:\n",
|
92 |
+
" data = json.loads(line)\n",
|
93 |
+
" full_text = data.get(\"text\")\n",
|
94 |
+
" if not full_text:\n",
|
95 |
+
" return None, None\n",
|
96 |
+
"\n",
|
97 |
+
" parts = full_text.split(\"\\n\\nAssistant:\", 1)\n",
|
98 |
+
" if len(parts) != 2:\n",
|
99 |
+
" return None, None\n",
|
100 |
+
"\n",
|
101 |
+
" prompt = parts[0] + \"\\n\\nAssistant:\"\n",
|
102 |
+
" expected_answer = parts[1].strip()\n",
|
103 |
+
"\n",
|
104 |
+
" return prompt, expected_answer\n",
|
105 |
+
"\n",
|
106 |
+
" except (json.JSONDecodeError, Exception):\n",
|
107 |
+
" return None, None\n",
|
108 |
+
"\n",
|
109 |
+
"def get_model_completion(prompt):\n",
|
110 |
+
" \"\"\"向模型 API 发送请求并获取输出\"\"\"\n",
|
111 |
+
" payload = {\n",
|
112 |
+
" \"prompt\": prompt,\n",
|
113 |
+
" **REQUEST_PARAMS # 这里会自动使用上面更新后的参数\n",
|
114 |
+
" }\n",
|
115 |
+
" try:\n",
|
116 |
+
" response = requests.post(API_URL, headers=HEADERS, json=payload, timeout=60)\n",
|
117 |
+
" response.raise_for_status()\n",
|
118 |
+
" response_data = response.json()\n",
|
119 |
+
"\n",
|
120 |
+
" # --- 解析模型输出 ---\n",
|
121 |
+
" # !!! 重要: 这里需要根据你的 API 返回的具体格式来调整 !!!\n",
|
122 |
+
" model_output = None\n",
|
123 |
+
" try:\n",
|
124 |
+
" model_output = response_data.get('choices', [{}])[0].get('text', '').strip()\n",
|
125 |
+
" # ===> 如果上面这行无效,你需要根据你的 API 返回调整这里 <===\n",
|
126 |
+
" if model_output is None: model_output = \"\"\n",
|
127 |
+
" except (KeyError, IndexError, AttributeError, TypeError):\n",
|
128 |
+
" return None # 表示解析失败\n",
|
129 |
+
"\n",
|
130 |
+
" return model_output\n",
|
131 |
+
"\n",
|
132 |
+
" except (requests.exceptions.RequestException, json.JSONDecodeError, Exception):\n",
|
133 |
+
" return None\n",
|
134 |
+
"\n",
|
135 |
+
"# --- 主测试逻辑 (与之前相同) ---\n",
|
136 |
+
"\n",
|
137 |
+
"# 检查输入文件是否存在\n",
|
138 |
+
"if not os.path.exists(JSONL_FILE_PATH):\n",
|
139 |
+
" print(f\"错误:输入文件未找到 '{JSONL_FILE_PATH}'。请确保路径正确并重新运行单元格。\")\n",
|
140 |
+
"else:\n",
|
141 |
+
" total_count = 0\n",
|
142 |
+
" correct_count = 0\n",
|
143 |
+
" lines_processed = 0\n",
|
144 |
+
" invalid_format_count = 0\n",
|
145 |
+
" api_errors = 0\n",
|
146 |
+
"\n",
|
147 |
+
" print(f\"\\n开始使用文件进行模型测试: {JSONL_FILE_PATH}\")\n",
|
148 |
+
" print(f\"简化结果将逐行写入: {OUTPUT_JSONL_PATH}\")\n",
|
149 |
+
" print(\"-\" * 30)\n",
|
150 |
+
"\n",
|
151 |
+
" try:\n",
|
152 |
+
" with open(OUTPUT_JSONL_PATH, 'a', encoding='utf-8') as outfile:\n",
|
153 |
+
" try:\n",
|
154 |
+
" num_lines = sum(1 for line in open(JSONL_FILE_PATH, 'r', encoding='utf-8'))\n",
|
155 |
+
" except Exception:\n",
|
156 |
+
" num_lines = None\n",
|
157 |
+
"\n",
|
158 |
+
" with open(JSONL_FILE_PATH, 'r', encoding='utf-8') as infile:\n",
|
159 |
+
" file_iterator = tqdm(infile, total=num_lines, desc=\"测试进度\", unit=\" 行\", bar_format='{l_bar}{bar}| {n_fmt}/{total_fmt} [{elapsed}<{remaining}, {rate_fmt}{postfix}]')\n",
|
160 |
+
"\n",
|
161 |
+
" for line_num, line in enumerate(file_iterator):\n",
|
162 |
+
" lines_processed += 1\n",
|
163 |
+
" line = line.strip()\n",
|
164 |
+
" if not line: continue\n",
|
165 |
+
"\n",
|
166 |
+
" prompt, expected_answer = process_jsonl_line(line)\n",
|
167 |
+
"\n",
|
168 |
+
" if prompt is None or expected_answer is None:\n",
|
169 |
+
" invalid_format_count += 1\n",
|
170 |
+
" accuracy = (correct_count / total_count * 100) if total_count > 0 else 0\n",
|
171 |
+
" file_iterator.set_postfix_str(f\"正确:{correct_count}/{total_count} Acc:{accuracy:.1f}% APIErr:{api_errors} FormatErr:{invalid_format_count}\")\n",
|
172 |
+
" continue\n",
|
173 |
+
"\n",
|
174 |
+
" model_output = get_model_completion(prompt)\n",
|
175 |
+
"\n",
|
176 |
+
" if model_output is not None:\n",
|
177 |
+
" total_count += 1\n",
|
178 |
+
" is_correct = (model_output == expected_answer)\n",
|
179 |
+
" if is_correct: correct_count += 1\n",
|
180 |
+
"\n",
|
181 |
+
" result_data = {\n",
|
182 |
+
" \"expected_answer\": expected_answer,\n",
|
183 |
+
" \"model_output\": model_output,\n",
|
184 |
+
" \"is_correct\": is_correct\n",
|
185 |
+
" }\n",
|
186 |
+
" json_string = json.dumps(result_data, ensure_ascii=False)\n",
|
187 |
+
" outfile.write(json_string + '\\n')\n",
|
188 |
+
" outfile.flush()\n",
|
189 |
+
" else:\n",
|
190 |
+
" api_errors += 1\n",
|
191 |
+
"\n",
|
192 |
+
" accuracy = (correct_count / total_count * 100) if total_count > 0 else 0\n",
|
193 |
+
" file_iterator.set_postfix_str(f\"正确:{correct_count}/{total_count} Acc:{accuracy:.1f}% APIErr:{api_errors} FormatErr:{invalid_format_count}\")\n",
|
194 |
+
"\n",
|
195 |
+
" except FileNotFoundError:\n",
|
196 |
+
" print(f\"错误:处理期间未找到输入文件 '{JSONL_FILE_PATH}'。\")\n",
|
197 |
+
" except IOError as e:\n",
|
198 |
+
" print(f\"错误: 读写文件时发生错误: {e}\")\n",
|
199 |
+
" except Exception as e:\n",
|
200 |
+
" print(f\"\\n处理文件时发生意外错误: {e}\")\n",
|
201 |
+
" import traceback\n",
|
202 |
+
" traceback.print_exc()\n",
|
203 |
+
"\n",
|
204 |
+
" print(\"\\n测试完成!\")\n",
|
205 |
+
" print(f\"总共处理了 {lines_processed} 行输入文件。\")\n",
|
206 |
+
" print(f\"{total_count} 个有效测试结果已写入/追加到 {OUTPUT_JSONL_PATH}\")\n",
|
207 |
+
"\n",
|
208 |
+
" # --- 显示最终总结 ---\n",
|
209 |
+
" print(\"\\n\" + \"=\" * 30)\n",
|
210 |
+
" print(\"测试总结\")\n",
|
211 |
+
" print(\"=\" * 30)\n",
|
212 |
+
" print(f\"输入文件中格式无效的行数: {invalid_format_count}\")\n",
|
213 |
+
" print(f\"API 调用或响应解析错误数: {api_errors}\")\n",
|
214 |
+
" print(f\"成功获取模型输出的测试用例总数: {total_count}\")\n",
|
215 |
+
" print(f\"模型正确预测数: {correct_count}\")\n",
|
216 |
+
"\n",
|
217 |
+
" if total_count > 0:\n",
|
218 |
+
" accuracy = (correct_count / total_count) * 100\n",
|
219 |
+
" print(f\"准确率 (AC Rate) [正确数 / 成功获取结果数]: {accuracy:.2f}% ({correct_count}/{total_count})\")\n",
|
220 |
+
" elif lines_processed > 0:\n",
|
221 |
+
" print(\"准确率 (AC Rate): N/A (没有成功获取任何模型输出)\")\n",
|
222 |
+
" else:\n",
|
223 |
+
" print(\"准确率 (AC Rate): N/A (没有处理任何行)\")"
|
224 |
+
]
|
225 |
+
},
|
226 |
+
{
|
227 |
+
"cell_type": "markdown",
|
228 |
+
"id": "ae91c93a",
|
229 |
+
"metadata": {},
|
230 |
+
"source": [
|
231 |
+
"## 测试整个文件夹中的全部 jsonl"
|
232 |
+
]
|
233 |
+
},
|
234 |
+
{
|
235 |
+
"cell_type": "code",
|
236 |
+
"execution_count": null,
|
237 |
+
"id": "43660c81",
|
238 |
+
"metadata": {},
|
239 |
+
"outputs": [],
|
240 |
+
"source": [
|
241 |
+
"# %% [markdown]\n",
|
242 |
+
"# # 模型测试脚本 (批量处理文件夹中的jsonl文件)\n",
|
243 |
+
"#\n",
|
244 |
+
"# 请按以下步骤操作:\n",
|
245 |
+
"# **1.** **修改配置部分**: 找到下面的 `--- 配置 ---` 部分,并更新 `INPUT_FOLDER_PATH`, `OUTPUT_FOLDER_PATH`, `API_URL`, `HEADERS`。`REQUEST_PARAMS` 已根据您的要求更新。\n",
|
246 |
+
"# **2.** **检查 API 响应解析**: 在 `get_model_completion` 函数内部,找到标记为 `!!! 重要 !!!` 的部分,确保代码能正确解析你的模型 API 返回的 JSON 数据以提取文本输出。\n",
|
247 |
+
"# **3.** **运行此单元格**: 执行这个单元格开始测试。结果将逐文件写入输出文件夹。\n",
|
248 |
+
"\n",
|
249 |
+
"# %%\n",
|
250 |
+
"import requests\n",
|
251 |
+
"import json\n",
|
252 |
+
"import sys\n",
|
253 |
+
"import os\n",
|
254 |
+
"import csv # 导入csv模块\n",
|
255 |
+
"from tqdm.notebook import tqdm # 使用 notebook 版本的 tqdm\n",
|
256 |
+
"from datetime import datetime # 用于添加时间戳\n",
|
257 |
+
"from IPython import get_ipython # 用于在 Jupyter Notebook 中检测环境\n",
|
258 |
+
"\n",
|
259 |
+
"# --- 配置 ---\n",
|
260 |
+
"# vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv\n",
|
261 |
+
"# vvvvvvvvvvvvvvvvv 请在这里修改你的配置 vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv\n",
|
262 |
+
"\n",
|
263 |
+
"INPUT_FOLDER_PATH = \"./Test\" # 输入路径 \n",
|
264 |
+
"OUTPUT_FOLDER_PATH = \"./Test/Results/20250526/15\" # 输出路径 \n",
|
265 |
+
"API_URL = \"http://19**2.**168.0.103:8022/v1/completions\" # API 地址\n",
|
266 |
+
"\n",
|
267 |
+
"HEADERS = {\n",
|
268 |
+
" 'Content-Type': 'application/json',\n",
|
269 |
+
"}\n",
|
270 |
+
"\n",
|
271 |
+
"REQUEST_PARAMS = {\n",
|
272 |
+
" \"max_tokens\": 100,\n",
|
273 |
+
" \"temperature\": 0.4,\n",
|
274 |
+
" \"top_p\": 0,\n",
|
275 |
+
" \"presence_penalty\": 0,\n",
|
276 |
+
" \"frequency_penalty\": 0,\n",
|
277 |
+
" \"stop\": [\"\\n\", \"User:\"]\n",
|
278 |
+
"}\n",
|
279 |
+
"# ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
|
280 |
+
"# ^^^^^^^^^^^^^^^^^^^^^^^^^ 配置结束 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
|
281 |
+
"# --- 配置结束 ---\n",
|
282 |
+
"\n",
|
283 |
+
"print(\"--- 配置加载 ---\")\n",
|
284 |
+
"print(f\"输入文件夹路径: {INPUT_FOLDER_PATH}\")\n",
|
285 |
+
"print(f\"输出文件夹路径: {OUTPUT_FOLDER_PATH}\")\n",
|
286 |
+
"print(f\"API 地址: {API_URL}\")\n",
|
287 |
+
"print(f\"请求参数 (已更新): {REQUEST_PARAMS}\")\n",
|
288 |
+
"print(\"-\" * 30)\n",
|
289 |
+
"\n",
|
290 |
+
"# --- 辅助函数 ---\n",
|
291 |
+
"def process_jsonl_line(line):\n",
|
292 |
+
" try:\n",
|
293 |
+
" data = json.loads(line)\n",
|
294 |
+
" full_text = data.get(\"text\")\n",
|
295 |
+
" if not full_text: return None, None\n",
|
296 |
+
" parts = full_text.split(\"\\n\\nAssistant:\", 1)\n",
|
297 |
+
" if len(parts) != 2: return None, None\n",
|
298 |
+
" prompt = parts[0] + \"\\n\\nAssistant:\"\n",
|
299 |
+
" expected_answer = parts[1].strip()\n",
|
300 |
+
" return prompt, expected_answer\n",
|
301 |
+
" except: return None, None\n",
|
302 |
+
"\n",
|
303 |
+
"def get_model_completion(prompt):\n",
|
304 |
+
" payload = {\"prompt\": prompt, **REQUEST_PARAMS}\n",
|
305 |
+
" try:\n",
|
306 |
+
" response = requests.post(API_URL, headers=HEADERS, json=payload, timeout=60)\n",
|
307 |
+
" response.raise_for_status()\n",
|
308 |
+
" response_data = response.json()\n",
|
309 |
+
" # !!! 重要: 这里需要根据你的 API 返回的具体格式来调整 !!!\n",
|
310 |
+
" model_output = response_data.get('choices', [{}])[0].get('text', '').strip()\n",
|
311 |
+
" return model_output if model_output is not None else \"\"\n",
|
312 |
+
" except (requests.exceptions.RequestException, json.JSONDecodeError, KeyError, IndexError, AttributeError, TypeError) as e:\n",
|
313 |
+
" # print(f\"API请求或解析错误: {e}\") # 可以取消注释以调试API问题\n",
|
314 |
+
" return None\n",
|
315 |
+
"\n",
|
316 |
+
"def process_single_file(input_file_path, output_file_path):\n",
|
317 |
+
" total_count, correct_count, lines_processed, invalid_format_count, api_errors = 0, 0, 0, 0, 0\n",
|
318 |
+
" print(f\"\\n开始处理文件: {input_file_path}\")\n",
|
319 |
+
" print(f\"详细结果将写入: {output_file_path}\")\n",
|
320 |
+
" # print(\"-\" * 30) # 减少重复打印分隔线\n",
|
321 |
+
" try:\n",
|
322 |
+
" with open(output_file_path, 'w', encoding='utf-8') as outfile:\n",
|
323 |
+
" try:\n",
|
324 |
+
" with open(input_file_path, 'r', encoding='utf-8') as f_count: num_lines = sum(1 for _ in f_count)\n",
|
325 |
+
" except: num_lines = None\n",
|
326 |
+
"\n",
|
327 |
+
" with open(input_file_path, 'r', encoding='utf-8') as infile:\n",
|
328 |
+
" # tqdm的bar_format可以保持简洁一些\n",
|
329 |
+
" file_iterator = tqdm(infile, total=num_lines, desc=f\"测试 {os.path.basename(input_file_path)}\", unit=\" 行\", bar_format='{l_bar}{bar}| {n_fmt}/{total_fmt} [{elapsed}<{remaining}, {rate_fmt}{postfix}]')\n",
|
330 |
+
" for line in file_iterator:\n",
|
331 |
+
" lines_processed += 1\n",
|
332 |
+
" line = line.strip()\n",
|
333 |
+
" if not line: continue\n",
|
334 |
+
" prompt, expected_answer = process_jsonl_line(line)\n",
|
335 |
+
" if prompt is None or expected_answer is None:\n",
|
336 |
+
" invalid_format_count += 1\n",
|
337 |
+
" else:\n",
|
338 |
+
" model_output = get_model_completion(prompt)\n",
|
339 |
+
" if model_output is not None:\n",
|
340 |
+
" total_count += 1 # 有效的API响应和测试对\n",
|
341 |
+
" is_correct = (model_output == expected_answer)\n",
|
342 |
+
" if is_correct: correct_count += 1\n",
|
343 |
+
" result_data = {\"expected_answer\": expected_answer, \"model_output\": model_output, \"is_correct\": is_correct}\n",
|
344 |
+
" outfile.write(json.dumps(result_data, ensure_ascii=False) + '\\n')\n",
|
345 |
+
" else:\n",
|
346 |
+
" api_errors += 1\n",
|
347 |
+
" # 更新进度条后缀\n",
|
348 |
+
" accuracy = (correct_count / total_count * 100) if total_count > 0 else 0.0\n",
|
349 |
+
" file_iterator.set_postfix_str(f\"正确:{correct_count}/{total_count} ({accuracy:.1f}%) APIErr:{api_errors} FormatErr:{invalid_format_count}\")\n",
|
350 |
+
" outfile.flush()\n",
|
351 |
+
" except FileNotFoundError:\n",
|
352 |
+
" print(f\"错误:处理期间未找到输入文件 '{input_file_path}'。\")\n",
|
353 |
+
" return None\n",
|
354 |
+
" except IOError as e:\n",
|
355 |
+
" print(f\"错误: 读写文件 '{output_file_path}' 时发生错误: {e}\")\n",
|
356 |
+
" return None\n",
|
357 |
+
" except Exception as e:\n",
|
358 |
+
" print(f\"\\n处理文件 '{os.path.basename(input_file_path)}' 时发生意外错误: {e}\")\n",
|
359 |
+
" import traceback; traceback.print_exc()\n",
|
360 |
+
" return None\n",
|
361 |
+
" \n",
|
362 |
+
" final_accuracy = (correct_count / total_count * 100) if total_count > 0 else 0.0\n",
|
363 |
+
" # 确保返回的字典键名清晰\n",
|
364 |
+
" return {\n",
|
365 |
+
" \"filename\": os.path.basename(input_file_path), # 文件全名\n",
|
366 |
+
" \"lines_processed\": lines_processed,\n",
|
367 |
+
" \"invalid_format_count\": invalid_format_count,\n",
|
368 |
+
" \"api_errors\": api_errors,\n",
|
369 |
+
" \"total_valid_tests\": total_count, # 测试数据条数\n",
|
370 |
+
" \"correct_predictions\": correct_count, # 正确条数\n",
|
371 |
+
" \"accuracy_percent\": final_accuracy # 正确率\n",
|
372 |
+
" }\n",
|
373 |
+
"\n",
|
374 |
+
"# --- 主处理逻辑 ---\n",
|
375 |
+
"def main():\n",
|
376 |
+
" os.makedirs(OUTPUT_FOLDER_PATH, exist_ok=True)\n",
|
377 |
+
" today_date = datetime.now().strftime(\"%Y%m%d\")\n",
|
378 |
+
" \n",
|
379 |
+
" input_files_paths = [os.path.join(INPUT_FOLDER_PATH, item) for item in os.listdir(INPUT_FOLDER_PATH) if item.endswith('.jsonl') and os.path.isfile(os.path.join(INPUT_FOLDER_PATH, item))]\n",
|
380 |
+
" \n",
|
381 |
+
" if not input_files_paths:\n",
|
382 |
+
" print(f\"错误:在输入文件夹 '{INPUT_FOLDER_PATH}' 中未找到任何jsonl文件。\")\n",
|
383 |
+
" return\n",
|
384 |
+
" \n",
|
385 |
+
" print(f\"\\n找到 {len(input_files_paths)} 个jsonl文件待处理:\")\n",
|
386 |
+
" for file_path_item in input_files_paths: print(f\" - {os.path.basename(file_path_item)}\")\n",
|
387 |
+
" \n",
|
388 |
+
" all_stats_collected = []\n",
|
389 |
+
" \n",
|
390 |
+
" summary_txt_filename = f\"accuracy_summary_{today_date}.txt\"\n",
|
391 |
+
" summary_txt_filepath = os.path.join(OUTPUT_FOLDER_PATH, summary_txt_filename)\n",
|
392 |
+
" \n",
|
393 |
+
" summary_csv_filename = f\"accuracy_summary_{today_date}.csv\"\n",
|
394 |
+
" summary_csv_filepath = os.path.join(OUTPUT_FOLDER_PATH, summary_csv_filename)\n",
|
395 |
+
"\n",
|
396 |
+
" try:\n",
|
397 |
+
" with open(summary_txt_filepath, 'w', encoding='utf-8') as summary_txt_file, \\\n",
|
398 |
+
" open(summary_csv_filepath, 'w', encoding='utf-8', newline='') as summary_csv_file:\n",
|
399 |
+
" \n",
|
400 |
+
" csv_writer = csv.writer(summary_csv_file)\n",
|
401 |
+
"\n",
|
402 |
+
" # 写入TXT文件头 (保持不变)\n",
|
403 |
+
" summary_txt_file.write(f\"测试日期: {today_date}\\n\")\n",
|
404 |
+
" summary_txt_file.write(\"=\"*40 + \"\\n\")\n",
|
405 |
+
" summary_txt_file.write(f\"{'文件名':<30} | {'正确率':>7}\\n\")\n",
|
406 |
+
" summary_txt_file.write(\"=\"*40 + \"\\n\")\n",
|
407 |
+
" summary_txt_file.flush()\n",
|
408 |
+
"\n",
|
409 |
+
" # --- 修改CSV文件头 ---\n",
|
410 |
+
" csv_header = ['文件名', '测试数据条数', '正确条数', '正确率 (%)']\n",
|
411 |
+
" csv_writer.writerow(csv_header)\n",
|
412 |
+
" summary_csv_file.flush()\n",
|
413 |
+
"\n",
|
414 |
+
" for current_input_file_path in input_files_paths:\n",
|
415 |
+
" base_name = os.path.basename(current_input_file_path)\n",
|
416 |
+
" name_without_ext = os.path.splitext(base_name)[0]\n",
|
417 |
+
" output_jsonl_file = os.path.join(OUTPUT_FOLDER_PATH, f\"{name_without_ext}_{today_date}.jsonl\")\n",
|
418 |
+
" \n",
|
419 |
+
" stats_data = process_single_file(current_input_file_path, output_jsonl_file)\n",
|
420 |
+
" \n",
|
421 |
+
" if stats_data:\n",
|
422 |
+
" all_stats_collected.append(stats_data)\n",
|
423 |
+
" \n",
|
424 |
+
" # 写入TXT文件 (文件名缩短逻辑保持)\n",
|
425 |
+
" filename_display_txt = stats_data['filename']\n",
|
426 |
+
" if len(filename_display_txt) > 28: filename_display_txt = filename_display_txt[:25] + \"...\"\n",
|
427 |
+
" summary_txt_file.write(f\"{filename_display_txt:<30} | {stats_data['accuracy_percent']:>6.2f}%\\n\")\n",
|
428 |
+
" summary_txt_file.flush()\n",
|
429 |
+
"\n",
|
430 |
+
" # --- 修改写入CSV文件的数据行 ---\n",
|
431 |
+
" csv_row = [\n",
|
432 |
+
" stats_data['filename'], # 文件全名\n",
|
433 |
+
" stats_data['total_valid_tests'],\n",
|
434 |
+
" stats_data['correct_predictions'],\n",
|
435 |
+
" f\"{stats_data['accuracy_percent']:.2f}%\" # 格式化正确率\n",
|
436 |
+
" ]\n",
|
437 |
+
" csv_writer.writerow(csv_row)\n",
|
438 |
+
" summary_csv_file.flush()\n",
|
439 |
+
" \n",
|
440 |
+
" # 所有文件处理完毕后,写入总体统计\n",
|
441 |
+
" if all_stats_collected:\n",
|
442 |
+
" # 使用 process_single_file 返回的键名\n",
|
443 |
+
" grand_total_lines = sum(s[\"lines_processed\"] for s in all_stats_collected)\n",
|
444 |
+
" grand_total_tests = sum(s[\"total_valid_tests\"] for s in all_stats_collected)\n",
|
445 |
+
" grand_total_correct = sum(s[\"correct_predictions\"] for s in all_stats_collected)\n",
|
446 |
+
" overall_accuracy_percent = (grand_total_correct / grand_total_tests * 100) if grand_total_tests > 0 else 0.0\n",
|
447 |
+
" \n",
|
448 |
+
" # 写入TXT总体统计 (保持不变)\n",
|
449 |
+
" summary_txt_file.write(\"=\"*40 + \"\\n\")\n",
|
450 |
+
" summary_txt_file.write(f\"{'总体准确率':<30} | {overall_accuracy_percent:>6.2f}%\\n\")\n",
|
451 |
+
" summary_txt_file.write(\"=\"*40 + \"\\n\")\n",
|
452 |
+
" summary_txt_file.flush()\n",
|
453 |
+
"\n",
|
454 |
+
" # --- 修改写入CSV的总体统计行 ---\n",
|
455 |
+
" csv_writer.writerow([]) # 可选:写入一个空行作为分隔\n",
|
456 |
+
" overall_csv_row = [\n",
|
457 |
+
" 'TOTAL / OVERALL',\n",
|
458 |
+
" grand_total_tests,\n",
|
459 |
+
" grand_total_correct,\n",
|
460 |
+
" f\"{overall_accuracy_percent:.2f}%\"\n",
|
461 |
+
" ]\n",
|
462 |
+
" csv_writer.writerow(overall_csv_row)\n",
|
463 |
+
" summary_csv_file.flush()\n",
|
464 |
+
" \n",
|
465 |
+
" # 控制台打印总结信息\n",
|
466 |
+
" print(\"\\n\" + \"=\" * 50 + \"\\n所有文件处理完成!\\n\" + \"=\" * 50)\n",
|
467 |
+
" print(f\"\\n总计处理了 {len(all_stats_collected)} 个文件,{grand_total_lines} 行输入\")\n",
|
468 |
+
" print(f\"总计 {grand_total_tests} 个有效测试,{grand_total_correct} 个正确预测\")\n",
|
469 |
+
" print(f\"总体准确率: {overall_accuracy_percent:.2f}%\")\n",
|
470 |
+
" \n",
|
471 |
+
" print(\"\\n各文件详细统计 (控制台):\")\n",
|
472 |
+
" for s_item in all_stats_collected:\n",
|
473 |
+
" print(f\"\\n文件: {s_item['filename']}\")\n",
|
474 |
+
" print(f\" 处理行数: {s_item['lines_processed']}\")\n",
|
475 |
+
" print(f\" 格式错误行数: {s_item['invalid_format_count']}\")\n",
|
476 |
+
" print(f\" API错误数: {s_item['api_errors']}\")\n",
|
477 |
+
" print(f\" 有效测试数 (total_valid_tests): {s_item['total_valid_tests']}\")\n",
|
478 |
+
" print(f\" 正确预测数 (correct_predictions): {s_item['correct_predictions']}\")\n",
|
479 |
+
" print(f\" 准确率 (accuracy_percent): {s_item['accuracy_percent']:.2f}%\")\n",
|
480 |
+
" \n",
|
481 |
+
" print(f\"\\n已将准确率摘要写入到 TXT: {summary_txt_filepath}\")\n",
|
482 |
+
" print(f\"已将准确率摘要写入到 CSV: {summary_csv_filepath}\")\n",
|
483 |
+
" \n",
|
484 |
+
" else: \n",
|
485 |
+
" message = \"所有文件的处理均未成功生成统计数据。\"\n",
|
486 |
+
" summary_txt_file.write(\"=\"*40 + \"\\n\" + f\"{message}\\n\")\n",
|
487 |
+
" # CSV中也可以记录此信息\n",
|
488 |
+
" csv_writer.writerow([message, 'N/A', 'N/A', 'N/A'])\n",
|
489 |
+
" summary_csv_file.flush()\n",
|
490 |
+
" print(f\"\\n{message} 摘要文件已更新。\")\n",
|
491 |
+
" \n",
|
492 |
+
" except IOError as e:\n",
|
493 |
+
" print(f\"\\n错误:处理摘要文件时发生IO错误: {e}\")\n",
|
494 |
+
" if all_stats_collected: # 尝试打印已收集的数据\n",
|
495 |
+
" print(\"\\n注意:摘要文件写入可能存在问题,但以下是控制台的统计信息。\")\n",
|
496 |
+
" # (可以复用上面的控制台打印逻辑,但为了简洁此处省略)\n",
|
497 |
+
" print(\"请检查控制台输出获取部分结果。\")\n",
|
498 |
+
"\n",
|
499 |
+
" if not all_stats_collected and input_files_paths:\n",
|
500 |
+
" print(\"\\n所有文件的处理均未成功生成统计数据(未在摘要文件中记录此信息,若摘要文件创建失败)。\")\n",
|
501 |
+
"\n",
|
502 |
+
"# 执行主函数\n",
|
503 |
+
"if __name__ == \"__main__\":\n",
|
504 |
+
" try:\n",
|
505 |
+
" shell = get_ipython().__class__.__name__\n",
|
506 |
+
" if shell != 'ZMQInteractiveShell': raise NameError\n",
|
507 |
+
" except NameError:\n",
|
508 |
+
" try:\n",
|
509 |
+
" from tqdm import tqdm as std_tqdm\n",
|
510 |
+
" globals()['tqdm'] = std_tqdm \n",
|
511 |
+
" print(\"信息:非Jupyter Notebook环境,使用标准tqdm。\")\n",
|
512 |
+
" except ImportError:\n",
|
513 |
+
" print(\"警告:标准tqdm库未安装。进度条可能无法正常显示或仅简单打印。\")\n",
|
514 |
+
" class dummy_tqdm: # 改进的dummy_tqdm\n",
|
515 |
+
" def __init__(self, iterable=None, desc=\"\", total=None, unit=\"\", bar_format=None, **kwargs):\n",
|
516 |
+
" self.iterable, self.desc, self.total, self.current, self.unit = iterable, desc, total, 0, unit\n",
|
517 |
+
" self.postfix_text = \"\"\n",
|
518 |
+
" if self.total:\n",
|
519 |
+
" print(f\"{self.desc}: 开始处理 {self.total} {self.unit}...\")\n",
|
520 |
+
" else:\n",
|
521 |
+
" print(f\"{self.desc}: 开始处理...\")\n",
|
522 |
+
"\n",
|
523 |
+
" def __iter__(self):\n",
|
524 |
+
" for i, obj in enumerate(self.iterable):\n",
|
525 |
+
" yield obj\n",
|
526 |
+
" self.update(1)\n",
|
527 |
+
" if self.total and (i + 1) % (self.total // 10 if self.total >=10 else 1) == 0: # 每10%或每项打印\n",
|
528 |
+
" self.print_status()\n",
|
529 |
+
" elif not self.total and (i+1) % 50 == 0: # 如果没有total,每50项打印\n",
|
530 |
+
" self.print_status()\n",
|
531 |
+
"\n",
|
532 |
+
"\n",
|
533 |
+
" def set_postfix_str(self, s):\n",
|
534 |
+
" self.postfix_text = s\n",
|
535 |
+
" # 不立即打印,由 __iter__ 中的逻辑控制打印频率\n",
|
536 |
+
"\n",
|
537 |
+
" def print_status(self):\n",
|
538 |
+
" total_str = str(self.total) if self.total else \"?\"\n",
|
539 |
+
" sys.stdout.write(f\"\\r{self.desc}: {self.current}/{total_str} {self.unit} | {self.postfix_text} \")\n",
|
540 |
+
" sys.stdout.flush()\n",
|
541 |
+
"\n",
|
542 |
+
" def update(self, n=1):\n",
|
543 |
+
" self.current += n\n",
|
544 |
+
"\n",
|
545 |
+
" def close(self):\n",
|
546 |
+
" self.print_status() # 确保最后的状态被打印\n",
|
547 |
+
" sys.stdout.write(f\"\\n{self.desc}: 处理完成 {self.current} {self.unit}。\\n\")\n",
|
548 |
+
" sys.stdout.flush()\n",
|
549 |
+
" globals()['tqdm'] = dummy_tqdm\n",
|
550 |
+
" main()"
|
551 |
+
]
|
552 |
+
},
|
553 |
+
{
|
554 |
+
"cell_type": "markdown",
|
555 |
+
"id": "2d12c839",
|
556 |
+
"metadata": {},
|
557 |
+
"source": [
|
558 |
+
"整理一下这个markdown表格,把除了后两列的单独作为一个表格,把后两列重新放到新建的表格里,新建的��格为逐行排列的:\n",
|
559 |
+
"\n",
|
560 |
+
"文件名\n",
|
561 |
+
"数据说明\n",
|
562 |
+
"示例\n",
|
563 |
+
"\n",
|
564 |
+
"表格:\n",
|
565 |
+
"|数据文件名|\t数据条数|\t数据说明|示例|\n",
|
566 |
+
"|--------------|----------|------------------------------------|-----------| \n",
|
567 |
+
"| ADD_4M\t |3997733\t | **1.** 使用‘全角’、‘中文数字’、‘大写中文数字’随机替换整个数字<br>**2.** 运算符附近有 1~2 个随机空格<br>**3.** 含简单自然语言描述/自然语言噪声\t | {\"text\": \"User: 249476576 减 796580834 还剩多少?\\n\\nAssistant: -547104258\"} |\n",
|
568 |
+
"| ADD_2M\t |1999673\t | **1.** 使用‘全角’、‘中文数字’、‘大写中文数字’随机替换整个数字<br>**2.** 运算符附近有 1~2 个随机空格<br>**3.** 含简单自然语言描述/自然语言噪声 | {\"text\": \"User: 捌仟玖佰捌拾叁点肆贰陆玖+9334160.73357\\n\\nAssistant: 9343144.16047\"} |\n",
|
569 |
+
"| ADD_base_8M\t |7992002\t | -999~999的全部两两组合,仅算术式子,无任何随机更改\t\t\t | {\"text\": \"User: -999 + -991 = ?\\n\\nAssistant: -1990\"} |\n",
|
570 |
+
"| ADD_n1m0\t |270887\t | **1.** 使用‘全角’、‘中文数字’、‘大写中文数字’随机替换整个数字;<br>**2.** 运算符附近有 1~2 个随机空格<br>**3.** 额外限制最少有 1 次进/退位 | {\"text\": \"User: 78041304-805555\\n\\nAssistant: 77235749\"} |\n",
|
571 |
+
"| ADD_n1m1\t |199900\t | **1.** 使用‘全角’、‘中文数字’、‘大写中文数字’随机替换整个数字<br>**2.** 运算符附近有 1~2 个随机空格<br>**3.** 含简单自然语言描述/自然语言噪声<br>4. 限制最少 1 次进/退位\t | {\"text\": \"User: 3921857214+玖仟柒佰肆拾壹萬肆仟叁佰玖拾肆 = ?\\n\\nAssistant: 4019271608\"} | \n",
|
572 |
+
"| ADD_n2m0\t |270798\t | **1.** 使用‘全角’、‘中文数字’、‘大写中文数字’随机替换整个数字;<br>**2.** 运算符附近有 1~2 个随机空格<br>**3.** 额外限制最少有 2 次进/退位\t\t\t | {\"text\": \"User: 9420731235+陆仟柒佰伍拾陆萬肆仟贰佰玖拾玖\\n\\nAssistant: 9488295534\"} |\n",
|
573 |
+
"| ADD_n2m1\t |199847\t | **1.** 使用‘全角’、‘中文数字’、‘大写中文数字’随机替换整个数字<br>**2.** 运算符附近有 1~2 个随机空格<br>**3.** 含简单自然语言描述/自然语言噪声<br>4. 限制至少 2 次进/退位\t | {\"text\": \"User: 30685362+柒仟壹佰肆拾萬壹仟壹佰贰拾捌 = ?\\n\\nAssistant: 102086490\"} | \n",
|
574 |
+
"| ADD_n3m0\t |270853\t | **1.** 使用‘全角’、‘中文数字’、‘大写中文数字’随机替换整个数字;<br>**2.** 运算符附近有 1~2 个随机空格<br>**3.** 额外限制最少有 3 次进/退位\t\t\t | {\"text\": \"User: 肆拾叁億肆仟伍佰零肆萬贰仟肆佰捌拾玖加78759970978\\n\\nAssistant: 83105013467\"} |\n",
|
575 |
+
"| ADD_n4m3\t |271345\t | **1.** 使用‘全角’、‘中文数字’、‘大写中文数字’随机替换整个数字;<br>**2.** 运算符附近有 1~2 个随机空格<br>**3.** 额外限制最少有 4 次进/退位,且至少有一个连续进/退位长度为 3 的连续段 \t| {\"text\": \"User: 六亿两千三百二十八万一千零二十四点五四五二六减2329558.33317\\n\\nAssistant: 620951466.21209\"} | \n",
|
576 |
+
"| ADD_random_0.25M\t |249735\t | **1.** 逐位随机进行替换<br>**2.** 替换内容为:大小写中文、全半角数字、(例如:叁2五)<br>**3.** 每个数字和运算符直接随机0~2个空格\t\t\t | {\"text\": \"User: 46495569.67886-四百6十亿8千六百4十二万贰千陆百8十玖点九3四五伍=?\\n\\nAssistant: -46039927120.25569\"} |\n",
|
577 |
+
"| ADD_random_4M\t |4494484\t | **1.** 使用‘全角’、‘中文数字’、‘大写中文数字’随机替换数字的某个位,例如:八4肆<br>**2.** 数字内部和运算符附近有 1~2 个随机空格 | {\"text\": \"User: 8千1百陆十六万捌千8百捌十捌-2仟5佰壹拾八 億2仟六佰1拾八萬陆仟 六佰5拾五\\n\\nAssistant: -251744517767\"} |\n",
|
578 |
+
"| ADD_many0_50k\t |50000\t | 强化数据,如**2.**000+1\t\t\t | {\"text\": \"User: -315052474 4.00 和 825824149176.0000 等于?\\n\\nAssistant: 822673624432\"} |\n",
|
579 |
+
"| ADD_en\t |976394\t | **1.** 使用‘全角’、‘中文数字’、‘大写中文数字’、‘英文数字’随机替换整个数字;<br>例如: 叁3三3three THREE Three\t\t\t | {\"text\": \"User: seven Nine FOUR six six One seven NINE SIX one ZERO zero point Six SIX ONE seven NINE six One NINE+2=?\\n\\nAssistant: 794661796102\"} |\n",
|
580 |
+
"| ADD_en_base_1M-v1\t |1000000\t | 英语基础数据,从qa_add_base_8M.jsonl下采样直译而来\t\t\t | {\"text\": \"User: 275MINUS six Hundred sixty five= , solve this.\\n\\nAssistant: -390\"} |\n",
|
581 |
+
"| ADD_en_base_1M-v2\t |1000000\t | 英语基础数据,从qa_add_base_8M.jsonl下采样直译而来\t\t\t | {\"text\": \"User: -684 plusfour Hundred eighty Five=equals WHAT?\\n\\nAssistant: -199\"} |\n",
|
582 |
+
"| ADD_en_random_mix\t |1464727\t | **1.** 使用‘全角’、‘中文数字’、‘大写中文数字’、‘英文数字’随机替换整个数字;<br>**2.** 对每个单词逐个字母进行大小写随机<br>例如: 叁3三3three THREE Three tHrEe\t\t\t | {\"text\": \"User: 6941+Six MILLION Three HUNDRED FIFTY four THOUSAND TWENTY three=?\\n\\nAssistant: 6360964\"} | \n",
|
583 |
+
"| ADD_en_by-desc\t |489961\t | **1.** 使用‘全角’、‘英文数字’随机替换整个数字<br>**2.** 运算符附近有 1~2 个随机空格<br>**3.** 含简单自然语言描述/自然语言噪声\t\t\t | {\"text\": \"User: What is Eight three five Eight TWO four zero TWO Point Four added To 10994.06?\\n\\nAssistant: 83593396.46\"} |\n",
|
584 |
+
"| ADD_use-connect\t |1542000\t | 强制使用标准化的英文连接符\t\t\t | {\"text\": \"User: FIVE-BILLION-EIGHT-HUNDRED-NINETY-THREE-MILLION-NINE-HUNDRED-FIFTY-FIVE-THOUSAND-EIGHT-HUNDRED-FORTY-THREE+ NiNE-HUndred-FoRTY-sIx-BiLlIon-sIx-hUnDReD-Eighty-foUr-miLLiON-Eight-HunDRed-seveNty-two-THoUSAND-FOUR-HUndREd-FiFty-nIne-PoInT-EIGHT-nINe-siX-SIX = ?\\n\\nAssistant: 95257882830**2.**8966\"} |\n",
|
585 |
+
"| X_ch_mix\t |2000000\t | **1.** 使用‘全角’、‘中文数字’、‘大写中文数字’随机替换整个数字<br>**2.** 运算符附近有 1~2 个随机空格<br>**3.** 随机中英问号<br>4. 解方程格式\t\t\t | {\"text\": \"User: x+514= 585.028, 求解 x。\\n\\nAssistant: x = 585.028 - 514 = 7**1.**028\"} | \n",
|
586 |
+
"| X_ch_en_mix\t |250000\t | **1.** 使用‘全角’、‘英文数字’、‘中文数字’、‘大写中文数字'随机替换数字的某个位<br>**2.** 运算符附近有 1~2 个随机空格<br>**3.** 随机中英问号<br>4. 解方程格式\t\t\t | {\"text\": \"User: x-685919一7185=-68伍91玖1692捌, 求 x 的值。\\n\\nAssistant: x = -68591916928 + 68591917185 = 257\"} | \n",
|
587 |
+
"| X_en_random_mix\t |1000000\t | **1.** 使用‘全角’、‘中文数字’、‘大写中文数字’随机替换整个数字<br>**2.** 运算符附近有 1~2 个随机空格<br>**3.** 含简单自然语言描述/自然语言噪声<br>4. 对每个单词逐个字母进行大小写随机<br>5. 解方程格式 |{\"text\": \"User: miNus FouR PoINT TWO fOUr fIve FOUR zERo zerO sIx TiMeS tEN tO the pOWEr OF EigHT+x=-424539854.8 , x = ?\\n\\nAssistant: x = -424539854.8 + 424540060 = 205.2\"} | \n",
|
588 |
+
"| qa_error\t |248\t | 噪声数据\t\t\t | {\"text\": \"User: 椅子 + 桌子 =\\n\\nAssistant: 无法相加\"} |\n",
|
589 |
+
"| qa_gibberish_unanswerable\t|10000\t | 乱码,抗干扰,答案为:无法回答\t\t\t | |\n"
|
590 |
+
]
|
591 |
+
},
|
592 |
+
{
|
593 |
+
"cell_type": "markdown",
|
594 |
+
"id": "a233fb46",
|
595 |
+
"metadata": {},
|
596 |
+
"source": []
|
597 |
+
}
|
598 |
+
],
|
599 |
+
"metadata": {
|
600 |
+
"kernelspec": {
|
601 |
+
"display_name": "torch",
|
602 |
+
"language": "python",
|
603 |
+
"name": "python3"
|
604 |
+
},
|
605 |
+
"language_info": {
|
606 |
+
"name": "python",
|
607 |
+
"version": "3.12.7"
|
608 |
+
}
|
609 |
+
},
|
610 |
+
"nbformat": 4,
|
611 |
+
"nbformat_minor": 5
|
612 |
+
}
|
make_data_v2.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|