shivendrra commited on
Commit
0486af5
·
verified ·
1 Parent(s): 5d5a2cf

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +115 -3
README.md CHANGED
@@ -1,3 +1,115 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - biology
5
+ - protien-sequences
6
+ - dna-database
7
+ - raw-fasta
8
+ - dna
9
+ size_categories:
10
+ - 10M<n<100M
11
+ ---
12
+
13
+ ## DNA Sequence Database from NCBI
14
+
15
+ Welcome to the curated DNA sequence dataset, automatically gathered from NCBI using the Enigma2 pipeline. This repository provides ready-to-use CSV and Parquet files for downstream machine-learning and bioinformatics tasks.
16
+
17
+ ## 📋 Dataset Overview
18
+
19
+ * **Scope**
20
+
21
+ * A collection of topic-specific DNA sequence sets (e.g., BRCA1, TP53, CFTR) sourced directly from NCBI’s Nucleotide database.
22
+ * **Curation Process**
23
+
24
+ 1. **Query Design**
25
+
26
+ * Predefined Entrez queries (gene names, organism filters) identify relevant GenBank records.
27
+ 2. **Batch Retrieval**
28
+
29
+ * Sequences fetched in controlled batches to respect rate limits and ensure reliability.
30
+ 3. **Quality Control & Filtering**
31
+
32
+ * Records shorter than 100 bp or exhibiting parsing errors were omitted.
33
+ 4. **Metadata Extraction**
34
+
35
+ * For each sequence, we record:
36
+
37
+ * **ID** (accession number)
38
+ * **Name** (full FASTA description)
39
+ * **Length** (base-pair count)
40
+ 5. **Export**
41
+
42
+ * Data saved in both CSV and Parquet formats for seamless integration with Python, R, and big-data frameworks.
43
+
44
+ ## 📂 Dataset Structure
45
+
46
+ Each topic is stored in its own file under the `datasets/` directory:
47
+
48
+ ```
49
+ datasets/
50
+ ├── BRCA1_Gene_AND_Homo_sapiens_Organism.csv
51
+ ├── BRCA1_Gene_AND_Homo_sapiens_Organism.parquet
52
+ ├── TP53_Gene_AND_Homo_sapiens_Organism.csv
53
+ ├── TP53_Gene_AND_Homo_sapiens_Organism.parquet
54
+
55
+ ```
56
+
57
+ **File contents** (4 columns):
58
+
59
+ | Column | Description |
60
+ | ---------- | ---------------------------------------------- |
61
+ | `id` | NCBI accession ID |
62
+ | `name` | Full FASTA-style description |
63
+ | `length` | Original sequence length (in base pairs) |
64
+ | `sequence` | Raw DNA string (A/C/G/T; no alignment padding) |
65
+
66
+ ## 🚀 How to Use
67
+
68
+ ```python
69
+ from enigma2 import Database, EntrezQueries, convert_fasta
70
+
71
+ queries = EntrezQueries() # contains about 20 queries
72
+ db = Database(topics=queries(), out_dir="./data/", mode='csv', email="[email protected]", retmax=500, max_rate=10, raw=True)
73
+ db.build_raw()
74
+
75
+ # inspect first record
76
+ print(ds[0])
77
+ # → {'id': 'NM_007294.3', 'name': 'Homo sapiens BRCA1 transcript …', 'length': 1863, 'sequence': 'ATGGATT…'}
78
+ ```
79
+
80
+ Or, in a Unix shell:
81
+
82
+ ```bash
83
+ pip install datasets
84
+ datasets-cli download -d shivendrra/dna-ncbi -s BRCA1_Gene_AND_Homo_sapiens_Organism.csv
85
+ ```
86
+
87
+ ## 🔍 Recommended Workflows
88
+
89
+ * **Feature Engineering**: k-mer counting, GC content analysis
90
+ * **Sequence Modeling**: RNNs, Transformers on raw DNA
91
+ * **Phylogenetic Studies**: distance matrices from sequence distances
92
+
93
+ ## 🔗 Source Code
94
+
95
+ The full data-gathering and processing pipeline is open-source:
96
+ [Enigma2](https://github.com/shivendrra/enigma2)
97
+
98
+
99
+ ## 📖 Citation
100
+
101
+ If you use this dataset in your work, please cite:
102
+
103
+ ```
104
+ @misc{shivendrra_enigma2_2025,
105
+ author = {Shivendrra, Harsh and contributors},
106
+ title = {Enigma2 NCBI DNA Dataset},
107
+ year = {2025},
108
+ howpublished = {\\url{https://huggingface.co/datasets/shivendrra/EnigmaDataset}}
109
+ }
110
+ ```
111
+
112
+ ## 📝 License
113
+
114
+ This dataset is released under the [MIT License](LICENSE).
115
+ Feel free to reuse and adapt—with attribution.