outfitter-advice / scraper.py
monsoon-nlp's picture
more examples, updated flair options
c498bcc
import csv
import json
import os
import praw
import random
import re
import sys
env = json.load(open('.env', 'r'))
#print(env)
reddit = praw.Reddit(
client_id=env["app_id"],
client_secret=env["secret"],
user_agent=env["user_agent"]
)
def main(post_id):
post = reddit.submission(id=post_id)
post.comments.replace_more(limit=0)
sorted_comments = sorted(post.comments, key=lambda c: c.score, reverse=True)
if post.link_flair_text is None:
raise Exception("Must be a gender or non-binary fashion flair post")
elif "Men's" in post.link_flair_text:
gender = "M"
elif "Women's" in post.link_flair_text or "Ladies'" in post.link_flair_text:
gender = "F"
elif "Non Binary" in post.link_flair_text:
gender = "X"
else:
raise Exception("Must be a gender or non-binary fashion flair post")
data = {
"post_id": post_id,
"gender_flair": gender,
"title": post.title,
"selftext": post.selftext,
"images": [],
}
image_urls = []
if post.is_gallery:
metadata = post.media_metadata
for item in post.gallery_data['items']:
url = metadata[item['media_id']]['s']['u'].replace("&", "&")
image_urls.append(url)
else:
raise Exception("Need multiple images for there to be a multimodal eval question")
lead_choices = {}
firstChoice = None
secondChoice = None
for c in sorted_comments:
text = c.body.strip().lower().replace('first', '1st').replace('second', '2nd').replace('third', '3rd').replace('fourth', '4th').replace('fifth', '5th')
text = text.replace('last', str(len(image_urls)))
selections = re.findall(r'\d', text)
if len(selections) == 0:
print("Skipped comment without digit")
continue
elif len(set(selections)) > 1:
print(text)
raise Exception("Encountered a top comment with multiple digits, complex")
selection = int(selections[0])
if selection not in lead_choices:
print(f"Found comment with {c.score} votes: {text}")
lead_choices[selection] = c.score
data["images"].append(image_urls[selection - 1])
if firstChoice is None:
firstChoice = selection
elif secondChoice is None:
secondChoice = selection
break
else:
print(f"Found repeat comment with {c.score} votes")
lead_choices[selection] += c.score
if lead_choices[selection] > 100:
print("Overwhelming support")
if selection == 1:
secondChoice = 2
else:
secondChoice = selection - 1
lead_choices[secondChoice] = 1
data["images"].append(image_urls[secondChoice - 1])
break
if len(lead_choices.keys()) != 2:
raise Exception("Did not find two distinct comments with single outfit suggestions")
data["firstChoiceVotes"] = lead_choices[firstChoice]
data["secondChoice"] = lead_choices[secondChoice]
if len(image_urls) > 2:
print("We are assuming that there is one image of each outfit")
used_set = set(image_urls)
remaining = [img for img in used_set if img not in data["images"]]
extra_images = random.sample(remaining, min(len(remaining), 2))
data["images"] += extra_images
# print(json.dumps(data, indent=2))
fieldnames = [
"post_id",
"gender_flair",
"title",
"selftext",
"images",
"firstChoiceVotes",
"secondChoice"
]
filename = "dataset.csv"
file_exists = os.path.isfile(filename)
with open(filename, mode="a", newline="", encoding="utf-8") as f:
writer = csv.DictWriter(f, fieldnames=fieldnames)
if not file_exists:
writer.writeheader()
row = data.copy()
row["images"] = ",".join(data["images"])
writer.writerow(row)
if __name__ == "__main__":
if len(sys.argv) != 2:
print("Usage: python outfit_scraper.py <reddit_post_id>")
sys.exit(1)
main(sys.argv[1])