import os import json from PIL import Image from torch.utils.data import Dataset, DataLoader from torchvision import transforms class RQADataset(Dataset): def __init__(self, data_dir, split='train', transform=None): """ Initializes the dataset. Args: data_dir: Base directory of the dataset on the Hugging Face Hub. split: Split of the dataset ('train' or 'test'). transform: Optional transform to be applied on a sample. """ self.data_dir = data_dir self.split = split self.transform = transform or transforms.Compose([ transforms.Resize((512, 512)), transforms.ToTensor() ]) # Initialize lists to hold image and question data self.questions = [] self.file_names = self._load_file_names() self._create_questions() print(f"Total Questions Loaded: {len(self.questions)}") def _load_file_names(self): """ Loads the list of file names to be processed based on the split. Returns: A list of file names without extensions. """ if self.split == 'test': # Load test file names from the list provided on Hugging Face filter_list_file = os.path.join(self.data_dir, 'test_filenames.txt') with open(filter_list_file, 'r') as f: file_names = [line.strip() for line in f] print(f"Loaded {len(file_names)} test files from {filter_list_file}") else: # For training, use all JSON files from all directories file_names = [] for json_dir in ['jsons', 'jsons2', 'jsons3']: json_dir_path = os.path.join(self.data_dir, json_dir) json_files = [os.path.splitext(file)[0] for file in os.listdir(json_dir_path) if file.endswith('.json')] file_names.extend(json_files) return file_names def _create_questions(self): """ Creates the list of questions from JSON files. """ unused_count = 0 for file_name in self.file_names: # Determine which folder contains the current JSON file if file_name in os.listdir(os.path.join(self.data_dir, 'jsons')): json_path = os.path.join(self.data_dir, 'jsons', f"{file_name}.json") img_dir = 'images' elif file_name in os.listdir(os.path.join(self.data_dir, 'jsons2')): json_path = os.path.join(self.data_dir, 'jsons2', f"{file_name}.json") img_dir = 'images2' else: json_path = os.path.join(self.data_dir, 'jsons3', f"{file_name}.json") img_dir = 'images3' # Load questions from the JSON file with open(json_path, 'r') as f: json_data = json.load(f) for item in json_data: if 'PMC_ID' not in item or 'qa_id' not in item: continue # Ensure all necessary fields are present item['image_path'] = os.path.join(self.data_dir, img_dir, f"{item['PMC_ID']}.jpg") if os.path.exists(item['image_path']): self.questions.append(item) else: unused_count += 1 print(f"Total unused/used images: {unused_count} / {len(self.file_names) - unused_count}") def __len__(self): return len(self.questions) def __getitem__(self, idx): """ Loads a single data point. Args: idx: Index of the data point. Returns: A dictionary containing the image, question, and answer data. """ question_block = self.questions[idx] image_path = question_block['image_path'] image = Image.open(image_path).convert("RGB") # Apply transformation if available if self.transform: image = self.transform(image) return { 'image': image, 'question': question_block['question'], 'answer': question_block['answer'], 'qa_id': question_block['qa_id'], 'PMC_ID': question_block['PMC_ID'] } @staticmethod def custom_collate(batch): """ Custom collate function to handle batch processing. Args: batch: A batch of data points. Returns: A dictionary containing the collated batch data. """ images = [item['image'] for item in batch] questions = [item['question'] for item in batch] answers = [item['answer'] for item in batch] qa_ids = [item['qa_id'] for item in batch] pmc_ids = [item['PMC_ID'] for item in batch] return { 'images': images, 'questions': questions, 'answers': answers, 'qa_ids': qa_ids, 'PMC_IDs': pmc_ids } if __name__ == "__main__": # Initialize dataset for training dataset = RQADataset(data_dir='.', split='train') # Test loading a single item print(f"Number of samples in dataset: {len(dataset)}") sample = dataset[0] print("Sample data:", sample) # Initialize DataLoader dataloader = DataLoader(dataset, batch_size=4, collate_fn=RQADataset.custom_collate) # Test DataLoader for batch in dataloader: print("Batch data:", batch) break # Load only one batch for testing