import os import json import time from PIL import Image from torch.utils.data import Dataset, DataLoader from torchvision import transforms class RQADataset(Dataset): def __init__(self, data_config, transform=None): """ Initializes the dataset. Args: data_config: Configuration object containing paths and settings. transform: Optional transform to be applied on a sample. """ self.img_dir = data_config.img_dir self.json_dir = data_config.json_dir self.filter_list_file = data_config.filter_list self.train = data_config.train self.transform = transform or transforms.Compose([ transforms.Resize((512, 512)) ]) self.questions = [] # Load file names for testing or use all files for training self.file_names = self._load_file_names() self._create_questions() print(f"Total Questions Loaded: {len(self.questions)}") def _load_file_names(self): """ Loads the list of file names to be processed. Returns: A list of file names without extensions. """ if not self.train and self.filter_list_file: with open(self.filter_list_file, 'r') as f: file_names = [line.strip() for line in f] print(f"Loaded {len(file_names)} test files from {self.filter_list_file}") return file_names else: # Use all files for training return [os.path.splitext(file)[0] for file in os.listdir(self.json_dir) if file.endswith('.json')] def _create_questions(self): """ Creates the list of questions from JSON files. """ start_time = time.time() unused_count = 0 for file_name in self.file_names: json_path = os.path.join(self.json_dir, file_name + '.json') if not os.path.exists(json_path): unused_count += 1 continue with open(json_path, 'r') as f: json_data = json.load(f) for item in json_data: if 'PMC_ID' not in item or 'qa_id' not in item: continue # Ensure all necessary fields are present item['image_path'] = os.path.join(self.img_dir, item['PMC_ID'] + '.jpg') if os.path.exists(item['image_path']): self.questions.append(item) else: unused_count += 1 elapsed_time = time.time() - start_time print(f"Elapsed time to create questions: {elapsed_time:.2f} seconds = {elapsed_time/60:.2f} minutes") print(f'Total unused/used images: {unused_count} / {len(self.file_names) - unused_count}') def __len__(self): return len(self.questions) def __getitem__(self, idx): return self._load_data(idx) def _load_data(self, idx): """ Loads a single data point. Args: idx: Index of the data point. Returns: A dictionary containing the image, question, and answer data. """ question_block = self.questions[idx] image_path = question_block['image_path'] image = Image.open(image_path).convert("RGB") # Apply transformation if available if self.transform: image = self.transform(image) return { 'image': image, 'question': question_block['question'], 'answer': question_block['answer'], 'qa_id': question_block['qa_id'], 'PMC_ID': question_block['PMC_ID'] } @staticmethod def custom_collate(batch): """ Custom collate function to handle batch processing. Args: batch: A batch of data points. Returns: A dictionary containing the collated batch data. """ images = [item['image'] for item in batch] questions = [item['question'] for item in batch] answers = [item['answer'] for item in batch] qa_ids = [item['qa_id'] for item in batch] pmc_ids = [item['PMC_ID'] for item in batch] return { 'images': images, 'questions': questions, 'answers': answers, 'qa_ids': qa_ids, 'PMC_IDs': pmc_ids } if __name__ == "__main__": # Define a simple data structure to hold the paths class DataConfig: img_dir = '/home/jupyter/RealCQA/code/data/RQA_V0/images' json_dir = '/home/jupyter/RealCQA/code/data/RQA_V0/qa' filter_list = '/home/jupyter/RealCQA/code/data/RQA_V0/test_filenames.txt' train = False # Set to False to prepare the test files # Initialize dataset dataset = RQADataset(DataConfig) # Test loading a single item print(f"Number of samples in dataset: {len(dataset)}") sample = dataset[0] print("Sample data:", sample) # Initialize DataLoader dataloader = DataLoader(dataset, batch_size=4, collate_fn=RQADataset.custom_collate) # Test DataLoader for batch in dataloader: print("Batch data:", batch) break # Load only one batch for testing class DataConfig: img_dir = '/home/jupyter/RealCQA/code/data/RQA_V0/images' json_dir = '/home/jupyter/RealCQA/code/data/RQA_V0/qa' filter_list = '/home/jupyter/RealCQA/code/data/RQA_V0/test_filenames.txt' train = True # Set to False to prepare the test files # Initialize dataset dataset = RQADataset(DataConfig) # Test loading a single item print(f"Number of samples in dataset: {len(dataset)}") sample = dataset[0] print("Sample data:", sample) # Initialize DataLoader dataloader = DataLoader(dataset, batch_size=4, collate_fn=RQADataset.custom_collate) # Test DataLoader for batch in dataloader: print("Batch data:", batch) break # Load only one batch for testing