import os
import json
import time
from PIL import Image
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms

class RQADataset(Dataset):
    def __init__(self, data_config, transform=None):
        """
        Initializes the dataset.

        Args:
            data_config: Configuration object containing paths and settings.
            transform: Optional transform to be applied on a sample.
        """
        self.img_dir = data_config.img_dir
        self.json_dir = data_config.json_dir
        self.filter_list_file = data_config.filter_list
        self.train = data_config.train
        self.transform = transform or transforms.Compose([
            transforms.Resize((512, 512))
        ])

        self.questions = []

        # Load file names for testing or use all files for training
        self.file_names = self._load_file_names()
        self._create_questions()
        print(f"Total Questions Loaded: {len(self.questions)}")

    def _load_file_names(self):
        """
        Loads the list of file names to be processed.

        Returns:
            A list of file names without extensions.
        """
        if not self.train and self.filter_list_file:
            with open(self.filter_list_file, 'r') as f:
                file_names = [line.strip() for line in f]
            print(f"Loaded {len(file_names)} test files from {self.filter_list_file}")
            return file_names
        else:
            # Use all files for training
            return [os.path.splitext(file)[0] for file in os.listdir(self.json_dir) if file.endswith('.json')]

    def _create_questions(self):
        """
        Creates the list of questions from JSON files.
        """
        start_time = time.time()
        unused_count = 0

        for file_name in self.file_names:
            json_path = os.path.join(self.json_dir, file_name + '.json')
            if not os.path.exists(json_path):
                unused_count += 1
                continue

            with open(json_path, 'r') as f:
                json_data = json.load(f)
                for item in json_data:
                    if 'PMC_ID' not in item or 'qa_id' not in item:
                        continue  # Ensure all necessary fields are present
                    item['image_path'] = os.path.join(self.img_dir, item['PMC_ID'] + '.jpg')
                    if os.path.exists(item['image_path']):
                        self.questions.append(item)
                    else:
                        unused_count += 1

        elapsed_time = time.time() - start_time
        print(f"Elapsed time to create questions: {elapsed_time:.2f} seconds = {elapsed_time/60:.2f} minutes")
        print(f'Total unused/used images: {unused_count} / {len(self.file_names) - unused_count}')

    def __len__(self):
        return len(self.questions)

    def __getitem__(self, idx):
        return self._load_data(idx)

    def _load_data(self, idx):
        """
        Loads a single data point.

        Args:
            idx: Index of the data point.

        Returns:
            A dictionary containing the image, question, and answer data.
        """
        question_block = self.questions[idx]
        image_path = question_block['image_path']
        image = Image.open(image_path).convert("RGB")

        # Apply transformation if available
        if self.transform:
            image = self.transform(image)

        return {
            'image': image,
            'question': question_block['question'],
            'answer': question_block['answer'],
            'qa_id': question_block['qa_id'],
            'PMC_ID': question_block['PMC_ID']
        }

    @staticmethod
    def custom_collate(batch):
        """
        Custom collate function to handle batch processing.

        Args:
            batch: A batch of data points.

        Returns:
            A dictionary containing the collated batch data.
        """
        images = [item['image'] for item in batch]
        questions = [item['question'] for item in batch]
        answers = [item['answer'] for item in batch]
        qa_ids = [item['qa_id'] for item in batch]
        pmc_ids = [item['PMC_ID'] for item in batch]

        return {
            'images': images,
            'questions': questions,
            'answers': answers,
            'qa_ids': qa_ids,
            'PMC_IDs': pmc_ids
        }

if __name__ == "__main__":
    # Define a simple data structure to hold the paths
    class DataConfig:
        img_dir = '/home/jupyter/RealCQA/code/data/RQA_V0/images'
        json_dir = '/home/jupyter/RealCQA/code/data/RQA_V0/qa'
        filter_list = '/home/jupyter/RealCQA/code/data/RQA_V0/test_filenames.txt'
        train = False  # Set to False to prepare the test files

    # Initialize dataset
    dataset = RQADataset(DataConfig)

    # Test loading a single item
    print(f"Number of samples in dataset: {len(dataset)}")
    sample = dataset[0]
    print("Sample data:", sample)

    # Initialize DataLoader
    dataloader = DataLoader(dataset, batch_size=4, collate_fn=RQADataset.custom_collate)

    # Test DataLoader
    for batch in dataloader:
        print("Batch data:", batch)
        break  # Load only one batch for testing
    
    class DataConfig:
        img_dir = '/home/jupyter/RealCQA/code/data/RQA_V0/images'
        json_dir = '/home/jupyter/RealCQA/code/data/RQA_V0/qa'
        filter_list = '/home/jupyter/RealCQA/code/data/RQA_V0/test_filenames.txt'
        train = True  # Set to False to prepare the test files

    # Initialize dataset
    dataset = RQADataset(DataConfig)

    # Test loading a single item
    print(f"Number of samples in dataset: {len(dataset)}")
    sample = dataset[0]
    print("Sample data:", sample)

    # Initialize DataLoader
    dataloader = DataLoader(dataset, batch_size=4, collate_fn=RQADataset.custom_collate)

    # Test DataLoader
    for batch in dataloader:
        print("Batch data:", batch)
        break  # Load only one batch for testing