File size: 6,026 Bytes
abe92bb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 |
import os
import json
import time
from PIL import Image
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms
class RQADataset(Dataset):
def __init__(self, data_config, transform=None):
"""
Initializes the dataset.
Args:
data_config: Configuration object containing paths and settings.
transform: Optional transform to be applied on a sample.
"""
self.img_dir = data_config.img_dir
self.json_dir = data_config.json_dir
self.filter_list_file = data_config.filter_list
self.train = data_config.train
self.transform = transform or transforms.Compose([
transforms.Resize((512, 512))
])
self.questions = []
# Load file names for testing or use all files for training
self.file_names = self._load_file_names()
self._create_questions()
print(f"Total Questions Loaded: {len(self.questions)}")
def _load_file_names(self):
"""
Loads the list of file names to be processed.
Returns:
A list of file names without extensions.
"""
if not self.train and self.filter_list_file:
with open(self.filter_list_file, 'r') as f:
file_names = [line.strip() for line in f]
print(f"Loaded {len(file_names)} test files from {self.filter_list_file}")
return file_names
else:
# Use all files for training
return [os.path.splitext(file)[0] for file in os.listdir(self.json_dir) if file.endswith('.json')]
def _create_questions(self):
"""
Creates the list of questions from JSON files.
"""
start_time = time.time()
unused_count = 0
for file_name in self.file_names:
json_path = os.path.join(self.json_dir, file_name + '.json')
if not os.path.exists(json_path):
unused_count += 1
continue
with open(json_path, 'r') as f:
json_data = json.load(f)
for item in json_data:
if 'PMC_ID' not in item or 'qa_id' not in item:
continue # Ensure all necessary fields are present
item['image_path'] = os.path.join(self.img_dir, item['PMC_ID'] + '.jpg')
if os.path.exists(item['image_path']):
self.questions.append(item)
else:
unused_count += 1
elapsed_time = time.time() - start_time
print(f"Elapsed time to create questions: {elapsed_time:.2f} seconds = {elapsed_time/60:.2f} minutes")
print(f'Total unused/used images: {unused_count} / {len(self.file_names) - unused_count}')
def __len__(self):
return len(self.questions)
def __getitem__(self, idx):
return self._load_data(idx)
def _load_data(self, idx):
"""
Loads a single data point.
Args:
idx: Index of the data point.
Returns:
A dictionary containing the image, question, and answer data.
"""
question_block = self.questions[idx]
image_path = question_block['image_path']
image = Image.open(image_path).convert("RGB")
# Apply transformation if available
if self.transform:
image = self.transform(image)
return {
'image': image,
'question': question_block['question'],
'answer': question_block['answer'],
'qa_id': question_block['qa_id'],
'PMC_ID': question_block['PMC_ID']
}
@staticmethod
def custom_collate(batch):
"""
Custom collate function to handle batch processing.
Args:
batch: A batch of data points.
Returns:
A dictionary containing the collated batch data.
"""
images = [item['image'] for item in batch]
questions = [item['question'] for item in batch]
answers = [item['answer'] for item in batch]
qa_ids = [item['qa_id'] for item in batch]
pmc_ids = [item['PMC_ID'] for item in batch]
return {
'images': images,
'questions': questions,
'answers': answers,
'qa_ids': qa_ids,
'PMC_IDs': pmc_ids
}
if __name__ == "__main__":
# Define a simple data structure to hold the paths
class DataConfig:
img_dir = '/home/jupyter/RealCQA/code/data/RQA_V0/images'
json_dir = '/home/jupyter/RealCQA/code/data/RQA_V0/qa'
filter_list = '/home/jupyter/RealCQA/code/data/RQA_V0/test_filenames.txt'
train = False # Set to False to prepare the test files
# Initialize dataset
dataset = RQADataset(DataConfig)
# Test loading a single item
print(f"Number of samples in dataset: {len(dataset)}")
sample = dataset[0]
print("Sample data:", sample)
# Initialize DataLoader
dataloader = DataLoader(dataset, batch_size=4, collate_fn=RQADataset.custom_collate)
# Test DataLoader
for batch in dataloader:
print("Batch data:", batch)
break # Load only one batch for testing
class DataConfig:
img_dir = '/home/jupyter/RealCQA/code/data/RQA_V0/images'
json_dir = '/home/jupyter/RealCQA/code/data/RQA_V0/qa'
filter_list = '/home/jupyter/RealCQA/code/data/RQA_V0/test_filenames.txt'
train = True # Set to False to prepare the test files
# Initialize dataset
dataset = RQADataset(DataConfig)
# Test loading a single item
print(f"Number of samples in dataset: {len(dataset)}")
sample = dataset[0]
print("Sample data:", sample)
# Initialize DataLoader
dataloader = DataLoader(dataset, batch_size=4, collate_fn=RQADataset.custom_collate)
# Test DataLoader
for batch in dataloader:
print("Batch data:", batch)
break # Load only one batch for testing
|