File size: 6,414 Bytes
b586e31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import xml.etree.ElementTree as ET
import csv
import pandas as pd
from pydub import AudioSegment
import re
import sys
from typing import List, Tuple, Dict

# Global dictionary to store custom character choices for each pinyin
custom_choices: Dict[str, str] = {}


def parse_xml(xml_content: str) -> List[Tuple[int, int, str]]:
    root = ET.fromstring(xml_content)

    time_order = {ts.get('TIME_SLOT_ID'): int(ts.get('TIME_VALUE'))
                  for ts in root.iter('TIME_SLOT')}

    tier_data = []
    for tier in root.iter('TIER'):
        tier_id = tier.get('TIER_ID')
        if not ('-' in tier_id) and (tier_id == 'G' or tier_id == 'E'):
            for annotation in tier.iter('ALIGNABLE_ANNOTATION'):
                start_time = time_order[annotation.get('TIME_SLOT_REF1')]
                end_time = time_order[annotation.get('TIME_SLOT_REF2')]
                text = annotation.find('./ANNOTATION_VALUE').text
                tier_data.append((start_time, end_time, text))

    return tier_data


def transform_latin_to_chinese(text: str, dict_df: pd.DataFrame, output_wav: str) -> Tuple[str, pd.DataFrame]:
    global custom_choices
    transformed_text = ""

    i = 0
    while i < len(text):
        char = text[i]
        if char == "&":
            j = i + 1
            while j < i + 7 and j < len(text) and text[j].isalpha():
                j += 1
            if j < len(text) and text[j].isdigit():
                term = text[(i+1):j + 1].lower()
                pinyin_entries = dict_df[dict_df['拼音'] == term]['繁體']
                if not pinyin_entries.empty:
                    if len(pinyin_entries) > 1:
                        full_sentence = f"Full Sentence: {text}"
                        print(full_sentence)
                        print(f"Path: {output_wav}")
                        print(f"Multiple entries found for {
                              term}. Choose one (or enter a custom character):")
                        for idx, entry in enumerate(pinyin_entries):
                            print(f"{idx + 1}. {entry}")
                        print(f"{len(pinyin_entries) +
                              1}. Enter a custom character")
                        choice = input("Enter the number of your choice: ")
                        if choice.isdigit() and int(choice) <= len(pinyin_entries):
                            choice = int(choice) - 1
                            transformed_text += pinyin_entries.values[choice]
                            custom_choices[term] = pinyin_entries.values[choice]
                        elif choice == str(len(pinyin_entries) + 1):
                            custom_choice = input(
                                f"Enter a custom character for {term}: ")
                            transformed_text += custom_choice
                            custom_choices[term] = custom_choice
                            # Update DataFrame with the custom character
                            dict_df = pd.concat([dict_df, pd.DataFrame(
                                [{'拼音': term, '繁體': custom_choice}])], ignore_index=True)
                        else:
                            print("Invalid choice. Using the default character.")
                            transformed_text += pinyin_entries.values[0]
                    else:
                        try:
                            transformed_text += pinyin_entries.values[0] or ""
                        except:
                            pass
                else:
                    print(f"Full Sentence: {text}")
                    print(f"Path: {output_wav}")
                    custom_choice = input(f"No corresponding character found for {
                                          term}. Enter a custom character: ")
                    transformed_text += custom_choice
                    custom_choices[term] = custom_choice
                    # Update DataFrame with the custom character
                    dict_df = pd.concat([dict_df, pd.DataFrame(
                        [{'拼音': term, '繁體': custom_choice}])], ignore_index=True)
                i = j + 1
            else:
                transformed_text += char
                i += 1
        else:
            transformed_text += char
            i += 1

    return transformed_text, dict_df


def clean_transformed_text(text: str) -> str:
    # Replace "#" with a blank space
    text = text.replace("#", " ")

    # Remove special characters and symbols
    text = re.sub(r"[^a-zA-Z0-9\u4e00-\u9fff ]", "", text)

    # Remove HTML entities (e.g., &amp;)
    text = re.sub(r"&[a-zA-Z]+;", "", text)

    return text


def extract_audio_segments(input_wav: str, output_wav: str, start_time: int, end_time: int) -> None:
    audio = AudioSegment.from_wav(input_wav)
    segment = audio[start_time:end_time]
    segment.export(output_wav, format="wav")


def main() -> None:
    with open(sys.argv[1], "r", encoding="utf-8") as file:
        xml_content = file.read()

    tier_data = parse_xml(xml_content)

    with open("./粵語字典_(耶魯_數字).csv", "r", encoding="utf-8") as dict_file:
        dict_csv = dict_file.name
        dict_df = pd.read_csv(dict_csv)

    # Replace with your actual audio file
    audio_file = sys.argv[1].replace("eaf", "wav")

    transformed_tier_data = []
    for i, (start_time, end_time, text) in enumerate(tier_data):
        output_wav = f"audio/{sys.argv[1].split('/')
                              [-1].replace('.eaf', '')}_ts{i+1}.wav"
        extract_audio_segments(audio_file, output_wav, start_time, end_time)
        transformed_text, dict_df = transform_latin_to_chinese(text, dict_df, output_wav)
        transformed_text = clean_transformed_text(transformed_text)
        transformed_tier_data.append(
            (start_time, end_time, transformed_text, output_wav.split("/")[-1]))

    # Save the updated DataFrame to the CSV file
    dict_df.to_csv(dict_csv, index=False, encoding='utf-8')

    tsv_filename = "transcript/" + \
        sys.argv[1].split("/")[-1].replace("eaf", "tsv")
    with open(tsv_filename, "w", newline="", encoding="utf-8") as tsvfile:
        tsv_writer = csv.writer(tsvfile, delimiter='\t')
        tsv_writer.writerow(
            ["timestamp_start", "timestamp_end", "text", "path"])
        tsv_writer.writerows(transformed_tier_data)


if __name__ == "__main__":
    main()