File size: 14,461 Bytes
64cab28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
---
annotations_creators:
- other
language_creators:
- other
languages:
- en
licenses:
- unknown
multilinguality:
- monolingual
pretty_name: SUPERB
size_categories:
- unknown
source_datasets:
- original
- extended|librispeech_asr
task_categories:
- speech-processing
task_ids:
- automatic-speech-recognition
- phoneme-recognition
- keyword-spotting
- query-by-example-spoken-term-detection
- speaker-identification
- automatic-speaker-verification
- speaker-diarization
- intent-classification
- slot-filling
- emotion-recognition
---

# Dataset Card for SUPERB

## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage:** [http://superbbenchmark.org](http://superbbenchmark.org)
- **Repository:** [https://github.com/s3prl/s3prl](https://github.com/s3prl/s3prl)
- **Paper:** [SUPERB: Speech processing Universal PERformance Benchmark](https://arxiv.org/abs/2105.01051)
- **Leaderboard:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Point of Contact:** [Lewis Tunstall](mailto:[email protected]) and [Albert Villanova](mailto:[email protected])

### Dataset Summary

SUPERB is a leaderboard to benchmark the performance of a shared model across a wide range of speech processing tasks with minimal architecture changes and labeled data.

### Supported Tasks and Leaderboards

The SUPERB leaderboard can be found here **ADD LINK WHEN LIVE** and consists of the following tasks:

#### pr

Phoneme Recognition (PR) transcribes an utterance into the smallest content units. This task includes alignment modeling to avoid potentially inaccurate forced alignment. [LibriSpeech](https://huggingface.co/datasets/librispeech_asr) train-clean-100/dev-clean/test-clean subsets are adopted in SUPERB for training/validation/testing. Phoneme transcriptions are obtained from the LibriSpeech official g2p-model-5 and the conversion script in Kaldi librispeech s5 recipe. The evaluation metric is phone error rate (PER).

#### asr

Automatic Speech Recognition (ASR) transcribes utterances into words. While PR analyzes the improvement in modeling phonetics, ASR reflects the significance of the improvement in a real-world scenario. [LibriSpeech](https://huggingface.co/datasets/librispeech_asr) train-clean-100/devclean/test-clean subsets are used for training/validation/testing. The evaluation metric is word error rate (WER).

#### ks

Keyword Spotting (KS) detects preregistered keywords by classifying utterances into a predefined set of words. The task is usually performed on-device for the fast response time. Thus, accuracy, model size, and inference time are all crucial. SUPERB uses the widely used [Speech Commands dataset v1.0](https://www.tensorflow.org/datasets/catalog/speech_commands) for the task. The dataset consists of ten classes of keywords, a class for silence, and an unknown class to include the false positive. The evaluation metric is accuracy (ACC)

#### qbe

Query by Example Spoken Term Detection (QbE) detects a spoken term (query) in an audio database (documents) by binary discriminating a given pair of query and document into a match or not. The English subset in [QUESST 2014 challenge](https://github.com/s3prl/s3prl/tree/master/downstream#qbe-query-by-example-spoken-term-detection) is adopted since we focus on investigating English as the first step. The evaluation metric is maximum term weighted value (MTWV) which balances misses and false alarms.

#### ic

Intent Classification (IC) classifies utterances into predefined classes to determine the intent of speakers. SUPERB uses the [Fluent Speech Commands dataset](https://github.com/s3prl/s3prl/tree/master/downstream#ic-intent-classification---fluent-speech-commands), where each utterance is tagged with three intent labels: action, object, and location. The evaluation metric is accuracy (ACC).

#### sf

Slot Filling (SF) predicts a sequence of semantic slot-types from an utterance, like a slot-type FromLocation for a spoken word Taipei, which is known as a slot-value. Both slot-types and slot-values are essential for an SLU system to function. The evaluation metrics thus include slot-type F1 score and slotvalue CER. [Audio SNIPS](https://github.com/s3prl/s3prl/tree/master/downstream#sf-end-to-end-slot-filling) is adopted, which synthesized multi-speaker utterances for SNIPS. Following the standard split in SNIPS, US-accent speakers are further selected for training, and others are for validation/testing.

#### si
Speaker Identification (SI) classifies each utterance for its speaker identity as a multi-class classification, where speakers are in the same predefined set for both training and testing. The widely used [VoxCeleb1 dataset](https://www.robots.ox.ac.uk/~vgg/data/voxceleb/vox1.html) is adopted, and the evaluation metric is accuracy (ACC).

#### asv

Automatic Speaker Verification (ASV) verifies whether the speakers of a pair of utterances match as a binary classification, and speakers in the testing set may not appear in the training set. Thus, ASV is more challenging than SID. VoxCeleb1 is used without VoxCeleb2 training data and noise augmentation. The evaluation metric is equal error rate (EER).

#### sd

Speaker Diarization (SD) predicts who is speaking when for each timestamp, and multiple speakers can speak simultaneously. The model has to encode rich speaker characteristics for each frame and should be able to represent mixtures of signals. [LibriMix](https://github.com/s3prl/s3prl/tree/master/downstream#sd-speaker-diarization) is adopted where LibriSpeech train-clean-100/dev-clean/test-clean are used to generate mixtures for training/validation/testing. We focus on the two-speaker scenario as the first step. The time-coded speaker labels were generated using alignments from Kaldi LibriSpeech ASR model. The evaluation metric is diarization error rate (DER).

#### er

Emotion Recognition (ER) predicts an emotion class for each utterance. The most widely used ER dataset [IEMOCAP](https://github.com/s3prl/s3prl/tree/master/downstream#er-emotion-recognition) is adopted, and we follow the conventional evaluation protocol: we drop the unbalance emotion classes to leave the final four classes with a similar amount of data points and cross-validates on five folds of the standard splits. The evaluation metric is accuracy (ACC).

### Languages

The language data in SUPERB is in English (BCP-47 `en`)


## Dataset Structure

### Data Instances

#### pr

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)


#### asr

An example from each split looks like:

```json
{'chapter_id': 1240,
 'file': 'path/to/file.flac',
 'id': '103-1240-0000',
 'speaker_id': 103,
 'text': 'CHAPTER ONE MISSUS RACHEL LYNDE IS SURPRISED MISSUS RACHEL LYNDE '
         'LIVED JUST WHERE THE AVONLEA MAIN ROAD DIPPED DOWN INTO A LITTLE '
         'HOLLOW FRINGED WITH ALDERS AND LADIES EARDROPS AND TRAVERSED BY A '
         'BROOK'}
```

#### ks

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)


#### qbe

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)


#### ic

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)


#### sf

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)


#### si

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)


#### asv

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)


#### sd

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)


#### er

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)




### Data Fields

#### pr

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)


#### asr

- `file`: a `string` feature.
- `text`: a `string` feature.
- `speaker_id`: a `int64` feature
- `chapter_id`: a `int64` feature
- `id`: a `string` feature 

#### ks

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)


#### qbe

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)


#### ic

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)


#### sf

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)


#### si

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)


#### asv

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)


#### sd

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)


#### er

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Data Splits

#### pr

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)


#### asr

|     | train | validation | test |
|-----|------:|-----------:|-----:|
| asr | 28539 |       2703 | 2620 |

#### ks

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)


#### qbe

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)


#### ic

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)


#### sf

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)


#### si

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)


#### asv

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)


#### sd

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)


#### er

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

## Dataset Creation

### Curation Rationale

[More Information Needed]

### Source Data

#### Initial Data Collection and Normalization

[More Information Needed]

#### Who are the source language producers?

[More Information Needed]

### Annotations

#### Annotation process

[More Information Needed]

#### Who are the annotators?

[More Information Needed]

### Personal and Sensitive Information

[More Information Needed]

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed]

### Discussion of Biases

[More Information Needed]

### Other Known Limitations

[More Information Needed]

## Additional Information

### Dataset Curators

[More Information Needed]

### Licensing Information

[More Information Needed]

### Citation Information

```
@article{DBLP:journals/corr/abs-2105-01051,
  author    = {Shu{-}Wen Yang and
               Po{-}Han Chi and
               Yung{-}Sung Chuang and
               Cheng{-}I Jeff Lai and
               Kushal Lakhotia and
               Yist Y. Lin and
               Andy T. Liu and
               Jiatong Shi and
               Xuankai Chang and
               Guan{-}Ting Lin and
               Tzu{-}Hsien Huang and
               Wei{-}Cheng Tseng and
               Ko{-}tik Lee and
               Da{-}Rong Liu and
               Zili Huang and
               Shuyan Dong and
               Shang{-}Wen Li and
               Shinji Watanabe and
               Abdelrahman Mohamed and
               Hung{-}yi Lee},
  title     = {{SUPERB:} Speech processing Universal PERformance Benchmark},
  journal   = {CoRR},
  volume    = {abs/2105.01051},
  year      = {2021},
  url       = {https://arxiv.org/abs/2105.01051},
  archivePrefix = {arXiv},
  eprint    = {2105.01051},
  timestamp = {Thu, 01 Jul 2021 13:30:22 +0200},
  biburl    = {https://dblp.org/rec/journals/corr/abs-2105-01051.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}

Note that each SUPERB dataset has its own citation. Please see the source to see
the correct citation for each contained dataset.
```

### Contributions

Thanks to [@lewtun](https://github.com/lewtun)  and [@albertvillanova](https://github.com/albertvillanova) for adding this dataset.