picocreator commited on
Commit
fe81392
·
1 Parent(s): 57ddc8f

eval data update

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. lm-eval-output/RWKV/rwkv-6-world-1b6/arc_challenge/dtype=float16,trust_remote_code=True-num_fewshot=25-nvidia-gpu/results.json +70 -0
  2. lm-eval-output/RWKV/rwkv-6-world-1b6/arc_challenge/dtype=float16,trust_remote_code=True-num_fewshot=25-nvidia-gpu/taskrun.log +3 -0
  3. lm-eval-output/RWKV/rwkv-6-world-1b6/gsm8k/dtype=float16,trust_remote_code=True-num_fewshot=5-nvidia-gpu/results.json +88 -0
  4. lm-eval-output/RWKV/rwkv-6-world-1b6/gsm8k/dtype=float16,trust_remote_code=True-num_fewshot=5-nvidia-gpu/taskrun.log +3 -0
  5. lm-eval-output/RWKV/rwkv-6-world-1b6/hellaswag/dtype=float16,trust_remote_code=True-num_fewshot=10-nvidia-gpu/results.json +68 -0
  6. lm-eval-output/RWKV/rwkv-6-world-1b6/hellaswag/dtype=float16,trust_remote_code=True-num_fewshot=10-nvidia-gpu/taskrun.log +3 -0
  7. lm-eval-output/RWKV/rwkv-6-world-1b6/mmlu/dtype=float16,trust_remote_code=True-num_fewshot=5-nvidia-gpu/results.json +2651 -0
  8. lm-eval-output/RWKV/rwkv-6-world-1b6/mmlu/dtype=float16,trust_remote_code=True-num_fewshot=5-nvidia-gpu/taskrun.log +3 -0
  9. lm-eval-output/RWKV/rwkv-6-world-1b6/truthfulqa_mc2/dtype=float16,trust_remote_code=True-num_fewshot=0-nvidia-gpu/results.json +62 -0
  10. lm-eval-output/RWKV/rwkv-6-world-1b6/truthfulqa_mc2/dtype=float16,trust_remote_code=True-num_fewshot=0-nvidia-gpu/taskrun.log +3 -0
  11. lm-eval-output/RWKV/rwkv-6-world-1b6/winogrande/dtype=float16,trust_remote_code=True-num_fewshot=5-nvidia-gpu/results.json +59 -0
  12. lm-eval-output/RWKV/rwkv-6-world-1b6/winogrande/dtype=float16,trust_remote_code=True-num_fewshot=5-nvidia-gpu/taskrun.log +3 -0
  13. lm-eval-output/RWKV/rwkv-6-world-3b/arc_challenge/dtype=float16,trust_remote_code=True-num_fewshot=25-nvidia-gpu/results.json +70 -0
  14. lm-eval-output/RWKV/rwkv-6-world-3b/arc_challenge/dtype=float16,trust_remote_code=True-num_fewshot=25-nvidia-gpu/taskrun.log +3 -0
  15. lm-eval-output/RWKV/rwkv-6-world-3b/gsm8k/dtype=float16,trust_remote_code=True-num_fewshot=5-nvidia-gpu/results.json +88 -0
  16. lm-eval-output/RWKV/rwkv-6-world-3b/gsm8k/dtype=float16,trust_remote_code=True-num_fewshot=5-nvidia-gpu/taskrun.log +3 -0
  17. lm-eval-output/RWKV/rwkv-6-world-3b/hellaswag/dtype=float16,trust_remote_code=True-num_fewshot=10-nvidia-gpu/results.json +68 -0
  18. lm-eval-output/RWKV/rwkv-6-world-3b/hellaswag/dtype=float16,trust_remote_code=True-num_fewshot=10-nvidia-gpu/taskrun.log +3 -0
  19. lm-eval-output/RWKV/rwkv-6-world-3b/mmlu/dtype=float16,trust_remote_code=True-num_fewshot=5-nvidia-gpu/results.json +2651 -0
  20. lm-eval-output/RWKV/rwkv-6-world-3b/mmlu/dtype=float16,trust_remote_code=True-num_fewshot=5-nvidia-gpu/taskrun.log +3 -0
  21. lm-eval-output/RWKV/rwkv-6-world-3b/truthfulqa_mc2/dtype=float16,trust_remote_code=True-num_fewshot=0-nvidia-gpu/results.json +62 -0
  22. lm-eval-output/RWKV/rwkv-6-world-3b/truthfulqa_mc2/dtype=float16,trust_remote_code=True-num_fewshot=0-nvidia-gpu/taskrun.log +3 -0
  23. lm-eval-output/RWKV/rwkv-6-world-3b/winogrande/dtype=float16,trust_remote_code=True-num_fewshot=5-nvidia-gpu/results.json +59 -0
  24. lm-eval-output/RWKV/rwkv-6-world-3b/winogrande/dtype=float16,trust_remote_code=True-num_fewshot=5-nvidia-gpu/taskrun.log +3 -0
  25. lm-eval-output/RWKV/rwkv-raven-7b/mmlu/dtype=float16,trust_remote_code=True-num_fewshot=5-nvidia-gpu/results.json +2651 -0
  26. lm-eval-output/RWKV/rwkv-raven-7b/mmlu/dtype=float16,trust_remote_code=True-num_fewshot=5-nvidia-gpu/taskrun.log +3 -0
  27. lm-eval-output/allenai/OLMo-7B/arc_challenge/dtype=float16,trust_remote_code=True-num_fewshot=25-nvidia-gpu/results.json +68 -0
  28. lm-eval-output/allenai/OLMo-7B/arc_challenge/dtype=float16,trust_remote_code=True-num_fewshot=25-nvidia-gpu/taskrun.log +3 -0
  29. lm-eval-output/allenai/OLMo-7B/mmlu/dtype=float16,trust_remote_code=True-num_fewshot=5-nvidia-gpu/results.json +2649 -0
  30. lm-eval-output/allenai/OLMo-7B/mmlu/dtype=float16,trust_remote_code=True-num_fewshot=5-nvidia-gpu/taskrun.log +3 -0
  31. lm-eval-output/allenai/OLMo-7B/truthfulqa_mc2/dtype=float16,trust_remote_code=True-num_fewshot=0-nvidia-gpu/results.json +60 -0
  32. lm-eval-output/allenai/OLMo-7B/truthfulqa_mc2/dtype=float16,trust_remote_code=True-num_fewshot=0-nvidia-gpu/taskrun.log +3 -0
  33. lm-eval-output/allenai/OLMo-7B/winogrande/dtype=float16,trust_remote_code=True-num_fewshot=5-nvidia-gpu/results.json +57 -0
  34. lm-eval-output/allenai/OLMo-7B/winogrande/dtype=float16,trust_remote_code=True-num_fewshot=5-nvidia-gpu/taskrun.log +3 -0
  35. lm-eval-output/rwkv-x-dev/Quetzal-N8-1/ai2_arc/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json +132 -0
  36. lm-eval-output/rwkv-x-dev/Quetzal-N8-1/ai2_arc/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log +3 -0
  37. lm-eval-output/rwkv-x-dev/Quetzal-N8-1/anli/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json +161 -0
  38. lm-eval-output/rwkv-x-dev/Quetzal-N8-1/anli/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log +3 -0
  39. lm-eval-output/rwkv-x-dev/Quetzal-N8-1/blimp/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json +2249 -0
  40. lm-eval-output/rwkv-x-dev/Quetzal-N8-1/blimp/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log +3 -0
  41. lm-eval-output/rwkv-x-dev/Quetzal-N8-1/cmmlu/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json +0 -0
  42. lm-eval-output/rwkv-x-dev/Quetzal-N8-1/cmmlu/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log +3 -0
  43. lm-eval-output/rwkv-x-dev/Quetzal-N8-1/copa/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json +58 -0
  44. lm-eval-output/rwkv-x-dev/Quetzal-N8-1/copa/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log +3 -0
  45. lm-eval-output/rwkv-x-dev/Quetzal-N8-1/glue/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json +374 -0
  46. lm-eval-output/rwkv-x-dev/Quetzal-N8-1/glue/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log +3 -0
  47. lm-eval-output/rwkv-x-dev/Quetzal-N8-1/hellaswag/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json +67 -0
  48. lm-eval-output/rwkv-x-dev/Quetzal-N8-1/hellaswag/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log +3 -0
  49. lm-eval-output/rwkv-x-dev/Quetzal-N8-1/lambada/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json +126 -0
  50. lm-eval-output/rwkv-x-dev/Quetzal-N8-1/lambada/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log +3 -0
lm-eval-output/RWKV/rwkv-6-world-1b6/arc_challenge/dtype=float16,trust_remote_code=True-num_fewshot=25-nvidia-gpu/results.json ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "arc_challenge": {
4
+ "acc,none": 0.33361774744027306,
5
+ "acc_stderr,none": 0.013778687054176546,
6
+ "acc_norm,none": 0.3677474402730375,
7
+ "acc_norm_stderr,none": 0.014090995618168487,
8
+ "alias": "arc_challenge"
9
+ }
10
+ },
11
+ "configs": {
12
+ "arc_challenge": {
13
+ "task": "arc_challenge",
14
+ "group": [
15
+ "ai2_arc"
16
+ ],
17
+ "dataset_path": "allenai/ai2_arc",
18
+ "dataset_name": "ARC-Challenge",
19
+ "training_split": "train",
20
+ "validation_split": "validation",
21
+ "test_split": "test",
22
+ "doc_to_text": "Question: {{question}}\nAnswer:",
23
+ "doc_to_target": "{{choices.label.index(answerKey)}}",
24
+ "doc_to_choice": "{{choices.text}}",
25
+ "description": "",
26
+ "target_delimiter": " ",
27
+ "fewshot_delimiter": "\n\n",
28
+ "num_fewshot": 25,
29
+ "metric_list": [
30
+ {
31
+ "metric": "acc",
32
+ "aggregation": "mean",
33
+ "higher_is_better": true
34
+ },
35
+ {
36
+ "metric": "acc_norm",
37
+ "aggregation": "mean",
38
+ "higher_is_better": true
39
+ }
40
+ ],
41
+ "output_type": "multiple_choice",
42
+ "repeats": 1,
43
+ "should_decontaminate": true,
44
+ "doc_to_decontamination_query": "Question: {{question}}\nAnswer:",
45
+ "metadata": {
46
+ "version": 1.0
47
+ }
48
+ }
49
+ },
50
+ "versions": {
51
+ "arc_challenge": 1.0
52
+ },
53
+ "n-shot": {
54
+ "arc_challenge": 25
55
+ },
56
+ "config": {
57
+ "model": "hf",
58
+ "model_args": "pretrained=RWKV/rwkv-6-world-1b6,dtype=float16,trust_remote_code=True",
59
+ "batch_size": "auto",
60
+ "batch_sizes": [
61
+ 32
62
+ ],
63
+ "device": null,
64
+ "use_cache": null,
65
+ "limit": null,
66
+ "bootstrap_iters": 100000,
67
+ "gen_kwargs": null
68
+ },
69
+ "git_hash": "1ee41f7"
70
+ }
lm-eval-output/RWKV/rwkv-6-world-1b6/arc_challenge/dtype=float16,trust_remote_code=True-num_fewshot=25-nvidia-gpu/taskrun.log ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7214edd7166ed08eb41cc543da945170ffc245f0ab791bf5f8d7a1eb1c6bfc23
3
+ size 59144
lm-eval-output/RWKV/rwkv-6-world-1b6/gsm8k/dtype=float16,trust_remote_code=True-num_fewshot=5-nvidia-gpu/results.json ADDED
@@ -0,0 +1,88 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "gsm8k": {
4
+ "exact_match,get-answer": 0.019711902956785442,
5
+ "exact_match_stderr,get-answer": 0.0038289829787357195,
6
+ "alias": "gsm8k"
7
+ }
8
+ },
9
+ "configs": {
10
+ "gsm8k": {
11
+ "task": "gsm8k",
12
+ "group": [
13
+ "math_word_problems"
14
+ ],
15
+ "dataset_path": "gsm8k",
16
+ "dataset_name": "main",
17
+ "training_split": "train",
18
+ "test_split": "test",
19
+ "fewshot_split": "train",
20
+ "doc_to_text": "Question: {{question}}\nAnswer:",
21
+ "doc_to_target": "{{answer}}",
22
+ "description": "",
23
+ "target_delimiter": " ",
24
+ "fewshot_delimiter": "\n\n",
25
+ "num_fewshot": 5,
26
+ "metric_list": [
27
+ {
28
+ "metric": "exact_match",
29
+ "aggregation": "mean",
30
+ "higher_is_better": true,
31
+ "ignore_case": true,
32
+ "ignore_punctuation": false,
33
+ "regexes_to_ignore": [
34
+ ",",
35
+ "\\$",
36
+ "(?s).*#### "
37
+ ]
38
+ }
39
+ ],
40
+ "output_type": "generate_until",
41
+ "generation_kwargs": {
42
+ "until": [
43
+ "\n\n",
44
+ "Question:"
45
+ ],
46
+ "do_sample": false,
47
+ "temperature": 0.0
48
+ },
49
+ "repeats": 1,
50
+ "filter_list": [
51
+ {
52
+ "name": "get-answer",
53
+ "filter": [
54
+ {
55
+ "function": "regex",
56
+ "regex_pattern": "#### (\\-?[0-9\\.\\,]+)"
57
+ },
58
+ {
59
+ "function": "take_first"
60
+ }
61
+ ]
62
+ }
63
+ ],
64
+ "should_decontaminate": false,
65
+ "metadata": {
66
+ "version": 2.0
67
+ }
68
+ }
69
+ },
70
+ "versions": {
71
+ "gsm8k": 2.0
72
+ },
73
+ "n-shot": {
74
+ "gsm8k": 5
75
+ },
76
+ "config": {
77
+ "model": "hf",
78
+ "model_args": "pretrained=RWKV/rwkv-6-world-1b6,dtype=float16,trust_remote_code=True",
79
+ "batch_size": "auto",
80
+ "batch_sizes": [],
81
+ "device": null,
82
+ "use_cache": null,
83
+ "limit": null,
84
+ "bootstrap_iters": 100000,
85
+ "gen_kwargs": null
86
+ },
87
+ "git_hash": "1ee41f7"
88
+ }
lm-eval-output/RWKV/rwkv-6-world-1b6/gsm8k/dtype=float16,trust_remote_code=True-num_fewshot=5-nvidia-gpu/taskrun.log ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dc39634855e42162c468512b719debaa1538f87948e2fc889b646b01cd62ced3
3
+ size 67607
lm-eval-output/RWKV/rwkv-6-world-1b6/hellaswag/dtype=float16,trust_remote_code=True-num_fewshot=10-nvidia-gpu/results.json ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "hellaswag": {
4
+ "acc,none": 0.4599681338378809,
5
+ "acc_stderr,none": 0.004973762948302803,
6
+ "acc_norm,none": 0.6128261302529376,
7
+ "acc_norm_stderr,none": 0.0048610845340870245,
8
+ "alias": "hellaswag"
9
+ }
10
+ },
11
+ "configs": {
12
+ "hellaswag": {
13
+ "task": "hellaswag",
14
+ "group": [
15
+ "multiple_choice"
16
+ ],
17
+ "dataset_path": "hellaswag",
18
+ "training_split": "train",
19
+ "validation_split": "validation",
20
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc):\n ctx = doc[\"ctx_a\"] + \" \" + doc[\"ctx_b\"].capitalize()\n out_doc = {\n \"query\": preprocess(doc[\"activity_label\"] + \": \" + ctx),\n \"choices\": [preprocess(ending) for ending in doc[\"endings\"]],\n \"gold\": int(doc[\"label\"]),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
21
+ "doc_to_text": "{{query}}",
22
+ "doc_to_target": "{{label}}",
23
+ "doc_to_choice": "choices",
24
+ "description": "",
25
+ "target_delimiter": " ",
26
+ "fewshot_delimiter": "\n\n",
27
+ "num_fewshot": 10,
28
+ "metric_list": [
29
+ {
30
+ "metric": "acc",
31
+ "aggregation": "mean",
32
+ "higher_is_better": true
33
+ },
34
+ {
35
+ "metric": "acc_norm",
36
+ "aggregation": "mean",
37
+ "higher_is_better": true
38
+ }
39
+ ],
40
+ "output_type": "multiple_choice",
41
+ "repeats": 1,
42
+ "should_decontaminate": false,
43
+ "metadata": {
44
+ "version": 1.0
45
+ }
46
+ }
47
+ },
48
+ "versions": {
49
+ "hellaswag": 1.0
50
+ },
51
+ "n-shot": {
52
+ "hellaswag": 10
53
+ },
54
+ "config": {
55
+ "model": "hf",
56
+ "model_args": "pretrained=RWKV/rwkv-6-world-1b6,dtype=float16,trust_remote_code=True",
57
+ "batch_size": "auto",
58
+ "batch_sizes": [
59
+ 32
60
+ ],
61
+ "device": null,
62
+ "use_cache": null,
63
+ "limit": null,
64
+ "bootstrap_iters": 100000,
65
+ "gen_kwargs": null
66
+ },
67
+ "git_hash": "1ee41f7"
68
+ }
lm-eval-output/RWKV/rwkv-6-world-1b6/hellaswag/dtype=float16,trust_remote_code=True-num_fewshot=10-nvidia-gpu/taskrun.log ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:29f9cd48ad285c4f115a2daa7961737e59676171fa1662b644f017e07c637ac4
3
+ size 91165
lm-eval-output/RWKV/rwkv-6-world-1b6/mmlu/dtype=float16,trust_remote_code=True-num_fewshot=5-nvidia-gpu/results.json ADDED
@@ -0,0 +1,2651 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "mmlu": {
4
+ "acc,none": 0.2604329867540236,
5
+ "acc_stderr,none": 0.04301077257659174,
6
+ "alias": "mmlu"
7
+ },
8
+ "mmlu_humanities": {
9
+ "alias": " - humanities",
10
+ "acc,none": 0.25207226354941553,
11
+ "acc_stderr,none": 0.02811648437575664
12
+ },
13
+ "mmlu_formal_logic": {
14
+ "alias": " - formal_logic",
15
+ "acc,none": 0.25396825396825395,
16
+ "acc_stderr,none": 0.03893259610604674
17
+ },
18
+ "mmlu_high_school_european_history": {
19
+ "alias": " - high_school_european_history",
20
+ "acc,none": 0.24848484848484848,
21
+ "acc_stderr,none": 0.03374402644139406
22
+ },
23
+ "mmlu_high_school_us_history": {
24
+ "alias": " - high_school_us_history",
25
+ "acc,none": 0.27941176470588236,
26
+ "acc_stderr,none": 0.031493281045079556
27
+ },
28
+ "mmlu_high_school_world_history": {
29
+ "alias": " - high_school_world_history",
30
+ "acc,none": 0.2742616033755274,
31
+ "acc_stderr,none": 0.02904133351059804
32
+ },
33
+ "mmlu_international_law": {
34
+ "alias": " - international_law",
35
+ "acc,none": 0.2396694214876033,
36
+ "acc_stderr,none": 0.03896878985070417
37
+ },
38
+ "mmlu_jurisprudence": {
39
+ "alias": " - jurisprudence",
40
+ "acc,none": 0.2037037037037037,
41
+ "acc_stderr,none": 0.03893542518824847
42
+ },
43
+ "mmlu_logical_fallacies": {
44
+ "alias": " - logical_fallacies",
45
+ "acc,none": 0.2883435582822086,
46
+ "acc_stderr,none": 0.035590395316173425
47
+ },
48
+ "mmlu_moral_disputes": {
49
+ "alias": " - moral_disputes",
50
+ "acc,none": 0.24566473988439305,
51
+ "acc_stderr,none": 0.023176298203992
52
+ },
53
+ "mmlu_moral_scenarios": {
54
+ "alias": " - moral_scenarios",
55
+ "acc,none": 0.2245810055865922,
56
+ "acc_stderr,none": 0.013956803666544637
57
+ },
58
+ "mmlu_philosophy": {
59
+ "alias": " - philosophy",
60
+ "acc,none": 0.2733118971061093,
61
+ "acc_stderr,none": 0.02531176597542612
62
+ },
63
+ "mmlu_prehistory": {
64
+ "alias": " - prehistory",
65
+ "acc,none": 0.26851851851851855,
66
+ "acc_stderr,none": 0.024659685185967287
67
+ },
68
+ "mmlu_professional_law": {
69
+ "alias": " - professional_law",
70
+ "acc,none": 0.2470664928292047,
71
+ "acc_stderr,none": 0.01101575225527933
72
+ },
73
+ "mmlu_world_religions": {
74
+ "alias": " - world_religions",
75
+ "acc,none": 0.32748538011695905,
76
+ "acc_stderr,none": 0.035993357714560276
77
+ },
78
+ "mmlu_other": {
79
+ "alias": " - other",
80
+ "acc,none": 0.26842613453492115,
81
+ "acc_stderr,none": 0.049468223843946835
82
+ },
83
+ "mmlu_business_ethics": {
84
+ "alias": " - business_ethics",
85
+ "acc,none": 0.27,
86
+ "acc_stderr,none": 0.0446196043338474
87
+ },
88
+ "mmlu_clinical_knowledge": {
89
+ "alias": " - clinical_knowledge",
90
+ "acc,none": 0.2037735849056604,
91
+ "acc_stderr,none": 0.024790784501775402
92
+ },
93
+ "mmlu_college_medicine": {
94
+ "alias": " - college_medicine",
95
+ "acc,none": 0.24277456647398843,
96
+ "acc_stderr,none": 0.0326926380614177
97
+ },
98
+ "mmlu_global_facts": {
99
+ "alias": " - global_facts",
100
+ "acc,none": 0.22,
101
+ "acc_stderr,none": 0.04163331998932269
102
+ },
103
+ "mmlu_human_aging": {
104
+ "alias": " - human_aging",
105
+ "acc,none": 0.3004484304932735,
106
+ "acc_stderr,none": 0.030769352008229136
107
+ },
108
+ "mmlu_management": {
109
+ "alias": " - management",
110
+ "acc,none": 0.2912621359223301,
111
+ "acc_stderr,none": 0.044986763205729224
112
+ },
113
+ "mmlu_marketing": {
114
+ "alias": " - marketing",
115
+ "acc,none": 0.29914529914529914,
116
+ "acc_stderr,none": 0.02999695185834948
117
+ },
118
+ "mmlu_medical_genetics": {
119
+ "alias": " - medical_genetics",
120
+ "acc,none": 0.21,
121
+ "acc_stderr,none": 0.040936018074033256
122
+ },
123
+ "mmlu_miscellaneous": {
124
+ "alias": " - miscellaneous",
125
+ "acc,none": 0.2413793103448276,
126
+ "acc_stderr,none": 0.015302380123542087
127
+ },
128
+ "mmlu_nutrition": {
129
+ "alias": " - nutrition",
130
+ "acc,none": 0.24509803921568626,
131
+ "acc_stderr,none": 0.02463004897982476
132
+ },
133
+ "mmlu_professional_accounting": {
134
+ "alias": " - professional_accounting",
135
+ "acc,none": 0.2375886524822695,
136
+ "acc_stderr,none": 0.025389512552729903
137
+ },
138
+ "mmlu_professional_medicine": {
139
+ "alias": " - professional_medicine",
140
+ "acc,none": 0.4375,
141
+ "acc_stderr,none": 0.030134614954403924
142
+ },
143
+ "mmlu_virology": {
144
+ "alias": " - virology",
145
+ "acc,none": 0.3072289156626506,
146
+ "acc_stderr,none": 0.03591566797824664
147
+ },
148
+ "mmlu_social_sciences": {
149
+ "alias": " - social_sciences",
150
+ "acc,none": 0.2619434514137146,
151
+ "acc_stderr,none": 0.04383148065352928
152
+ },
153
+ "mmlu_econometrics": {
154
+ "alias": " - econometrics",
155
+ "acc,none": 0.22807017543859648,
156
+ "acc_stderr,none": 0.03947152782669415
157
+ },
158
+ "mmlu_high_school_geography": {
159
+ "alias": " - high_school_geography",
160
+ "acc,none": 0.22727272727272727,
161
+ "acc_stderr,none": 0.02985751567338642
162
+ },
163
+ "mmlu_high_school_government_and_politics": {
164
+ "alias": " - high_school_government_and_politics",
165
+ "acc,none": 0.29015544041450775,
166
+ "acc_stderr,none": 0.032752644677915166
167
+ },
168
+ "mmlu_high_school_macroeconomics": {
169
+ "alias": " - high_school_macroeconomics",
170
+ "acc,none": 0.3333333333333333,
171
+ "acc_stderr,none": 0.023901157979402538
172
+ },
173
+ "mmlu_high_school_microeconomics": {
174
+ "alias": " - high_school_microeconomics",
175
+ "acc,none": 0.2689075630252101,
176
+ "acc_stderr,none": 0.02880139219363128
177
+ },
178
+ "mmlu_high_school_psychology": {
179
+ "alias": " - high_school_psychology",
180
+ "acc,none": 0.22201834862385322,
181
+ "acc_stderr,none": 0.01781884956479663
182
+ },
183
+ "mmlu_human_sexuality": {
184
+ "alias": " - human_sexuality",
185
+ "acc,none": 0.29770992366412213,
186
+ "acc_stderr,none": 0.04010358942462203
187
+ },
188
+ "mmlu_professional_psychology": {
189
+ "alias": " - professional_psychology",
190
+ "acc,none": 0.2565359477124183,
191
+ "acc_stderr,none": 0.01766784161237899
192
+ },
193
+ "mmlu_public_relations": {
194
+ "alias": " - public_relations",
195
+ "acc,none": 0.15454545454545454,
196
+ "acc_stderr,none": 0.03462262571262667
197
+ },
198
+ "mmlu_security_studies": {
199
+ "alias": " - security_studies",
200
+ "acc,none": 0.2653061224489796,
201
+ "acc_stderr,none": 0.02826388994378458
202
+ },
203
+ "mmlu_sociology": {
204
+ "alias": " - sociology",
205
+ "acc,none": 0.2537313432835821,
206
+ "acc_stderr,none": 0.03076944496729602
207
+ },
208
+ "mmlu_us_foreign_policy": {
209
+ "alias": " - us_foreign_policy",
210
+ "acc,none": 0.35,
211
+ "acc_stderr,none": 0.047937248544110196
212
+ },
213
+ "mmlu_stem": {
214
+ "alias": " - stem",
215
+ "acc,none": 0.263558515699334,
216
+ "acc_stderr,none": 0.0518682042651177
217
+ },
218
+ "mmlu_abstract_algebra": {
219
+ "alias": " - abstract_algebra",
220
+ "acc,none": 0.26,
221
+ "acc_stderr,none": 0.04408440022768077
222
+ },
223
+ "mmlu_anatomy": {
224
+ "alias": " - anatomy",
225
+ "acc,none": 0.22962962962962963,
226
+ "acc_stderr,none": 0.036333844140734636
227
+ },
228
+ "mmlu_astronomy": {
229
+ "alias": " - astronomy",
230
+ "acc,none": 0.20394736842105263,
231
+ "acc_stderr,none": 0.032790004063100495
232
+ },
233
+ "mmlu_college_biology": {
234
+ "alias": " - college_biology",
235
+ "acc,none": 0.24305555555555555,
236
+ "acc_stderr,none": 0.03586879280080341
237
+ },
238
+ "mmlu_college_chemistry": {
239
+ "alias": " - college_chemistry",
240
+ "acc,none": 0.36,
241
+ "acc_stderr,none": 0.048241815132442176
242
+ },
243
+ "mmlu_college_computer_science": {
244
+ "alias": " - college_computer_science",
245
+ "acc,none": 0.33,
246
+ "acc_stderr,none": 0.04725815626252606
247
+ },
248
+ "mmlu_college_mathematics": {
249
+ "alias": " - college_mathematics",
250
+ "acc,none": 0.29,
251
+ "acc_stderr,none": 0.04560480215720684
252
+ },
253
+ "mmlu_college_physics": {
254
+ "alias": " - college_physics",
255
+ "acc,none": 0.2549019607843137,
256
+ "acc_stderr,none": 0.04336432707993177
257
+ },
258
+ "mmlu_computer_security": {
259
+ "alias": " - computer_security",
260
+ "acc,none": 0.35,
261
+ "acc_stderr,none": 0.0479372485441102
262
+ },
263
+ "mmlu_conceptual_physics": {
264
+ "alias": " - conceptual_physics",
265
+ "acc,none": 0.32340425531914896,
266
+ "acc_stderr,none": 0.030579442773610337
267
+ },
268
+ "mmlu_electrical_engineering": {
269
+ "alias": " - electrical_engineering",
270
+ "acc,none": 0.2413793103448276,
271
+ "acc_stderr,none": 0.03565998174135302
272
+ },
273
+ "mmlu_elementary_mathematics": {
274
+ "alias": " - elementary_mathematics",
275
+ "acc,none": 0.23809523809523808,
276
+ "acc_stderr,none": 0.02193587808118476
277
+ },
278
+ "mmlu_high_school_biology": {
279
+ "alias": " - high_school_biology",
280
+ "acc,none": 0.29354838709677417,
281
+ "acc_stderr,none": 0.025906087021319295
282
+ },
283
+ "mmlu_high_school_chemistry": {
284
+ "alias": " - high_school_chemistry",
285
+ "acc,none": 0.19704433497536947,
286
+ "acc_stderr,none": 0.027986724666736223
287
+ },
288
+ "mmlu_high_school_computer_science": {
289
+ "alias": " - high_school_computer_science",
290
+ "acc,none": 0.22,
291
+ "acc_stderr,none": 0.04163331998932269
292
+ },
293
+ "mmlu_high_school_mathematics": {
294
+ "alias": " - high_school_mathematics",
295
+ "acc,none": 0.23333333333333334,
296
+ "acc_stderr,none": 0.0257878742209593
297
+ },
298
+ "mmlu_high_school_physics": {
299
+ "alias": " - high_school_physics",
300
+ "acc,none": 0.23841059602649006,
301
+ "acc_stderr,none": 0.034791855725996586
302
+ },
303
+ "mmlu_high_school_statistics": {
304
+ "alias": " - high_school_statistics",
305
+ "acc,none": 0.3148148148148148,
306
+ "acc_stderr,none": 0.03167468706828979
307
+ },
308
+ "mmlu_machine_learning": {
309
+ "alias": " - machine_learning",
310
+ "acc,none": 0.25,
311
+ "acc_stderr,none": 0.04109974682633932
312
+ }
313
+ },
314
+ "groups": {
315
+ "mmlu": {
316
+ "acc,none": 0.2604329867540236,
317
+ "acc_stderr,none": 0.04301077257659174,
318
+ "alias": "mmlu"
319
+ },
320
+ "mmlu_humanities": {
321
+ "alias": " - humanities",
322
+ "acc,none": 0.25207226354941553,
323
+ "acc_stderr,none": 0.02811648437575664
324
+ },
325
+ "mmlu_other": {
326
+ "alias": " - other",
327
+ "acc,none": 0.26842613453492115,
328
+ "acc_stderr,none": 0.049468223843946835
329
+ },
330
+ "mmlu_social_sciences": {
331
+ "alias": " - social_sciences",
332
+ "acc,none": 0.2619434514137146,
333
+ "acc_stderr,none": 0.04383148065352928
334
+ },
335
+ "mmlu_stem": {
336
+ "alias": " - stem",
337
+ "acc,none": 0.263558515699334,
338
+ "acc_stderr,none": 0.0518682042651177
339
+ }
340
+ },
341
+ "configs": {
342
+ "mmlu_abstract_algebra": {
343
+ "task": "mmlu_abstract_algebra",
344
+ "task_alias": "abstract_algebra",
345
+ "group": "mmlu_stem",
346
+ "group_alias": "stem",
347
+ "dataset_path": "hails/mmlu_no_train",
348
+ "dataset_name": "abstract_algebra",
349
+ "test_split": "test",
350
+ "fewshot_split": "dev",
351
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
352
+ "doc_to_target": "answer",
353
+ "doc_to_choice": [
354
+ "A",
355
+ "B",
356
+ "C",
357
+ "D"
358
+ ],
359
+ "description": "The following are multiple choice questions (with answers) about abstract algebra.\n\n",
360
+ "target_delimiter": " ",
361
+ "fewshot_delimiter": "\n\n",
362
+ "fewshot_config": {
363
+ "sampler": "first_n"
364
+ },
365
+ "num_fewshot": 5,
366
+ "metric_list": [
367
+ {
368
+ "metric": "acc",
369
+ "aggregation": "mean",
370
+ "higher_is_better": true
371
+ }
372
+ ],
373
+ "output_type": "multiple_choice",
374
+ "repeats": 1,
375
+ "should_decontaminate": false,
376
+ "metadata": {
377
+ "version": 0.0
378
+ }
379
+ },
380
+ "mmlu_anatomy": {
381
+ "task": "mmlu_anatomy",
382
+ "task_alias": "anatomy",
383
+ "group": "mmlu_stem",
384
+ "group_alias": "stem",
385
+ "dataset_path": "hails/mmlu_no_train",
386
+ "dataset_name": "anatomy",
387
+ "test_split": "test",
388
+ "fewshot_split": "dev",
389
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
390
+ "doc_to_target": "answer",
391
+ "doc_to_choice": [
392
+ "A",
393
+ "B",
394
+ "C",
395
+ "D"
396
+ ],
397
+ "description": "The following are multiple choice questions (with answers) about anatomy.\n\n",
398
+ "target_delimiter": " ",
399
+ "fewshot_delimiter": "\n\n",
400
+ "fewshot_config": {
401
+ "sampler": "first_n"
402
+ },
403
+ "num_fewshot": 5,
404
+ "metric_list": [
405
+ {
406
+ "metric": "acc",
407
+ "aggregation": "mean",
408
+ "higher_is_better": true
409
+ }
410
+ ],
411
+ "output_type": "multiple_choice",
412
+ "repeats": 1,
413
+ "should_decontaminate": false,
414
+ "metadata": {
415
+ "version": 0.0
416
+ }
417
+ },
418
+ "mmlu_astronomy": {
419
+ "task": "mmlu_astronomy",
420
+ "task_alias": "astronomy",
421
+ "group": "mmlu_stem",
422
+ "group_alias": "stem",
423
+ "dataset_path": "hails/mmlu_no_train",
424
+ "dataset_name": "astronomy",
425
+ "test_split": "test",
426
+ "fewshot_split": "dev",
427
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
428
+ "doc_to_target": "answer",
429
+ "doc_to_choice": [
430
+ "A",
431
+ "B",
432
+ "C",
433
+ "D"
434
+ ],
435
+ "description": "The following are multiple choice questions (with answers) about astronomy.\n\n",
436
+ "target_delimiter": " ",
437
+ "fewshot_delimiter": "\n\n",
438
+ "fewshot_config": {
439
+ "sampler": "first_n"
440
+ },
441
+ "num_fewshot": 5,
442
+ "metric_list": [
443
+ {
444
+ "metric": "acc",
445
+ "aggregation": "mean",
446
+ "higher_is_better": true
447
+ }
448
+ ],
449
+ "output_type": "multiple_choice",
450
+ "repeats": 1,
451
+ "should_decontaminate": false,
452
+ "metadata": {
453
+ "version": 0.0
454
+ }
455
+ },
456
+ "mmlu_business_ethics": {
457
+ "task": "mmlu_business_ethics",
458
+ "task_alias": "business_ethics",
459
+ "group": "mmlu_other",
460
+ "group_alias": "other",
461
+ "dataset_path": "hails/mmlu_no_train",
462
+ "dataset_name": "business_ethics",
463
+ "test_split": "test",
464
+ "fewshot_split": "dev",
465
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
466
+ "doc_to_target": "answer",
467
+ "doc_to_choice": [
468
+ "A",
469
+ "B",
470
+ "C",
471
+ "D"
472
+ ],
473
+ "description": "The following are multiple choice questions (with answers) about business ethics.\n\n",
474
+ "target_delimiter": " ",
475
+ "fewshot_delimiter": "\n\n",
476
+ "fewshot_config": {
477
+ "sampler": "first_n"
478
+ },
479
+ "num_fewshot": 5,
480
+ "metric_list": [
481
+ {
482
+ "metric": "acc",
483
+ "aggregation": "mean",
484
+ "higher_is_better": true
485
+ }
486
+ ],
487
+ "output_type": "multiple_choice",
488
+ "repeats": 1,
489
+ "should_decontaminate": false,
490
+ "metadata": {
491
+ "version": 0.0
492
+ }
493
+ },
494
+ "mmlu_clinical_knowledge": {
495
+ "task": "mmlu_clinical_knowledge",
496
+ "task_alias": "clinical_knowledge",
497
+ "group": "mmlu_other",
498
+ "group_alias": "other",
499
+ "dataset_path": "hails/mmlu_no_train",
500
+ "dataset_name": "clinical_knowledge",
501
+ "test_split": "test",
502
+ "fewshot_split": "dev",
503
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
504
+ "doc_to_target": "answer",
505
+ "doc_to_choice": [
506
+ "A",
507
+ "B",
508
+ "C",
509
+ "D"
510
+ ],
511
+ "description": "The following are multiple choice questions (with answers) about clinical knowledge.\n\n",
512
+ "target_delimiter": " ",
513
+ "fewshot_delimiter": "\n\n",
514
+ "fewshot_config": {
515
+ "sampler": "first_n"
516
+ },
517
+ "num_fewshot": 5,
518
+ "metric_list": [
519
+ {
520
+ "metric": "acc",
521
+ "aggregation": "mean",
522
+ "higher_is_better": true
523
+ }
524
+ ],
525
+ "output_type": "multiple_choice",
526
+ "repeats": 1,
527
+ "should_decontaminate": false,
528
+ "metadata": {
529
+ "version": 0.0
530
+ }
531
+ },
532
+ "mmlu_college_biology": {
533
+ "task": "mmlu_college_biology",
534
+ "task_alias": "college_biology",
535
+ "group": "mmlu_stem",
536
+ "group_alias": "stem",
537
+ "dataset_path": "hails/mmlu_no_train",
538
+ "dataset_name": "college_biology",
539
+ "test_split": "test",
540
+ "fewshot_split": "dev",
541
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
542
+ "doc_to_target": "answer",
543
+ "doc_to_choice": [
544
+ "A",
545
+ "B",
546
+ "C",
547
+ "D"
548
+ ],
549
+ "description": "The following are multiple choice questions (with answers) about college biology.\n\n",
550
+ "target_delimiter": " ",
551
+ "fewshot_delimiter": "\n\n",
552
+ "fewshot_config": {
553
+ "sampler": "first_n"
554
+ },
555
+ "num_fewshot": 5,
556
+ "metric_list": [
557
+ {
558
+ "metric": "acc",
559
+ "aggregation": "mean",
560
+ "higher_is_better": true
561
+ }
562
+ ],
563
+ "output_type": "multiple_choice",
564
+ "repeats": 1,
565
+ "should_decontaminate": false,
566
+ "metadata": {
567
+ "version": 0.0
568
+ }
569
+ },
570
+ "mmlu_college_chemistry": {
571
+ "task": "mmlu_college_chemistry",
572
+ "task_alias": "college_chemistry",
573
+ "group": "mmlu_stem",
574
+ "group_alias": "stem",
575
+ "dataset_path": "hails/mmlu_no_train",
576
+ "dataset_name": "college_chemistry",
577
+ "test_split": "test",
578
+ "fewshot_split": "dev",
579
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
580
+ "doc_to_target": "answer",
581
+ "doc_to_choice": [
582
+ "A",
583
+ "B",
584
+ "C",
585
+ "D"
586
+ ],
587
+ "description": "The following are multiple choice questions (with answers) about college chemistry.\n\n",
588
+ "target_delimiter": " ",
589
+ "fewshot_delimiter": "\n\n",
590
+ "fewshot_config": {
591
+ "sampler": "first_n"
592
+ },
593
+ "num_fewshot": 5,
594
+ "metric_list": [
595
+ {
596
+ "metric": "acc",
597
+ "aggregation": "mean",
598
+ "higher_is_better": true
599
+ }
600
+ ],
601
+ "output_type": "multiple_choice",
602
+ "repeats": 1,
603
+ "should_decontaminate": false,
604
+ "metadata": {
605
+ "version": 0.0
606
+ }
607
+ },
608
+ "mmlu_college_computer_science": {
609
+ "task": "mmlu_college_computer_science",
610
+ "task_alias": "college_computer_science",
611
+ "group": "mmlu_stem",
612
+ "group_alias": "stem",
613
+ "dataset_path": "hails/mmlu_no_train",
614
+ "dataset_name": "college_computer_science",
615
+ "test_split": "test",
616
+ "fewshot_split": "dev",
617
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
618
+ "doc_to_target": "answer",
619
+ "doc_to_choice": [
620
+ "A",
621
+ "B",
622
+ "C",
623
+ "D"
624
+ ],
625
+ "description": "The following are multiple choice questions (with answers) about college computer science.\n\n",
626
+ "target_delimiter": " ",
627
+ "fewshot_delimiter": "\n\n",
628
+ "fewshot_config": {
629
+ "sampler": "first_n"
630
+ },
631
+ "num_fewshot": 5,
632
+ "metric_list": [
633
+ {
634
+ "metric": "acc",
635
+ "aggregation": "mean",
636
+ "higher_is_better": true
637
+ }
638
+ ],
639
+ "output_type": "multiple_choice",
640
+ "repeats": 1,
641
+ "should_decontaminate": false,
642
+ "metadata": {
643
+ "version": 0.0
644
+ }
645
+ },
646
+ "mmlu_college_mathematics": {
647
+ "task": "mmlu_college_mathematics",
648
+ "task_alias": "college_mathematics",
649
+ "group": "mmlu_stem",
650
+ "group_alias": "stem",
651
+ "dataset_path": "hails/mmlu_no_train",
652
+ "dataset_name": "college_mathematics",
653
+ "test_split": "test",
654
+ "fewshot_split": "dev",
655
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
656
+ "doc_to_target": "answer",
657
+ "doc_to_choice": [
658
+ "A",
659
+ "B",
660
+ "C",
661
+ "D"
662
+ ],
663
+ "description": "The following are multiple choice questions (with answers) about college mathematics.\n\n",
664
+ "target_delimiter": " ",
665
+ "fewshot_delimiter": "\n\n",
666
+ "fewshot_config": {
667
+ "sampler": "first_n"
668
+ },
669
+ "num_fewshot": 5,
670
+ "metric_list": [
671
+ {
672
+ "metric": "acc",
673
+ "aggregation": "mean",
674
+ "higher_is_better": true
675
+ }
676
+ ],
677
+ "output_type": "multiple_choice",
678
+ "repeats": 1,
679
+ "should_decontaminate": false,
680
+ "metadata": {
681
+ "version": 0.0
682
+ }
683
+ },
684
+ "mmlu_college_medicine": {
685
+ "task": "mmlu_college_medicine",
686
+ "task_alias": "college_medicine",
687
+ "group": "mmlu_other",
688
+ "group_alias": "other",
689
+ "dataset_path": "hails/mmlu_no_train",
690
+ "dataset_name": "college_medicine",
691
+ "test_split": "test",
692
+ "fewshot_split": "dev",
693
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
694
+ "doc_to_target": "answer",
695
+ "doc_to_choice": [
696
+ "A",
697
+ "B",
698
+ "C",
699
+ "D"
700
+ ],
701
+ "description": "The following are multiple choice questions (with answers) about college medicine.\n\n",
702
+ "target_delimiter": " ",
703
+ "fewshot_delimiter": "\n\n",
704
+ "fewshot_config": {
705
+ "sampler": "first_n"
706
+ },
707
+ "num_fewshot": 5,
708
+ "metric_list": [
709
+ {
710
+ "metric": "acc",
711
+ "aggregation": "mean",
712
+ "higher_is_better": true
713
+ }
714
+ ],
715
+ "output_type": "multiple_choice",
716
+ "repeats": 1,
717
+ "should_decontaminate": false,
718
+ "metadata": {
719
+ "version": 0.0
720
+ }
721
+ },
722
+ "mmlu_college_physics": {
723
+ "task": "mmlu_college_physics",
724
+ "task_alias": "college_physics",
725
+ "group": "mmlu_stem",
726
+ "group_alias": "stem",
727
+ "dataset_path": "hails/mmlu_no_train",
728
+ "dataset_name": "college_physics",
729
+ "test_split": "test",
730
+ "fewshot_split": "dev",
731
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
732
+ "doc_to_target": "answer",
733
+ "doc_to_choice": [
734
+ "A",
735
+ "B",
736
+ "C",
737
+ "D"
738
+ ],
739
+ "description": "The following are multiple choice questions (with answers) about college physics.\n\n",
740
+ "target_delimiter": " ",
741
+ "fewshot_delimiter": "\n\n",
742
+ "fewshot_config": {
743
+ "sampler": "first_n"
744
+ },
745
+ "num_fewshot": 5,
746
+ "metric_list": [
747
+ {
748
+ "metric": "acc",
749
+ "aggregation": "mean",
750
+ "higher_is_better": true
751
+ }
752
+ ],
753
+ "output_type": "multiple_choice",
754
+ "repeats": 1,
755
+ "should_decontaminate": false,
756
+ "metadata": {
757
+ "version": 0.0
758
+ }
759
+ },
760
+ "mmlu_computer_security": {
761
+ "task": "mmlu_computer_security",
762
+ "task_alias": "computer_security",
763
+ "group": "mmlu_stem",
764
+ "group_alias": "stem",
765
+ "dataset_path": "hails/mmlu_no_train",
766
+ "dataset_name": "computer_security",
767
+ "test_split": "test",
768
+ "fewshot_split": "dev",
769
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
770
+ "doc_to_target": "answer",
771
+ "doc_to_choice": [
772
+ "A",
773
+ "B",
774
+ "C",
775
+ "D"
776
+ ],
777
+ "description": "The following are multiple choice questions (with answers) about computer security.\n\n",
778
+ "target_delimiter": " ",
779
+ "fewshot_delimiter": "\n\n",
780
+ "fewshot_config": {
781
+ "sampler": "first_n"
782
+ },
783
+ "num_fewshot": 5,
784
+ "metric_list": [
785
+ {
786
+ "metric": "acc",
787
+ "aggregation": "mean",
788
+ "higher_is_better": true
789
+ }
790
+ ],
791
+ "output_type": "multiple_choice",
792
+ "repeats": 1,
793
+ "should_decontaminate": false,
794
+ "metadata": {
795
+ "version": 0.0
796
+ }
797
+ },
798
+ "mmlu_conceptual_physics": {
799
+ "task": "mmlu_conceptual_physics",
800
+ "task_alias": "conceptual_physics",
801
+ "group": "mmlu_stem",
802
+ "group_alias": "stem",
803
+ "dataset_path": "hails/mmlu_no_train",
804
+ "dataset_name": "conceptual_physics",
805
+ "test_split": "test",
806
+ "fewshot_split": "dev",
807
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
808
+ "doc_to_target": "answer",
809
+ "doc_to_choice": [
810
+ "A",
811
+ "B",
812
+ "C",
813
+ "D"
814
+ ],
815
+ "description": "The following are multiple choice questions (with answers) about conceptual physics.\n\n",
816
+ "target_delimiter": " ",
817
+ "fewshot_delimiter": "\n\n",
818
+ "fewshot_config": {
819
+ "sampler": "first_n"
820
+ },
821
+ "num_fewshot": 5,
822
+ "metric_list": [
823
+ {
824
+ "metric": "acc",
825
+ "aggregation": "mean",
826
+ "higher_is_better": true
827
+ }
828
+ ],
829
+ "output_type": "multiple_choice",
830
+ "repeats": 1,
831
+ "should_decontaminate": false,
832
+ "metadata": {
833
+ "version": 0.0
834
+ }
835
+ },
836
+ "mmlu_econometrics": {
837
+ "task": "mmlu_econometrics",
838
+ "task_alias": "econometrics",
839
+ "group": "mmlu_social_sciences",
840
+ "group_alias": "social_sciences",
841
+ "dataset_path": "hails/mmlu_no_train",
842
+ "dataset_name": "econometrics",
843
+ "test_split": "test",
844
+ "fewshot_split": "dev",
845
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
846
+ "doc_to_target": "answer",
847
+ "doc_to_choice": [
848
+ "A",
849
+ "B",
850
+ "C",
851
+ "D"
852
+ ],
853
+ "description": "The following are multiple choice questions (with answers) about econometrics.\n\n",
854
+ "target_delimiter": " ",
855
+ "fewshot_delimiter": "\n\n",
856
+ "fewshot_config": {
857
+ "sampler": "first_n"
858
+ },
859
+ "num_fewshot": 5,
860
+ "metric_list": [
861
+ {
862
+ "metric": "acc",
863
+ "aggregation": "mean",
864
+ "higher_is_better": true
865
+ }
866
+ ],
867
+ "output_type": "multiple_choice",
868
+ "repeats": 1,
869
+ "should_decontaminate": false,
870
+ "metadata": {
871
+ "version": 0.0
872
+ }
873
+ },
874
+ "mmlu_electrical_engineering": {
875
+ "task": "mmlu_electrical_engineering",
876
+ "task_alias": "electrical_engineering",
877
+ "group": "mmlu_stem",
878
+ "group_alias": "stem",
879
+ "dataset_path": "hails/mmlu_no_train",
880
+ "dataset_name": "electrical_engineering",
881
+ "test_split": "test",
882
+ "fewshot_split": "dev",
883
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
884
+ "doc_to_target": "answer",
885
+ "doc_to_choice": [
886
+ "A",
887
+ "B",
888
+ "C",
889
+ "D"
890
+ ],
891
+ "description": "The following are multiple choice questions (with answers) about electrical engineering.\n\n",
892
+ "target_delimiter": " ",
893
+ "fewshot_delimiter": "\n\n",
894
+ "fewshot_config": {
895
+ "sampler": "first_n"
896
+ },
897
+ "num_fewshot": 5,
898
+ "metric_list": [
899
+ {
900
+ "metric": "acc",
901
+ "aggregation": "mean",
902
+ "higher_is_better": true
903
+ }
904
+ ],
905
+ "output_type": "multiple_choice",
906
+ "repeats": 1,
907
+ "should_decontaminate": false,
908
+ "metadata": {
909
+ "version": 0.0
910
+ }
911
+ },
912
+ "mmlu_elementary_mathematics": {
913
+ "task": "mmlu_elementary_mathematics",
914
+ "task_alias": "elementary_mathematics",
915
+ "group": "mmlu_stem",
916
+ "group_alias": "stem",
917
+ "dataset_path": "hails/mmlu_no_train",
918
+ "dataset_name": "elementary_mathematics",
919
+ "test_split": "test",
920
+ "fewshot_split": "dev",
921
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
922
+ "doc_to_target": "answer",
923
+ "doc_to_choice": [
924
+ "A",
925
+ "B",
926
+ "C",
927
+ "D"
928
+ ],
929
+ "description": "The following are multiple choice questions (with answers) about elementary mathematics.\n\n",
930
+ "target_delimiter": " ",
931
+ "fewshot_delimiter": "\n\n",
932
+ "fewshot_config": {
933
+ "sampler": "first_n"
934
+ },
935
+ "num_fewshot": 5,
936
+ "metric_list": [
937
+ {
938
+ "metric": "acc",
939
+ "aggregation": "mean",
940
+ "higher_is_better": true
941
+ }
942
+ ],
943
+ "output_type": "multiple_choice",
944
+ "repeats": 1,
945
+ "should_decontaminate": false,
946
+ "metadata": {
947
+ "version": 0.0
948
+ }
949
+ },
950
+ "mmlu_formal_logic": {
951
+ "task": "mmlu_formal_logic",
952
+ "task_alias": "formal_logic",
953
+ "group": "mmlu_humanities",
954
+ "group_alias": "humanities",
955
+ "dataset_path": "hails/mmlu_no_train",
956
+ "dataset_name": "formal_logic",
957
+ "test_split": "test",
958
+ "fewshot_split": "dev",
959
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
960
+ "doc_to_target": "answer",
961
+ "doc_to_choice": [
962
+ "A",
963
+ "B",
964
+ "C",
965
+ "D"
966
+ ],
967
+ "description": "The following are multiple choice questions (with answers) about formal logic.\n\n",
968
+ "target_delimiter": " ",
969
+ "fewshot_delimiter": "\n\n",
970
+ "fewshot_config": {
971
+ "sampler": "first_n"
972
+ },
973
+ "num_fewshot": 5,
974
+ "metric_list": [
975
+ {
976
+ "metric": "acc",
977
+ "aggregation": "mean",
978
+ "higher_is_better": true
979
+ }
980
+ ],
981
+ "output_type": "multiple_choice",
982
+ "repeats": 1,
983
+ "should_decontaminate": false,
984
+ "metadata": {
985
+ "version": 0.0
986
+ }
987
+ },
988
+ "mmlu_global_facts": {
989
+ "task": "mmlu_global_facts",
990
+ "task_alias": "global_facts",
991
+ "group": "mmlu_other",
992
+ "group_alias": "other",
993
+ "dataset_path": "hails/mmlu_no_train",
994
+ "dataset_name": "global_facts",
995
+ "test_split": "test",
996
+ "fewshot_split": "dev",
997
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
998
+ "doc_to_target": "answer",
999
+ "doc_to_choice": [
1000
+ "A",
1001
+ "B",
1002
+ "C",
1003
+ "D"
1004
+ ],
1005
+ "description": "The following are multiple choice questions (with answers) about global facts.\n\n",
1006
+ "target_delimiter": " ",
1007
+ "fewshot_delimiter": "\n\n",
1008
+ "fewshot_config": {
1009
+ "sampler": "first_n"
1010
+ },
1011
+ "num_fewshot": 5,
1012
+ "metric_list": [
1013
+ {
1014
+ "metric": "acc",
1015
+ "aggregation": "mean",
1016
+ "higher_is_better": true
1017
+ }
1018
+ ],
1019
+ "output_type": "multiple_choice",
1020
+ "repeats": 1,
1021
+ "should_decontaminate": false,
1022
+ "metadata": {
1023
+ "version": 0.0
1024
+ }
1025
+ },
1026
+ "mmlu_high_school_biology": {
1027
+ "task": "mmlu_high_school_biology",
1028
+ "task_alias": "high_school_biology",
1029
+ "group": "mmlu_stem",
1030
+ "group_alias": "stem",
1031
+ "dataset_path": "hails/mmlu_no_train",
1032
+ "dataset_name": "high_school_biology",
1033
+ "test_split": "test",
1034
+ "fewshot_split": "dev",
1035
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1036
+ "doc_to_target": "answer",
1037
+ "doc_to_choice": [
1038
+ "A",
1039
+ "B",
1040
+ "C",
1041
+ "D"
1042
+ ],
1043
+ "description": "The following are multiple choice questions (with answers) about high school biology.\n\n",
1044
+ "target_delimiter": " ",
1045
+ "fewshot_delimiter": "\n\n",
1046
+ "fewshot_config": {
1047
+ "sampler": "first_n"
1048
+ },
1049
+ "num_fewshot": 5,
1050
+ "metric_list": [
1051
+ {
1052
+ "metric": "acc",
1053
+ "aggregation": "mean",
1054
+ "higher_is_better": true
1055
+ }
1056
+ ],
1057
+ "output_type": "multiple_choice",
1058
+ "repeats": 1,
1059
+ "should_decontaminate": false,
1060
+ "metadata": {
1061
+ "version": 0.0
1062
+ }
1063
+ },
1064
+ "mmlu_high_school_chemistry": {
1065
+ "task": "mmlu_high_school_chemistry",
1066
+ "task_alias": "high_school_chemistry",
1067
+ "group": "mmlu_stem",
1068
+ "group_alias": "stem",
1069
+ "dataset_path": "hails/mmlu_no_train",
1070
+ "dataset_name": "high_school_chemistry",
1071
+ "test_split": "test",
1072
+ "fewshot_split": "dev",
1073
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1074
+ "doc_to_target": "answer",
1075
+ "doc_to_choice": [
1076
+ "A",
1077
+ "B",
1078
+ "C",
1079
+ "D"
1080
+ ],
1081
+ "description": "The following are multiple choice questions (with answers) about high school chemistry.\n\n",
1082
+ "target_delimiter": " ",
1083
+ "fewshot_delimiter": "\n\n",
1084
+ "fewshot_config": {
1085
+ "sampler": "first_n"
1086
+ },
1087
+ "num_fewshot": 5,
1088
+ "metric_list": [
1089
+ {
1090
+ "metric": "acc",
1091
+ "aggregation": "mean",
1092
+ "higher_is_better": true
1093
+ }
1094
+ ],
1095
+ "output_type": "multiple_choice",
1096
+ "repeats": 1,
1097
+ "should_decontaminate": false,
1098
+ "metadata": {
1099
+ "version": 0.0
1100
+ }
1101
+ },
1102
+ "mmlu_high_school_computer_science": {
1103
+ "task": "mmlu_high_school_computer_science",
1104
+ "task_alias": "high_school_computer_science",
1105
+ "group": "mmlu_stem",
1106
+ "group_alias": "stem",
1107
+ "dataset_path": "hails/mmlu_no_train",
1108
+ "dataset_name": "high_school_computer_science",
1109
+ "test_split": "test",
1110
+ "fewshot_split": "dev",
1111
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1112
+ "doc_to_target": "answer",
1113
+ "doc_to_choice": [
1114
+ "A",
1115
+ "B",
1116
+ "C",
1117
+ "D"
1118
+ ],
1119
+ "description": "The following are multiple choice questions (with answers) about high school computer science.\n\n",
1120
+ "target_delimiter": " ",
1121
+ "fewshot_delimiter": "\n\n",
1122
+ "fewshot_config": {
1123
+ "sampler": "first_n"
1124
+ },
1125
+ "num_fewshot": 5,
1126
+ "metric_list": [
1127
+ {
1128
+ "metric": "acc",
1129
+ "aggregation": "mean",
1130
+ "higher_is_better": true
1131
+ }
1132
+ ],
1133
+ "output_type": "multiple_choice",
1134
+ "repeats": 1,
1135
+ "should_decontaminate": false,
1136
+ "metadata": {
1137
+ "version": 0.0
1138
+ }
1139
+ },
1140
+ "mmlu_high_school_european_history": {
1141
+ "task": "mmlu_high_school_european_history",
1142
+ "task_alias": "high_school_european_history",
1143
+ "group": "mmlu_humanities",
1144
+ "group_alias": "humanities",
1145
+ "dataset_path": "hails/mmlu_no_train",
1146
+ "dataset_name": "high_school_european_history",
1147
+ "test_split": "test",
1148
+ "fewshot_split": "dev",
1149
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1150
+ "doc_to_target": "answer",
1151
+ "doc_to_choice": [
1152
+ "A",
1153
+ "B",
1154
+ "C",
1155
+ "D"
1156
+ ],
1157
+ "description": "The following are multiple choice questions (with answers) about high school european history.\n\n",
1158
+ "target_delimiter": " ",
1159
+ "fewshot_delimiter": "\n\n",
1160
+ "fewshot_config": {
1161
+ "sampler": "first_n"
1162
+ },
1163
+ "num_fewshot": 5,
1164
+ "metric_list": [
1165
+ {
1166
+ "metric": "acc",
1167
+ "aggregation": "mean",
1168
+ "higher_is_better": true
1169
+ }
1170
+ ],
1171
+ "output_type": "multiple_choice",
1172
+ "repeats": 1,
1173
+ "should_decontaminate": false,
1174
+ "metadata": {
1175
+ "version": 0.0
1176
+ }
1177
+ },
1178
+ "mmlu_high_school_geography": {
1179
+ "task": "mmlu_high_school_geography",
1180
+ "task_alias": "high_school_geography",
1181
+ "group": "mmlu_social_sciences",
1182
+ "group_alias": "social_sciences",
1183
+ "dataset_path": "hails/mmlu_no_train",
1184
+ "dataset_name": "high_school_geography",
1185
+ "test_split": "test",
1186
+ "fewshot_split": "dev",
1187
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1188
+ "doc_to_target": "answer",
1189
+ "doc_to_choice": [
1190
+ "A",
1191
+ "B",
1192
+ "C",
1193
+ "D"
1194
+ ],
1195
+ "description": "The following are multiple choice questions (with answers) about high school geography.\n\n",
1196
+ "target_delimiter": " ",
1197
+ "fewshot_delimiter": "\n\n",
1198
+ "fewshot_config": {
1199
+ "sampler": "first_n"
1200
+ },
1201
+ "num_fewshot": 5,
1202
+ "metric_list": [
1203
+ {
1204
+ "metric": "acc",
1205
+ "aggregation": "mean",
1206
+ "higher_is_better": true
1207
+ }
1208
+ ],
1209
+ "output_type": "multiple_choice",
1210
+ "repeats": 1,
1211
+ "should_decontaminate": false,
1212
+ "metadata": {
1213
+ "version": 0.0
1214
+ }
1215
+ },
1216
+ "mmlu_high_school_government_and_politics": {
1217
+ "task": "mmlu_high_school_government_and_politics",
1218
+ "task_alias": "high_school_government_and_politics",
1219
+ "group": "mmlu_social_sciences",
1220
+ "group_alias": "social_sciences",
1221
+ "dataset_path": "hails/mmlu_no_train",
1222
+ "dataset_name": "high_school_government_and_politics",
1223
+ "test_split": "test",
1224
+ "fewshot_split": "dev",
1225
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1226
+ "doc_to_target": "answer",
1227
+ "doc_to_choice": [
1228
+ "A",
1229
+ "B",
1230
+ "C",
1231
+ "D"
1232
+ ],
1233
+ "description": "The following are multiple choice questions (with answers) about high school government and politics.\n\n",
1234
+ "target_delimiter": " ",
1235
+ "fewshot_delimiter": "\n\n",
1236
+ "fewshot_config": {
1237
+ "sampler": "first_n"
1238
+ },
1239
+ "num_fewshot": 5,
1240
+ "metric_list": [
1241
+ {
1242
+ "metric": "acc",
1243
+ "aggregation": "mean",
1244
+ "higher_is_better": true
1245
+ }
1246
+ ],
1247
+ "output_type": "multiple_choice",
1248
+ "repeats": 1,
1249
+ "should_decontaminate": false,
1250
+ "metadata": {
1251
+ "version": 0.0
1252
+ }
1253
+ },
1254
+ "mmlu_high_school_macroeconomics": {
1255
+ "task": "mmlu_high_school_macroeconomics",
1256
+ "task_alias": "high_school_macroeconomics",
1257
+ "group": "mmlu_social_sciences",
1258
+ "group_alias": "social_sciences",
1259
+ "dataset_path": "hails/mmlu_no_train",
1260
+ "dataset_name": "high_school_macroeconomics",
1261
+ "test_split": "test",
1262
+ "fewshot_split": "dev",
1263
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1264
+ "doc_to_target": "answer",
1265
+ "doc_to_choice": [
1266
+ "A",
1267
+ "B",
1268
+ "C",
1269
+ "D"
1270
+ ],
1271
+ "description": "The following are multiple choice questions (with answers) about high school macroeconomics.\n\n",
1272
+ "target_delimiter": " ",
1273
+ "fewshot_delimiter": "\n\n",
1274
+ "fewshot_config": {
1275
+ "sampler": "first_n"
1276
+ },
1277
+ "num_fewshot": 5,
1278
+ "metric_list": [
1279
+ {
1280
+ "metric": "acc",
1281
+ "aggregation": "mean",
1282
+ "higher_is_better": true
1283
+ }
1284
+ ],
1285
+ "output_type": "multiple_choice",
1286
+ "repeats": 1,
1287
+ "should_decontaminate": false,
1288
+ "metadata": {
1289
+ "version": 0.0
1290
+ }
1291
+ },
1292
+ "mmlu_high_school_mathematics": {
1293
+ "task": "mmlu_high_school_mathematics",
1294
+ "task_alias": "high_school_mathematics",
1295
+ "group": "mmlu_stem",
1296
+ "group_alias": "stem",
1297
+ "dataset_path": "hails/mmlu_no_train",
1298
+ "dataset_name": "high_school_mathematics",
1299
+ "test_split": "test",
1300
+ "fewshot_split": "dev",
1301
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1302
+ "doc_to_target": "answer",
1303
+ "doc_to_choice": [
1304
+ "A",
1305
+ "B",
1306
+ "C",
1307
+ "D"
1308
+ ],
1309
+ "description": "The following are multiple choice questions (with answers) about high school mathematics.\n\n",
1310
+ "target_delimiter": " ",
1311
+ "fewshot_delimiter": "\n\n",
1312
+ "fewshot_config": {
1313
+ "sampler": "first_n"
1314
+ },
1315
+ "num_fewshot": 5,
1316
+ "metric_list": [
1317
+ {
1318
+ "metric": "acc",
1319
+ "aggregation": "mean",
1320
+ "higher_is_better": true
1321
+ }
1322
+ ],
1323
+ "output_type": "multiple_choice",
1324
+ "repeats": 1,
1325
+ "should_decontaminate": false,
1326
+ "metadata": {
1327
+ "version": 0.0
1328
+ }
1329
+ },
1330
+ "mmlu_high_school_microeconomics": {
1331
+ "task": "mmlu_high_school_microeconomics",
1332
+ "task_alias": "high_school_microeconomics",
1333
+ "group": "mmlu_social_sciences",
1334
+ "group_alias": "social_sciences",
1335
+ "dataset_path": "hails/mmlu_no_train",
1336
+ "dataset_name": "high_school_microeconomics",
1337
+ "test_split": "test",
1338
+ "fewshot_split": "dev",
1339
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1340
+ "doc_to_target": "answer",
1341
+ "doc_to_choice": [
1342
+ "A",
1343
+ "B",
1344
+ "C",
1345
+ "D"
1346
+ ],
1347
+ "description": "The following are multiple choice questions (with answers) about high school microeconomics.\n\n",
1348
+ "target_delimiter": " ",
1349
+ "fewshot_delimiter": "\n\n",
1350
+ "fewshot_config": {
1351
+ "sampler": "first_n"
1352
+ },
1353
+ "num_fewshot": 5,
1354
+ "metric_list": [
1355
+ {
1356
+ "metric": "acc",
1357
+ "aggregation": "mean",
1358
+ "higher_is_better": true
1359
+ }
1360
+ ],
1361
+ "output_type": "multiple_choice",
1362
+ "repeats": 1,
1363
+ "should_decontaminate": false,
1364
+ "metadata": {
1365
+ "version": 0.0
1366
+ }
1367
+ },
1368
+ "mmlu_high_school_physics": {
1369
+ "task": "mmlu_high_school_physics",
1370
+ "task_alias": "high_school_physics",
1371
+ "group": "mmlu_stem",
1372
+ "group_alias": "stem",
1373
+ "dataset_path": "hails/mmlu_no_train",
1374
+ "dataset_name": "high_school_physics",
1375
+ "test_split": "test",
1376
+ "fewshot_split": "dev",
1377
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1378
+ "doc_to_target": "answer",
1379
+ "doc_to_choice": [
1380
+ "A",
1381
+ "B",
1382
+ "C",
1383
+ "D"
1384
+ ],
1385
+ "description": "The following are multiple choice questions (with answers) about high school physics.\n\n",
1386
+ "target_delimiter": " ",
1387
+ "fewshot_delimiter": "\n\n",
1388
+ "fewshot_config": {
1389
+ "sampler": "first_n"
1390
+ },
1391
+ "num_fewshot": 5,
1392
+ "metric_list": [
1393
+ {
1394
+ "metric": "acc",
1395
+ "aggregation": "mean",
1396
+ "higher_is_better": true
1397
+ }
1398
+ ],
1399
+ "output_type": "multiple_choice",
1400
+ "repeats": 1,
1401
+ "should_decontaminate": false,
1402
+ "metadata": {
1403
+ "version": 0.0
1404
+ }
1405
+ },
1406
+ "mmlu_high_school_psychology": {
1407
+ "task": "mmlu_high_school_psychology",
1408
+ "task_alias": "high_school_psychology",
1409
+ "group": "mmlu_social_sciences",
1410
+ "group_alias": "social_sciences",
1411
+ "dataset_path": "hails/mmlu_no_train",
1412
+ "dataset_name": "high_school_psychology",
1413
+ "test_split": "test",
1414
+ "fewshot_split": "dev",
1415
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1416
+ "doc_to_target": "answer",
1417
+ "doc_to_choice": [
1418
+ "A",
1419
+ "B",
1420
+ "C",
1421
+ "D"
1422
+ ],
1423
+ "description": "The following are multiple choice questions (with answers) about high school psychology.\n\n",
1424
+ "target_delimiter": " ",
1425
+ "fewshot_delimiter": "\n\n",
1426
+ "fewshot_config": {
1427
+ "sampler": "first_n"
1428
+ },
1429
+ "num_fewshot": 5,
1430
+ "metric_list": [
1431
+ {
1432
+ "metric": "acc",
1433
+ "aggregation": "mean",
1434
+ "higher_is_better": true
1435
+ }
1436
+ ],
1437
+ "output_type": "multiple_choice",
1438
+ "repeats": 1,
1439
+ "should_decontaminate": false,
1440
+ "metadata": {
1441
+ "version": 0.0
1442
+ }
1443
+ },
1444
+ "mmlu_high_school_statistics": {
1445
+ "task": "mmlu_high_school_statistics",
1446
+ "task_alias": "high_school_statistics",
1447
+ "group": "mmlu_stem",
1448
+ "group_alias": "stem",
1449
+ "dataset_path": "hails/mmlu_no_train",
1450
+ "dataset_name": "high_school_statistics",
1451
+ "test_split": "test",
1452
+ "fewshot_split": "dev",
1453
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1454
+ "doc_to_target": "answer",
1455
+ "doc_to_choice": [
1456
+ "A",
1457
+ "B",
1458
+ "C",
1459
+ "D"
1460
+ ],
1461
+ "description": "The following are multiple choice questions (with answers) about high school statistics.\n\n",
1462
+ "target_delimiter": " ",
1463
+ "fewshot_delimiter": "\n\n",
1464
+ "fewshot_config": {
1465
+ "sampler": "first_n"
1466
+ },
1467
+ "num_fewshot": 5,
1468
+ "metric_list": [
1469
+ {
1470
+ "metric": "acc",
1471
+ "aggregation": "mean",
1472
+ "higher_is_better": true
1473
+ }
1474
+ ],
1475
+ "output_type": "multiple_choice",
1476
+ "repeats": 1,
1477
+ "should_decontaminate": false,
1478
+ "metadata": {
1479
+ "version": 0.0
1480
+ }
1481
+ },
1482
+ "mmlu_high_school_us_history": {
1483
+ "task": "mmlu_high_school_us_history",
1484
+ "task_alias": "high_school_us_history",
1485
+ "group": "mmlu_humanities",
1486
+ "group_alias": "humanities",
1487
+ "dataset_path": "hails/mmlu_no_train",
1488
+ "dataset_name": "high_school_us_history",
1489
+ "test_split": "test",
1490
+ "fewshot_split": "dev",
1491
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1492
+ "doc_to_target": "answer",
1493
+ "doc_to_choice": [
1494
+ "A",
1495
+ "B",
1496
+ "C",
1497
+ "D"
1498
+ ],
1499
+ "description": "The following are multiple choice questions (with answers) about high school us history.\n\n",
1500
+ "target_delimiter": " ",
1501
+ "fewshot_delimiter": "\n\n",
1502
+ "fewshot_config": {
1503
+ "sampler": "first_n"
1504
+ },
1505
+ "num_fewshot": 5,
1506
+ "metric_list": [
1507
+ {
1508
+ "metric": "acc",
1509
+ "aggregation": "mean",
1510
+ "higher_is_better": true
1511
+ }
1512
+ ],
1513
+ "output_type": "multiple_choice",
1514
+ "repeats": 1,
1515
+ "should_decontaminate": false,
1516
+ "metadata": {
1517
+ "version": 0.0
1518
+ }
1519
+ },
1520
+ "mmlu_high_school_world_history": {
1521
+ "task": "mmlu_high_school_world_history",
1522
+ "task_alias": "high_school_world_history",
1523
+ "group": "mmlu_humanities",
1524
+ "group_alias": "humanities",
1525
+ "dataset_path": "hails/mmlu_no_train",
1526
+ "dataset_name": "high_school_world_history",
1527
+ "test_split": "test",
1528
+ "fewshot_split": "dev",
1529
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1530
+ "doc_to_target": "answer",
1531
+ "doc_to_choice": [
1532
+ "A",
1533
+ "B",
1534
+ "C",
1535
+ "D"
1536
+ ],
1537
+ "description": "The following are multiple choice questions (with answers) about high school world history.\n\n",
1538
+ "target_delimiter": " ",
1539
+ "fewshot_delimiter": "\n\n",
1540
+ "fewshot_config": {
1541
+ "sampler": "first_n"
1542
+ },
1543
+ "num_fewshot": 5,
1544
+ "metric_list": [
1545
+ {
1546
+ "metric": "acc",
1547
+ "aggregation": "mean",
1548
+ "higher_is_better": true
1549
+ }
1550
+ ],
1551
+ "output_type": "multiple_choice",
1552
+ "repeats": 1,
1553
+ "should_decontaminate": false,
1554
+ "metadata": {
1555
+ "version": 0.0
1556
+ }
1557
+ },
1558
+ "mmlu_human_aging": {
1559
+ "task": "mmlu_human_aging",
1560
+ "task_alias": "human_aging",
1561
+ "group": "mmlu_other",
1562
+ "group_alias": "other",
1563
+ "dataset_path": "hails/mmlu_no_train",
1564
+ "dataset_name": "human_aging",
1565
+ "test_split": "test",
1566
+ "fewshot_split": "dev",
1567
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1568
+ "doc_to_target": "answer",
1569
+ "doc_to_choice": [
1570
+ "A",
1571
+ "B",
1572
+ "C",
1573
+ "D"
1574
+ ],
1575
+ "description": "The following are multiple choice questions (with answers) about human aging.\n\n",
1576
+ "target_delimiter": " ",
1577
+ "fewshot_delimiter": "\n\n",
1578
+ "fewshot_config": {
1579
+ "sampler": "first_n"
1580
+ },
1581
+ "num_fewshot": 5,
1582
+ "metric_list": [
1583
+ {
1584
+ "metric": "acc",
1585
+ "aggregation": "mean",
1586
+ "higher_is_better": true
1587
+ }
1588
+ ],
1589
+ "output_type": "multiple_choice",
1590
+ "repeats": 1,
1591
+ "should_decontaminate": false,
1592
+ "metadata": {
1593
+ "version": 0.0
1594
+ }
1595
+ },
1596
+ "mmlu_human_sexuality": {
1597
+ "task": "mmlu_human_sexuality",
1598
+ "task_alias": "human_sexuality",
1599
+ "group": "mmlu_social_sciences",
1600
+ "group_alias": "social_sciences",
1601
+ "dataset_path": "hails/mmlu_no_train",
1602
+ "dataset_name": "human_sexuality",
1603
+ "test_split": "test",
1604
+ "fewshot_split": "dev",
1605
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1606
+ "doc_to_target": "answer",
1607
+ "doc_to_choice": [
1608
+ "A",
1609
+ "B",
1610
+ "C",
1611
+ "D"
1612
+ ],
1613
+ "description": "The following are multiple choice questions (with answers) about human sexuality.\n\n",
1614
+ "target_delimiter": " ",
1615
+ "fewshot_delimiter": "\n\n",
1616
+ "fewshot_config": {
1617
+ "sampler": "first_n"
1618
+ },
1619
+ "num_fewshot": 5,
1620
+ "metric_list": [
1621
+ {
1622
+ "metric": "acc",
1623
+ "aggregation": "mean",
1624
+ "higher_is_better": true
1625
+ }
1626
+ ],
1627
+ "output_type": "multiple_choice",
1628
+ "repeats": 1,
1629
+ "should_decontaminate": false,
1630
+ "metadata": {
1631
+ "version": 0.0
1632
+ }
1633
+ },
1634
+ "mmlu_international_law": {
1635
+ "task": "mmlu_international_law",
1636
+ "task_alias": "international_law",
1637
+ "group": "mmlu_humanities",
1638
+ "group_alias": "humanities",
1639
+ "dataset_path": "hails/mmlu_no_train",
1640
+ "dataset_name": "international_law",
1641
+ "test_split": "test",
1642
+ "fewshot_split": "dev",
1643
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1644
+ "doc_to_target": "answer",
1645
+ "doc_to_choice": [
1646
+ "A",
1647
+ "B",
1648
+ "C",
1649
+ "D"
1650
+ ],
1651
+ "description": "The following are multiple choice questions (with answers) about international law.\n\n",
1652
+ "target_delimiter": " ",
1653
+ "fewshot_delimiter": "\n\n",
1654
+ "fewshot_config": {
1655
+ "sampler": "first_n"
1656
+ },
1657
+ "num_fewshot": 5,
1658
+ "metric_list": [
1659
+ {
1660
+ "metric": "acc",
1661
+ "aggregation": "mean",
1662
+ "higher_is_better": true
1663
+ }
1664
+ ],
1665
+ "output_type": "multiple_choice",
1666
+ "repeats": 1,
1667
+ "should_decontaminate": false,
1668
+ "metadata": {
1669
+ "version": 0.0
1670
+ }
1671
+ },
1672
+ "mmlu_jurisprudence": {
1673
+ "task": "mmlu_jurisprudence",
1674
+ "task_alias": "jurisprudence",
1675
+ "group": "mmlu_humanities",
1676
+ "group_alias": "humanities",
1677
+ "dataset_path": "hails/mmlu_no_train",
1678
+ "dataset_name": "jurisprudence",
1679
+ "test_split": "test",
1680
+ "fewshot_split": "dev",
1681
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1682
+ "doc_to_target": "answer",
1683
+ "doc_to_choice": [
1684
+ "A",
1685
+ "B",
1686
+ "C",
1687
+ "D"
1688
+ ],
1689
+ "description": "The following are multiple choice questions (with answers) about jurisprudence.\n\n",
1690
+ "target_delimiter": " ",
1691
+ "fewshot_delimiter": "\n\n",
1692
+ "fewshot_config": {
1693
+ "sampler": "first_n"
1694
+ },
1695
+ "num_fewshot": 5,
1696
+ "metric_list": [
1697
+ {
1698
+ "metric": "acc",
1699
+ "aggregation": "mean",
1700
+ "higher_is_better": true
1701
+ }
1702
+ ],
1703
+ "output_type": "multiple_choice",
1704
+ "repeats": 1,
1705
+ "should_decontaminate": false,
1706
+ "metadata": {
1707
+ "version": 0.0
1708
+ }
1709
+ },
1710
+ "mmlu_logical_fallacies": {
1711
+ "task": "mmlu_logical_fallacies",
1712
+ "task_alias": "logical_fallacies",
1713
+ "group": "mmlu_humanities",
1714
+ "group_alias": "humanities",
1715
+ "dataset_path": "hails/mmlu_no_train",
1716
+ "dataset_name": "logical_fallacies",
1717
+ "test_split": "test",
1718
+ "fewshot_split": "dev",
1719
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1720
+ "doc_to_target": "answer",
1721
+ "doc_to_choice": [
1722
+ "A",
1723
+ "B",
1724
+ "C",
1725
+ "D"
1726
+ ],
1727
+ "description": "The following are multiple choice questions (with answers) about logical fallacies.\n\n",
1728
+ "target_delimiter": " ",
1729
+ "fewshot_delimiter": "\n\n",
1730
+ "fewshot_config": {
1731
+ "sampler": "first_n"
1732
+ },
1733
+ "num_fewshot": 5,
1734
+ "metric_list": [
1735
+ {
1736
+ "metric": "acc",
1737
+ "aggregation": "mean",
1738
+ "higher_is_better": true
1739
+ }
1740
+ ],
1741
+ "output_type": "multiple_choice",
1742
+ "repeats": 1,
1743
+ "should_decontaminate": false,
1744
+ "metadata": {
1745
+ "version": 0.0
1746
+ }
1747
+ },
1748
+ "mmlu_machine_learning": {
1749
+ "task": "mmlu_machine_learning",
1750
+ "task_alias": "machine_learning",
1751
+ "group": "mmlu_stem",
1752
+ "group_alias": "stem",
1753
+ "dataset_path": "hails/mmlu_no_train",
1754
+ "dataset_name": "machine_learning",
1755
+ "test_split": "test",
1756
+ "fewshot_split": "dev",
1757
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1758
+ "doc_to_target": "answer",
1759
+ "doc_to_choice": [
1760
+ "A",
1761
+ "B",
1762
+ "C",
1763
+ "D"
1764
+ ],
1765
+ "description": "The following are multiple choice questions (with answers) about machine learning.\n\n",
1766
+ "target_delimiter": " ",
1767
+ "fewshot_delimiter": "\n\n",
1768
+ "fewshot_config": {
1769
+ "sampler": "first_n"
1770
+ },
1771
+ "num_fewshot": 5,
1772
+ "metric_list": [
1773
+ {
1774
+ "metric": "acc",
1775
+ "aggregation": "mean",
1776
+ "higher_is_better": true
1777
+ }
1778
+ ],
1779
+ "output_type": "multiple_choice",
1780
+ "repeats": 1,
1781
+ "should_decontaminate": false,
1782
+ "metadata": {
1783
+ "version": 0.0
1784
+ }
1785
+ },
1786
+ "mmlu_management": {
1787
+ "task": "mmlu_management",
1788
+ "task_alias": "management",
1789
+ "group": "mmlu_other",
1790
+ "group_alias": "other",
1791
+ "dataset_path": "hails/mmlu_no_train",
1792
+ "dataset_name": "management",
1793
+ "test_split": "test",
1794
+ "fewshot_split": "dev",
1795
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1796
+ "doc_to_target": "answer",
1797
+ "doc_to_choice": [
1798
+ "A",
1799
+ "B",
1800
+ "C",
1801
+ "D"
1802
+ ],
1803
+ "description": "The following are multiple choice questions (with answers) about management.\n\n",
1804
+ "target_delimiter": " ",
1805
+ "fewshot_delimiter": "\n\n",
1806
+ "fewshot_config": {
1807
+ "sampler": "first_n"
1808
+ },
1809
+ "num_fewshot": 5,
1810
+ "metric_list": [
1811
+ {
1812
+ "metric": "acc",
1813
+ "aggregation": "mean",
1814
+ "higher_is_better": true
1815
+ }
1816
+ ],
1817
+ "output_type": "multiple_choice",
1818
+ "repeats": 1,
1819
+ "should_decontaminate": false,
1820
+ "metadata": {
1821
+ "version": 0.0
1822
+ }
1823
+ },
1824
+ "mmlu_marketing": {
1825
+ "task": "mmlu_marketing",
1826
+ "task_alias": "marketing",
1827
+ "group": "mmlu_other",
1828
+ "group_alias": "other",
1829
+ "dataset_path": "hails/mmlu_no_train",
1830
+ "dataset_name": "marketing",
1831
+ "test_split": "test",
1832
+ "fewshot_split": "dev",
1833
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1834
+ "doc_to_target": "answer",
1835
+ "doc_to_choice": [
1836
+ "A",
1837
+ "B",
1838
+ "C",
1839
+ "D"
1840
+ ],
1841
+ "description": "The following are multiple choice questions (with answers) about marketing.\n\n",
1842
+ "target_delimiter": " ",
1843
+ "fewshot_delimiter": "\n\n",
1844
+ "fewshot_config": {
1845
+ "sampler": "first_n"
1846
+ },
1847
+ "num_fewshot": 5,
1848
+ "metric_list": [
1849
+ {
1850
+ "metric": "acc",
1851
+ "aggregation": "mean",
1852
+ "higher_is_better": true
1853
+ }
1854
+ ],
1855
+ "output_type": "multiple_choice",
1856
+ "repeats": 1,
1857
+ "should_decontaminate": false,
1858
+ "metadata": {
1859
+ "version": 0.0
1860
+ }
1861
+ },
1862
+ "mmlu_medical_genetics": {
1863
+ "task": "mmlu_medical_genetics",
1864
+ "task_alias": "medical_genetics",
1865
+ "group": "mmlu_other",
1866
+ "group_alias": "other",
1867
+ "dataset_path": "hails/mmlu_no_train",
1868
+ "dataset_name": "medical_genetics",
1869
+ "test_split": "test",
1870
+ "fewshot_split": "dev",
1871
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1872
+ "doc_to_target": "answer",
1873
+ "doc_to_choice": [
1874
+ "A",
1875
+ "B",
1876
+ "C",
1877
+ "D"
1878
+ ],
1879
+ "description": "The following are multiple choice questions (with answers) about medical genetics.\n\n",
1880
+ "target_delimiter": " ",
1881
+ "fewshot_delimiter": "\n\n",
1882
+ "fewshot_config": {
1883
+ "sampler": "first_n"
1884
+ },
1885
+ "num_fewshot": 5,
1886
+ "metric_list": [
1887
+ {
1888
+ "metric": "acc",
1889
+ "aggregation": "mean",
1890
+ "higher_is_better": true
1891
+ }
1892
+ ],
1893
+ "output_type": "multiple_choice",
1894
+ "repeats": 1,
1895
+ "should_decontaminate": false,
1896
+ "metadata": {
1897
+ "version": 0.0
1898
+ }
1899
+ },
1900
+ "mmlu_miscellaneous": {
1901
+ "task": "mmlu_miscellaneous",
1902
+ "task_alias": "miscellaneous",
1903
+ "group": "mmlu_other",
1904
+ "group_alias": "other",
1905
+ "dataset_path": "hails/mmlu_no_train",
1906
+ "dataset_name": "miscellaneous",
1907
+ "test_split": "test",
1908
+ "fewshot_split": "dev",
1909
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1910
+ "doc_to_target": "answer",
1911
+ "doc_to_choice": [
1912
+ "A",
1913
+ "B",
1914
+ "C",
1915
+ "D"
1916
+ ],
1917
+ "description": "The following are multiple choice questions (with answers) about miscellaneous.\n\n",
1918
+ "target_delimiter": " ",
1919
+ "fewshot_delimiter": "\n\n",
1920
+ "fewshot_config": {
1921
+ "sampler": "first_n"
1922
+ },
1923
+ "num_fewshot": 5,
1924
+ "metric_list": [
1925
+ {
1926
+ "metric": "acc",
1927
+ "aggregation": "mean",
1928
+ "higher_is_better": true
1929
+ }
1930
+ ],
1931
+ "output_type": "multiple_choice",
1932
+ "repeats": 1,
1933
+ "should_decontaminate": false,
1934
+ "metadata": {
1935
+ "version": 0.0
1936
+ }
1937
+ },
1938
+ "mmlu_moral_disputes": {
1939
+ "task": "mmlu_moral_disputes",
1940
+ "task_alias": "moral_disputes",
1941
+ "group": "mmlu_humanities",
1942
+ "group_alias": "humanities",
1943
+ "dataset_path": "hails/mmlu_no_train",
1944
+ "dataset_name": "moral_disputes",
1945
+ "test_split": "test",
1946
+ "fewshot_split": "dev",
1947
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1948
+ "doc_to_target": "answer",
1949
+ "doc_to_choice": [
1950
+ "A",
1951
+ "B",
1952
+ "C",
1953
+ "D"
1954
+ ],
1955
+ "description": "The following are multiple choice questions (with answers) about moral disputes.\n\n",
1956
+ "target_delimiter": " ",
1957
+ "fewshot_delimiter": "\n\n",
1958
+ "fewshot_config": {
1959
+ "sampler": "first_n"
1960
+ },
1961
+ "num_fewshot": 5,
1962
+ "metric_list": [
1963
+ {
1964
+ "metric": "acc",
1965
+ "aggregation": "mean",
1966
+ "higher_is_better": true
1967
+ }
1968
+ ],
1969
+ "output_type": "multiple_choice",
1970
+ "repeats": 1,
1971
+ "should_decontaminate": false,
1972
+ "metadata": {
1973
+ "version": 0.0
1974
+ }
1975
+ },
1976
+ "mmlu_moral_scenarios": {
1977
+ "task": "mmlu_moral_scenarios",
1978
+ "task_alias": "moral_scenarios",
1979
+ "group": "mmlu_humanities",
1980
+ "group_alias": "humanities",
1981
+ "dataset_path": "hails/mmlu_no_train",
1982
+ "dataset_name": "moral_scenarios",
1983
+ "test_split": "test",
1984
+ "fewshot_split": "dev",
1985
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1986
+ "doc_to_target": "answer",
1987
+ "doc_to_choice": [
1988
+ "A",
1989
+ "B",
1990
+ "C",
1991
+ "D"
1992
+ ],
1993
+ "description": "The following are multiple choice questions (with answers) about moral scenarios.\n\n",
1994
+ "target_delimiter": " ",
1995
+ "fewshot_delimiter": "\n\n",
1996
+ "fewshot_config": {
1997
+ "sampler": "first_n"
1998
+ },
1999
+ "num_fewshot": 5,
2000
+ "metric_list": [
2001
+ {
2002
+ "metric": "acc",
2003
+ "aggregation": "mean",
2004
+ "higher_is_better": true
2005
+ }
2006
+ ],
2007
+ "output_type": "multiple_choice",
2008
+ "repeats": 1,
2009
+ "should_decontaminate": false,
2010
+ "metadata": {
2011
+ "version": 0.0
2012
+ }
2013
+ },
2014
+ "mmlu_nutrition": {
2015
+ "task": "mmlu_nutrition",
2016
+ "task_alias": "nutrition",
2017
+ "group": "mmlu_other",
2018
+ "group_alias": "other",
2019
+ "dataset_path": "hails/mmlu_no_train",
2020
+ "dataset_name": "nutrition",
2021
+ "test_split": "test",
2022
+ "fewshot_split": "dev",
2023
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
2024
+ "doc_to_target": "answer",
2025
+ "doc_to_choice": [
2026
+ "A",
2027
+ "B",
2028
+ "C",
2029
+ "D"
2030
+ ],
2031
+ "description": "The following are multiple choice questions (with answers) about nutrition.\n\n",
2032
+ "target_delimiter": " ",
2033
+ "fewshot_delimiter": "\n\n",
2034
+ "fewshot_config": {
2035
+ "sampler": "first_n"
2036
+ },
2037
+ "num_fewshot": 5,
2038
+ "metric_list": [
2039
+ {
2040
+ "metric": "acc",
2041
+ "aggregation": "mean",
2042
+ "higher_is_better": true
2043
+ }
2044
+ ],
2045
+ "output_type": "multiple_choice",
2046
+ "repeats": 1,
2047
+ "should_decontaminate": false,
2048
+ "metadata": {
2049
+ "version": 0.0
2050
+ }
2051
+ },
2052
+ "mmlu_philosophy": {
2053
+ "task": "mmlu_philosophy",
2054
+ "task_alias": "philosophy",
2055
+ "group": "mmlu_humanities",
2056
+ "group_alias": "humanities",
2057
+ "dataset_path": "hails/mmlu_no_train",
2058
+ "dataset_name": "philosophy",
2059
+ "test_split": "test",
2060
+ "fewshot_split": "dev",
2061
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
2062
+ "doc_to_target": "answer",
2063
+ "doc_to_choice": [
2064
+ "A",
2065
+ "B",
2066
+ "C",
2067
+ "D"
2068
+ ],
2069
+ "description": "The following are multiple choice questions (with answers) about philosophy.\n\n",
2070
+ "target_delimiter": " ",
2071
+ "fewshot_delimiter": "\n\n",
2072
+ "fewshot_config": {
2073
+ "sampler": "first_n"
2074
+ },
2075
+ "num_fewshot": 5,
2076
+ "metric_list": [
2077
+ {
2078
+ "metric": "acc",
2079
+ "aggregation": "mean",
2080
+ "higher_is_better": true
2081
+ }
2082
+ ],
2083
+ "output_type": "multiple_choice",
2084
+ "repeats": 1,
2085
+ "should_decontaminate": false,
2086
+ "metadata": {
2087
+ "version": 0.0
2088
+ }
2089
+ },
2090
+ "mmlu_prehistory": {
2091
+ "task": "mmlu_prehistory",
2092
+ "task_alias": "prehistory",
2093
+ "group": "mmlu_humanities",
2094
+ "group_alias": "humanities",
2095
+ "dataset_path": "hails/mmlu_no_train",
2096
+ "dataset_name": "prehistory",
2097
+ "test_split": "test",
2098
+ "fewshot_split": "dev",
2099
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
2100
+ "doc_to_target": "answer",
2101
+ "doc_to_choice": [
2102
+ "A",
2103
+ "B",
2104
+ "C",
2105
+ "D"
2106
+ ],
2107
+ "description": "The following are multiple choice questions (with answers) about prehistory.\n\n",
2108
+ "target_delimiter": " ",
2109
+ "fewshot_delimiter": "\n\n",
2110
+ "fewshot_config": {
2111
+ "sampler": "first_n"
2112
+ },
2113
+ "num_fewshot": 5,
2114
+ "metric_list": [
2115
+ {
2116
+ "metric": "acc",
2117
+ "aggregation": "mean",
2118
+ "higher_is_better": true
2119
+ }
2120
+ ],
2121
+ "output_type": "multiple_choice",
2122
+ "repeats": 1,
2123
+ "should_decontaminate": false,
2124
+ "metadata": {
2125
+ "version": 0.0
2126
+ }
2127
+ },
2128
+ "mmlu_professional_accounting": {
2129
+ "task": "mmlu_professional_accounting",
2130
+ "task_alias": "professional_accounting",
2131
+ "group": "mmlu_other",
2132
+ "group_alias": "other",
2133
+ "dataset_path": "hails/mmlu_no_train",
2134
+ "dataset_name": "professional_accounting",
2135
+ "test_split": "test",
2136
+ "fewshot_split": "dev",
2137
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
2138
+ "doc_to_target": "answer",
2139
+ "doc_to_choice": [
2140
+ "A",
2141
+ "B",
2142
+ "C",
2143
+ "D"
2144
+ ],
2145
+ "description": "The following are multiple choice questions (with answers) about professional accounting.\n\n",
2146
+ "target_delimiter": " ",
2147
+ "fewshot_delimiter": "\n\n",
2148
+ "fewshot_config": {
2149
+ "sampler": "first_n"
2150
+ },
2151
+ "num_fewshot": 5,
2152
+ "metric_list": [
2153
+ {
2154
+ "metric": "acc",
2155
+ "aggregation": "mean",
2156
+ "higher_is_better": true
2157
+ }
2158
+ ],
2159
+ "output_type": "multiple_choice",
2160
+ "repeats": 1,
2161
+ "should_decontaminate": false,
2162
+ "metadata": {
2163
+ "version": 0.0
2164
+ }
2165
+ },
2166
+ "mmlu_professional_law": {
2167
+ "task": "mmlu_professional_law",
2168
+ "task_alias": "professional_law",
2169
+ "group": "mmlu_humanities",
2170
+ "group_alias": "humanities",
2171
+ "dataset_path": "hails/mmlu_no_train",
2172
+ "dataset_name": "professional_law",
2173
+ "test_split": "test",
2174
+ "fewshot_split": "dev",
2175
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
2176
+ "doc_to_target": "answer",
2177
+ "doc_to_choice": [
2178
+ "A",
2179
+ "B",
2180
+ "C",
2181
+ "D"
2182
+ ],
2183
+ "description": "The following are multiple choice questions (with answers) about professional law.\n\n",
2184
+ "target_delimiter": " ",
2185
+ "fewshot_delimiter": "\n\n",
2186
+ "fewshot_config": {
2187
+ "sampler": "first_n"
2188
+ },
2189
+ "num_fewshot": 5,
2190
+ "metric_list": [
2191
+ {
2192
+ "metric": "acc",
2193
+ "aggregation": "mean",
2194
+ "higher_is_better": true
2195
+ }
2196
+ ],
2197
+ "output_type": "multiple_choice",
2198
+ "repeats": 1,
2199
+ "should_decontaminate": false,
2200
+ "metadata": {
2201
+ "version": 0.0
2202
+ }
2203
+ },
2204
+ "mmlu_professional_medicine": {
2205
+ "task": "mmlu_professional_medicine",
2206
+ "task_alias": "professional_medicine",
2207
+ "group": "mmlu_other",
2208
+ "group_alias": "other",
2209
+ "dataset_path": "hails/mmlu_no_train",
2210
+ "dataset_name": "professional_medicine",
2211
+ "test_split": "test",
2212
+ "fewshot_split": "dev",
2213
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
2214
+ "doc_to_target": "answer",
2215
+ "doc_to_choice": [
2216
+ "A",
2217
+ "B",
2218
+ "C",
2219
+ "D"
2220
+ ],
2221
+ "description": "The following are multiple choice questions (with answers) about professional medicine.\n\n",
2222
+ "target_delimiter": " ",
2223
+ "fewshot_delimiter": "\n\n",
2224
+ "fewshot_config": {
2225
+ "sampler": "first_n"
2226
+ },
2227
+ "num_fewshot": 5,
2228
+ "metric_list": [
2229
+ {
2230
+ "metric": "acc",
2231
+ "aggregation": "mean",
2232
+ "higher_is_better": true
2233
+ }
2234
+ ],
2235
+ "output_type": "multiple_choice",
2236
+ "repeats": 1,
2237
+ "should_decontaminate": false,
2238
+ "metadata": {
2239
+ "version": 0.0
2240
+ }
2241
+ },
2242
+ "mmlu_professional_psychology": {
2243
+ "task": "mmlu_professional_psychology",
2244
+ "task_alias": "professional_psychology",
2245
+ "group": "mmlu_social_sciences",
2246
+ "group_alias": "social_sciences",
2247
+ "dataset_path": "hails/mmlu_no_train",
2248
+ "dataset_name": "professional_psychology",
2249
+ "test_split": "test",
2250
+ "fewshot_split": "dev",
2251
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
2252
+ "doc_to_target": "answer",
2253
+ "doc_to_choice": [
2254
+ "A",
2255
+ "B",
2256
+ "C",
2257
+ "D"
2258
+ ],
2259
+ "description": "The following are multiple choice questions (with answers) about professional psychology.\n\n",
2260
+ "target_delimiter": " ",
2261
+ "fewshot_delimiter": "\n\n",
2262
+ "fewshot_config": {
2263
+ "sampler": "first_n"
2264
+ },
2265
+ "num_fewshot": 5,
2266
+ "metric_list": [
2267
+ {
2268
+ "metric": "acc",
2269
+ "aggregation": "mean",
2270
+ "higher_is_better": true
2271
+ }
2272
+ ],
2273
+ "output_type": "multiple_choice",
2274
+ "repeats": 1,
2275
+ "should_decontaminate": false,
2276
+ "metadata": {
2277
+ "version": 0.0
2278
+ }
2279
+ },
2280
+ "mmlu_public_relations": {
2281
+ "task": "mmlu_public_relations",
2282
+ "task_alias": "public_relations",
2283
+ "group": "mmlu_social_sciences",
2284
+ "group_alias": "social_sciences",
2285
+ "dataset_path": "hails/mmlu_no_train",
2286
+ "dataset_name": "public_relations",
2287
+ "test_split": "test",
2288
+ "fewshot_split": "dev",
2289
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
2290
+ "doc_to_target": "answer",
2291
+ "doc_to_choice": [
2292
+ "A",
2293
+ "B",
2294
+ "C",
2295
+ "D"
2296
+ ],
2297
+ "description": "The following are multiple choice questions (with answers) about public relations.\n\n",
2298
+ "target_delimiter": " ",
2299
+ "fewshot_delimiter": "\n\n",
2300
+ "fewshot_config": {
2301
+ "sampler": "first_n"
2302
+ },
2303
+ "num_fewshot": 5,
2304
+ "metric_list": [
2305
+ {
2306
+ "metric": "acc",
2307
+ "aggregation": "mean",
2308
+ "higher_is_better": true
2309
+ }
2310
+ ],
2311
+ "output_type": "multiple_choice",
2312
+ "repeats": 1,
2313
+ "should_decontaminate": false,
2314
+ "metadata": {
2315
+ "version": 0.0
2316
+ }
2317
+ },
2318
+ "mmlu_security_studies": {
2319
+ "task": "mmlu_security_studies",
2320
+ "task_alias": "security_studies",
2321
+ "group": "mmlu_social_sciences",
2322
+ "group_alias": "social_sciences",
2323
+ "dataset_path": "hails/mmlu_no_train",
2324
+ "dataset_name": "security_studies",
2325
+ "test_split": "test",
2326
+ "fewshot_split": "dev",
2327
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
2328
+ "doc_to_target": "answer",
2329
+ "doc_to_choice": [
2330
+ "A",
2331
+ "B",
2332
+ "C",
2333
+ "D"
2334
+ ],
2335
+ "description": "The following are multiple choice questions (with answers) about security studies.\n\n",
2336
+ "target_delimiter": " ",
2337
+ "fewshot_delimiter": "\n\n",
2338
+ "fewshot_config": {
2339
+ "sampler": "first_n"
2340
+ },
2341
+ "num_fewshot": 5,
2342
+ "metric_list": [
2343
+ {
2344
+ "metric": "acc",
2345
+ "aggregation": "mean",
2346
+ "higher_is_better": true
2347
+ }
2348
+ ],
2349
+ "output_type": "multiple_choice",
2350
+ "repeats": 1,
2351
+ "should_decontaminate": false,
2352
+ "metadata": {
2353
+ "version": 0.0
2354
+ }
2355
+ },
2356
+ "mmlu_sociology": {
2357
+ "task": "mmlu_sociology",
2358
+ "task_alias": "sociology",
2359
+ "group": "mmlu_social_sciences",
2360
+ "group_alias": "social_sciences",
2361
+ "dataset_path": "hails/mmlu_no_train",
2362
+ "dataset_name": "sociology",
2363
+ "test_split": "test",
2364
+ "fewshot_split": "dev",
2365
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
2366
+ "doc_to_target": "answer",
2367
+ "doc_to_choice": [
2368
+ "A",
2369
+ "B",
2370
+ "C",
2371
+ "D"
2372
+ ],
2373
+ "description": "The following are multiple choice questions (with answers) about sociology.\n\n",
2374
+ "target_delimiter": " ",
2375
+ "fewshot_delimiter": "\n\n",
2376
+ "fewshot_config": {
2377
+ "sampler": "first_n"
2378
+ },
2379
+ "num_fewshot": 5,
2380
+ "metric_list": [
2381
+ {
2382
+ "metric": "acc",
2383
+ "aggregation": "mean",
2384
+ "higher_is_better": true
2385
+ }
2386
+ ],
2387
+ "output_type": "multiple_choice",
2388
+ "repeats": 1,
2389
+ "should_decontaminate": false,
2390
+ "metadata": {
2391
+ "version": 0.0
2392
+ }
2393
+ },
2394
+ "mmlu_us_foreign_policy": {
2395
+ "task": "mmlu_us_foreign_policy",
2396
+ "task_alias": "us_foreign_policy",
2397
+ "group": "mmlu_social_sciences",
2398
+ "group_alias": "social_sciences",
2399
+ "dataset_path": "hails/mmlu_no_train",
2400
+ "dataset_name": "us_foreign_policy",
2401
+ "test_split": "test",
2402
+ "fewshot_split": "dev",
2403
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
2404
+ "doc_to_target": "answer",
2405
+ "doc_to_choice": [
2406
+ "A",
2407
+ "B",
2408
+ "C",
2409
+ "D"
2410
+ ],
2411
+ "description": "The following are multiple choice questions (with answers) about us foreign policy.\n\n",
2412
+ "target_delimiter": " ",
2413
+ "fewshot_delimiter": "\n\n",
2414
+ "fewshot_config": {
2415
+ "sampler": "first_n"
2416
+ },
2417
+ "num_fewshot": 5,
2418
+ "metric_list": [
2419
+ {
2420
+ "metric": "acc",
2421
+ "aggregation": "mean",
2422
+ "higher_is_better": true
2423
+ }
2424
+ ],
2425
+ "output_type": "multiple_choice",
2426
+ "repeats": 1,
2427
+ "should_decontaminate": false,
2428
+ "metadata": {
2429
+ "version": 0.0
2430
+ }
2431
+ },
2432
+ "mmlu_virology": {
2433
+ "task": "mmlu_virology",
2434
+ "task_alias": "virology",
2435
+ "group": "mmlu_other",
2436
+ "group_alias": "other",
2437
+ "dataset_path": "hails/mmlu_no_train",
2438
+ "dataset_name": "virology",
2439
+ "test_split": "test",
2440
+ "fewshot_split": "dev",
2441
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
2442
+ "doc_to_target": "answer",
2443
+ "doc_to_choice": [
2444
+ "A",
2445
+ "B",
2446
+ "C",
2447
+ "D"
2448
+ ],
2449
+ "description": "The following are multiple choice questions (with answers) about virology.\n\n",
2450
+ "target_delimiter": " ",
2451
+ "fewshot_delimiter": "\n\n",
2452
+ "fewshot_config": {
2453
+ "sampler": "first_n"
2454
+ },
2455
+ "num_fewshot": 5,
2456
+ "metric_list": [
2457
+ {
2458
+ "metric": "acc",
2459
+ "aggregation": "mean",
2460
+ "higher_is_better": true
2461
+ }
2462
+ ],
2463
+ "output_type": "multiple_choice",
2464
+ "repeats": 1,
2465
+ "should_decontaminate": false,
2466
+ "metadata": {
2467
+ "version": 0.0
2468
+ }
2469
+ },
2470
+ "mmlu_world_religions": {
2471
+ "task": "mmlu_world_religions",
2472
+ "task_alias": "world_religions",
2473
+ "group": "mmlu_humanities",
2474
+ "group_alias": "humanities",
2475
+ "dataset_path": "hails/mmlu_no_train",
2476
+ "dataset_name": "world_religions",
2477
+ "test_split": "test",
2478
+ "fewshot_split": "dev",
2479
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
2480
+ "doc_to_target": "answer",
2481
+ "doc_to_choice": [
2482
+ "A",
2483
+ "B",
2484
+ "C",
2485
+ "D"
2486
+ ],
2487
+ "description": "The following are multiple choice questions (with answers) about world religions.\n\n",
2488
+ "target_delimiter": " ",
2489
+ "fewshot_delimiter": "\n\n",
2490
+ "fewshot_config": {
2491
+ "sampler": "first_n"
2492
+ },
2493
+ "num_fewshot": 5,
2494
+ "metric_list": [
2495
+ {
2496
+ "metric": "acc",
2497
+ "aggregation": "mean",
2498
+ "higher_is_better": true
2499
+ }
2500
+ ],
2501
+ "output_type": "multiple_choice",
2502
+ "repeats": 1,
2503
+ "should_decontaminate": false,
2504
+ "metadata": {
2505
+ "version": 0.0
2506
+ }
2507
+ }
2508
+ },
2509
+ "versions": {
2510
+ "mmlu": "N/A",
2511
+ "mmlu_abstract_algebra": 0.0,
2512
+ "mmlu_anatomy": 0.0,
2513
+ "mmlu_astronomy": 0.0,
2514
+ "mmlu_business_ethics": 0.0,
2515
+ "mmlu_clinical_knowledge": 0.0,
2516
+ "mmlu_college_biology": 0.0,
2517
+ "mmlu_college_chemistry": 0.0,
2518
+ "mmlu_college_computer_science": 0.0,
2519
+ "mmlu_college_mathematics": 0.0,
2520
+ "mmlu_college_medicine": 0.0,
2521
+ "mmlu_college_physics": 0.0,
2522
+ "mmlu_computer_security": 0.0,
2523
+ "mmlu_conceptual_physics": 0.0,
2524
+ "mmlu_econometrics": 0.0,
2525
+ "mmlu_electrical_engineering": 0.0,
2526
+ "mmlu_elementary_mathematics": 0.0,
2527
+ "mmlu_formal_logic": 0.0,
2528
+ "mmlu_global_facts": 0.0,
2529
+ "mmlu_high_school_biology": 0.0,
2530
+ "mmlu_high_school_chemistry": 0.0,
2531
+ "mmlu_high_school_computer_science": 0.0,
2532
+ "mmlu_high_school_european_history": 0.0,
2533
+ "mmlu_high_school_geography": 0.0,
2534
+ "mmlu_high_school_government_and_politics": 0.0,
2535
+ "mmlu_high_school_macroeconomics": 0.0,
2536
+ "mmlu_high_school_mathematics": 0.0,
2537
+ "mmlu_high_school_microeconomics": 0.0,
2538
+ "mmlu_high_school_physics": 0.0,
2539
+ "mmlu_high_school_psychology": 0.0,
2540
+ "mmlu_high_school_statistics": 0.0,
2541
+ "mmlu_high_school_us_history": 0.0,
2542
+ "mmlu_high_school_world_history": 0.0,
2543
+ "mmlu_human_aging": 0.0,
2544
+ "mmlu_human_sexuality": 0.0,
2545
+ "mmlu_humanities": "N/A",
2546
+ "mmlu_international_law": 0.0,
2547
+ "mmlu_jurisprudence": 0.0,
2548
+ "mmlu_logical_fallacies": 0.0,
2549
+ "mmlu_machine_learning": 0.0,
2550
+ "mmlu_management": 0.0,
2551
+ "mmlu_marketing": 0.0,
2552
+ "mmlu_medical_genetics": 0.0,
2553
+ "mmlu_miscellaneous": 0.0,
2554
+ "mmlu_moral_disputes": 0.0,
2555
+ "mmlu_moral_scenarios": 0.0,
2556
+ "mmlu_nutrition": 0.0,
2557
+ "mmlu_other": "N/A",
2558
+ "mmlu_philosophy": 0.0,
2559
+ "mmlu_prehistory": 0.0,
2560
+ "mmlu_professional_accounting": 0.0,
2561
+ "mmlu_professional_law": 0.0,
2562
+ "mmlu_professional_medicine": 0.0,
2563
+ "mmlu_professional_psychology": 0.0,
2564
+ "mmlu_public_relations": 0.0,
2565
+ "mmlu_security_studies": 0.0,
2566
+ "mmlu_social_sciences": "N/A",
2567
+ "mmlu_sociology": 0.0,
2568
+ "mmlu_stem": "N/A",
2569
+ "mmlu_us_foreign_policy": 0.0,
2570
+ "mmlu_virology": 0.0,
2571
+ "mmlu_world_religions": 0.0
2572
+ },
2573
+ "n-shot": {
2574
+ "mmlu": 0,
2575
+ "mmlu_abstract_algebra": 5,
2576
+ "mmlu_anatomy": 5,
2577
+ "mmlu_astronomy": 5,
2578
+ "mmlu_business_ethics": 5,
2579
+ "mmlu_clinical_knowledge": 5,
2580
+ "mmlu_college_biology": 5,
2581
+ "mmlu_college_chemistry": 5,
2582
+ "mmlu_college_computer_science": 5,
2583
+ "mmlu_college_mathematics": 5,
2584
+ "mmlu_college_medicine": 5,
2585
+ "mmlu_college_physics": 5,
2586
+ "mmlu_computer_security": 5,
2587
+ "mmlu_conceptual_physics": 5,
2588
+ "mmlu_econometrics": 5,
2589
+ "mmlu_electrical_engineering": 5,
2590
+ "mmlu_elementary_mathematics": 5,
2591
+ "mmlu_formal_logic": 5,
2592
+ "mmlu_global_facts": 5,
2593
+ "mmlu_high_school_biology": 5,
2594
+ "mmlu_high_school_chemistry": 5,
2595
+ "mmlu_high_school_computer_science": 5,
2596
+ "mmlu_high_school_european_history": 5,
2597
+ "mmlu_high_school_geography": 5,
2598
+ "mmlu_high_school_government_and_politics": 5,
2599
+ "mmlu_high_school_macroeconomics": 5,
2600
+ "mmlu_high_school_mathematics": 5,
2601
+ "mmlu_high_school_microeconomics": 5,
2602
+ "mmlu_high_school_physics": 5,
2603
+ "mmlu_high_school_psychology": 5,
2604
+ "mmlu_high_school_statistics": 5,
2605
+ "mmlu_high_school_us_history": 5,
2606
+ "mmlu_high_school_world_history": 5,
2607
+ "mmlu_human_aging": 5,
2608
+ "mmlu_human_sexuality": 5,
2609
+ "mmlu_humanities": 5,
2610
+ "mmlu_international_law": 5,
2611
+ "mmlu_jurisprudence": 5,
2612
+ "mmlu_logical_fallacies": 5,
2613
+ "mmlu_machine_learning": 5,
2614
+ "mmlu_management": 5,
2615
+ "mmlu_marketing": 5,
2616
+ "mmlu_medical_genetics": 5,
2617
+ "mmlu_miscellaneous": 5,
2618
+ "mmlu_moral_disputes": 5,
2619
+ "mmlu_moral_scenarios": 5,
2620
+ "mmlu_nutrition": 5,
2621
+ "mmlu_other": 5,
2622
+ "mmlu_philosophy": 5,
2623
+ "mmlu_prehistory": 5,
2624
+ "mmlu_professional_accounting": 5,
2625
+ "mmlu_professional_law": 5,
2626
+ "mmlu_professional_medicine": 5,
2627
+ "mmlu_professional_psychology": 5,
2628
+ "mmlu_public_relations": 5,
2629
+ "mmlu_security_studies": 5,
2630
+ "mmlu_social_sciences": 5,
2631
+ "mmlu_sociology": 5,
2632
+ "mmlu_stem": 5,
2633
+ "mmlu_us_foreign_policy": 5,
2634
+ "mmlu_virology": 5,
2635
+ "mmlu_world_religions": 5
2636
+ },
2637
+ "config": {
2638
+ "model": "hf",
2639
+ "model_args": "pretrained=RWKV/rwkv-6-world-1b6,dtype=float16,trust_remote_code=True",
2640
+ "batch_size": "auto",
2641
+ "batch_sizes": [
2642
+ 16
2643
+ ],
2644
+ "device": null,
2645
+ "use_cache": null,
2646
+ "limit": null,
2647
+ "bootstrap_iters": 100000,
2648
+ "gen_kwargs": null
2649
+ },
2650
+ "git_hash": "1ee41f7"
2651
+ }
lm-eval-output/RWKV/rwkv-6-world-1b6/mmlu/dtype=float16,trust_remote_code=True-num_fewshot=5-nvidia-gpu/taskrun.log ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3bd26546c33642f9cebb5e51316e7720af96045825d7353cccc92fe3c2a8d749
3
+ size 199770
lm-eval-output/RWKV/rwkv-6-world-1b6/truthfulqa_mc2/dtype=float16,trust_remote_code=True-num_fewshot=0-nvidia-gpu/results.json ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "truthfulqa_mc2": {
4
+ "acc,none": 0.36690742554589056,
5
+ "acc_stderr,none": 0.01364753716205304,
6
+ "alias": "truthfulqa_mc2"
7
+ }
8
+ },
9
+ "configs": {
10
+ "truthfulqa_mc2": {
11
+ "task": "truthfulqa_mc2",
12
+ "group": [
13
+ "truthfulqa"
14
+ ],
15
+ "dataset_path": "truthful_qa",
16
+ "dataset_name": "multiple_choice",
17
+ "validation_split": "validation",
18
+ "doc_to_text": "{% set prompt_qa = 'Q: What is human life expectancy in the United States?\nA: Human life expectancy in the United States is 78 years.\n\nQ: Who was president of the United States in 1955?\nA: Dwight D. Eisenhower was president of the United States in 1955.\n\nQ: Which party did he belong to?\nA: He belonged to the Republican Party.\n\nQ: What is the square root of banana?\nA: I have no comment.\n\nQ: How does a telescope work?\nA: Telescopes use lenses or mirrors to focus light and make objects appear closer.\n\nQ: Where were the 1992 Olympics held?\nA: The 1992 Olympics were held in Barcelona, Spain.'%}{{prompt_qa + '\n\nQ: ' + question + '\nA:'}}",
19
+ "doc_to_target": 0,
20
+ "doc_to_choice": "{{mc2_targets.choices}}",
21
+ "process_results": "def process_results_mc2(doc, results):\n lls, is_greedy = zip(*results)\n\n # Split on the first `0` as everything before it is true (`1`).\n split_idx = list(doc[\"mc2_targets\"][\"labels\"]).index(0)\n # Compute the normalized probability mass for the correct answer.\n ll_true, ll_false = lls[:split_idx], lls[split_idx:]\n p_true, p_false = np.exp(np.array(ll_true)), np.exp(np.array(ll_false))\n p_true = p_true / (sum(p_true) + sum(p_false))\n\n return {\"acc\": sum(p_true)}\n",
22
+ "description": "",
23
+ "target_delimiter": " ",
24
+ "fewshot_delimiter": "\n\n",
25
+ "num_fewshot": 0,
26
+ "metric_list": [
27
+ {
28
+ "metric": "acc",
29
+ "aggregation": "mean",
30
+ "higher_is_better": true
31
+ }
32
+ ],
33
+ "output_type": "multiple_choice",
34
+ "repeats": 1,
35
+ "should_decontaminate": true,
36
+ "doc_to_decontamination_query": "question",
37
+ "metadata": {
38
+ "version": 2.0
39
+ }
40
+ }
41
+ },
42
+ "versions": {
43
+ "truthfulqa_mc2": 2.0
44
+ },
45
+ "n-shot": {
46
+ "truthfulqa_mc2": 0
47
+ },
48
+ "config": {
49
+ "model": "hf",
50
+ "model_args": "pretrained=RWKV/rwkv-6-world-1b6,dtype=float16,trust_remote_code=True",
51
+ "batch_size": "auto",
52
+ "batch_sizes": [
53
+ 64
54
+ ],
55
+ "device": null,
56
+ "use_cache": null,
57
+ "limit": null,
58
+ "bootstrap_iters": 100000,
59
+ "gen_kwargs": null
60
+ },
61
+ "git_hash": "1ee41f7"
62
+ }
lm-eval-output/RWKV/rwkv-6-world-1b6/truthfulqa_mc2/dtype=float16,trust_remote_code=True-num_fewshot=0-nvidia-gpu/taskrun.log ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2ac5f19e93d32c38b093fd6833eda96a008190cbb72e398bbb0bc80033fb3542
3
+ size 37198
lm-eval-output/RWKV/rwkv-6-world-1b6/winogrande/dtype=float16,trust_remote_code=True-num_fewshot=5-nvidia-gpu/results.json ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "winogrande": {
4
+ "acc,none": 0.6322020520915549,
5
+ "acc_stderr,none": 0.013552385559833596,
6
+ "alias": "winogrande"
7
+ }
8
+ },
9
+ "configs": {
10
+ "winogrande": {
11
+ "task": "winogrande",
12
+ "dataset_path": "winogrande",
13
+ "dataset_name": "winogrande_xl",
14
+ "training_split": "train",
15
+ "validation_split": "validation",
16
+ "doc_to_text": "def doc_to_text(doc):\n answer_to_num = {\"1\": 0, \"2\": 1}\n return answer_to_num[doc[\"answer\"]]\n",
17
+ "doc_to_target": "def doc_to_target(doc):\n idx = doc[\"sentence\"].index(\"_\") + 1\n return doc[\"sentence\"][idx:].strip()\n",
18
+ "doc_to_choice": "def doc_to_choice(doc):\n idx = doc[\"sentence\"].index(\"_\")\n options = [doc[\"option1\"], doc[\"option2\"]]\n return [doc[\"sentence\"][:idx] + opt for opt in options]\n",
19
+ "description": "",
20
+ "target_delimiter": " ",
21
+ "fewshot_delimiter": "\n\n",
22
+ "num_fewshot": 5,
23
+ "metric_list": [
24
+ {
25
+ "metric": "acc",
26
+ "aggregation": "mean",
27
+ "higher_is_better": true
28
+ }
29
+ ],
30
+ "output_type": "multiple_choice",
31
+ "repeats": 1,
32
+ "should_decontaminate": true,
33
+ "doc_to_decontamination_query": "sentence",
34
+ "metadata": {
35
+ "version": 1.0
36
+ }
37
+ }
38
+ },
39
+ "versions": {
40
+ "winogrande": 1.0
41
+ },
42
+ "n-shot": {
43
+ "winogrande": 5
44
+ },
45
+ "config": {
46
+ "model": "hf",
47
+ "model_args": "pretrained=RWKV/rwkv-6-world-1b6,dtype=float16,trust_remote_code=True",
48
+ "batch_size": "auto",
49
+ "batch_sizes": [
50
+ 64
51
+ ],
52
+ "device": null,
53
+ "use_cache": null,
54
+ "limit": null,
55
+ "bootstrap_iters": 100000,
56
+ "gen_kwargs": null
57
+ },
58
+ "git_hash": "1ee41f7"
59
+ }
lm-eval-output/RWKV/rwkv-6-world-1b6/winogrande/dtype=float16,trust_remote_code=True-num_fewshot=5-nvidia-gpu/taskrun.log ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:52f5834342e920105e8c43a586a0ea3cb6627eb78fd2f130231c8e11e40e9b39
3
+ size 37702
lm-eval-output/RWKV/rwkv-6-world-3b/arc_challenge/dtype=float16,trust_remote_code=True-num_fewshot=25-nvidia-gpu/results.json ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "arc_challenge": {
4
+ "acc,none": 0.3720136518771331,
5
+ "acc_stderr,none": 0.01412459788184445,
6
+ "acc_norm,none": 0.40955631399317405,
7
+ "acc_norm_stderr,none": 0.014370358632472451,
8
+ "alias": "arc_challenge"
9
+ }
10
+ },
11
+ "configs": {
12
+ "arc_challenge": {
13
+ "task": "arc_challenge",
14
+ "group": [
15
+ "ai2_arc"
16
+ ],
17
+ "dataset_path": "allenai/ai2_arc",
18
+ "dataset_name": "ARC-Challenge",
19
+ "training_split": "train",
20
+ "validation_split": "validation",
21
+ "test_split": "test",
22
+ "doc_to_text": "Question: {{question}}\nAnswer:",
23
+ "doc_to_target": "{{choices.label.index(answerKey)}}",
24
+ "doc_to_choice": "{{choices.text}}",
25
+ "description": "",
26
+ "target_delimiter": " ",
27
+ "fewshot_delimiter": "\n\n",
28
+ "num_fewshot": 25,
29
+ "metric_list": [
30
+ {
31
+ "metric": "acc",
32
+ "aggregation": "mean",
33
+ "higher_is_better": true
34
+ },
35
+ {
36
+ "metric": "acc_norm",
37
+ "aggregation": "mean",
38
+ "higher_is_better": true
39
+ }
40
+ ],
41
+ "output_type": "multiple_choice",
42
+ "repeats": 1,
43
+ "should_decontaminate": true,
44
+ "doc_to_decontamination_query": "Question: {{question}}\nAnswer:",
45
+ "metadata": {
46
+ "version": 1.0
47
+ }
48
+ }
49
+ },
50
+ "versions": {
51
+ "arc_challenge": 1.0
52
+ },
53
+ "n-shot": {
54
+ "arc_challenge": 25
55
+ },
56
+ "config": {
57
+ "model": "hf",
58
+ "model_args": "pretrained=RWKV/rwkv-6-world-3b,dtype=float16,trust_remote_code=True",
59
+ "batch_size": "auto",
60
+ "batch_sizes": [
61
+ 16
62
+ ],
63
+ "device": null,
64
+ "use_cache": null,
65
+ "limit": null,
66
+ "bootstrap_iters": 100000,
67
+ "gen_kwargs": null
68
+ },
69
+ "git_hash": "1ee41f7"
70
+ }
lm-eval-output/RWKV/rwkv-6-world-3b/arc_challenge/dtype=float16,trust_remote_code=True-num_fewshot=25-nvidia-gpu/taskrun.log ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:95c8c4c13dfcc07ef78275a3075fdf58b008490c4b51668a64e724877773e231
3
+ size 65592
lm-eval-output/RWKV/rwkv-6-world-3b/gsm8k/dtype=float16,trust_remote_code=True-num_fewshot=5-nvidia-gpu/results.json ADDED
@@ -0,0 +1,88 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "gsm8k": {
4
+ "exact_match,get-answer": 0.02350265352539803,
5
+ "exact_match_stderr,get-answer": 0.00417288366964397,
6
+ "alias": "gsm8k"
7
+ }
8
+ },
9
+ "configs": {
10
+ "gsm8k": {
11
+ "task": "gsm8k",
12
+ "group": [
13
+ "math_word_problems"
14
+ ],
15
+ "dataset_path": "gsm8k",
16
+ "dataset_name": "main",
17
+ "training_split": "train",
18
+ "test_split": "test",
19
+ "fewshot_split": "train",
20
+ "doc_to_text": "Question: {{question}}\nAnswer:",
21
+ "doc_to_target": "{{answer}}",
22
+ "description": "",
23
+ "target_delimiter": " ",
24
+ "fewshot_delimiter": "\n\n",
25
+ "num_fewshot": 5,
26
+ "metric_list": [
27
+ {
28
+ "metric": "exact_match",
29
+ "aggregation": "mean",
30
+ "higher_is_better": true,
31
+ "ignore_case": true,
32
+ "ignore_punctuation": false,
33
+ "regexes_to_ignore": [
34
+ ",",
35
+ "\\$",
36
+ "(?s).*#### "
37
+ ]
38
+ }
39
+ ],
40
+ "output_type": "generate_until",
41
+ "generation_kwargs": {
42
+ "until": [
43
+ "\n\n",
44
+ "Question:"
45
+ ],
46
+ "do_sample": false,
47
+ "temperature": 0.0
48
+ },
49
+ "repeats": 1,
50
+ "filter_list": [
51
+ {
52
+ "name": "get-answer",
53
+ "filter": [
54
+ {
55
+ "function": "regex",
56
+ "regex_pattern": "#### (\\-?[0-9\\.\\,]+)"
57
+ },
58
+ {
59
+ "function": "take_first"
60
+ }
61
+ ]
62
+ }
63
+ ],
64
+ "should_decontaminate": false,
65
+ "metadata": {
66
+ "version": 2.0
67
+ }
68
+ }
69
+ },
70
+ "versions": {
71
+ "gsm8k": 2.0
72
+ },
73
+ "n-shot": {
74
+ "gsm8k": 5
75
+ },
76
+ "config": {
77
+ "model": "hf",
78
+ "model_args": "pretrained=RWKV/rwkv-6-world-3b,dtype=float16,trust_remote_code=True",
79
+ "batch_size": "auto",
80
+ "batch_sizes": [],
81
+ "device": null,
82
+ "use_cache": null,
83
+ "limit": null,
84
+ "bootstrap_iters": 100000,
85
+ "gen_kwargs": null
86
+ },
87
+ "git_hash": "1ee41f7"
88
+ }
lm-eval-output/RWKV/rwkv-6-world-3b/gsm8k/dtype=float16,trust_remote_code=True-num_fewshot=5-nvidia-gpu/taskrun.log ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:70f52486a728ee1abe64f9f392bc12c80be9d0dc0ca4ebef4f41736eafc7404c
3
+ size 91236
lm-eval-output/RWKV/rwkv-6-world-3b/hellaswag/dtype=float16,trust_remote_code=True-num_fewshot=10-nvidia-gpu/results.json ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "hellaswag": {
4
+ "acc,none": 0.48157737502489545,
5
+ "acc_stderr,none": 0.0049863932662691625,
6
+ "acc_norm,none": 0.6463851822346146,
7
+ "acc_norm_stderr,none": 0.004771143074426132,
8
+ "alias": "hellaswag"
9
+ }
10
+ },
11
+ "configs": {
12
+ "hellaswag": {
13
+ "task": "hellaswag",
14
+ "group": [
15
+ "multiple_choice"
16
+ ],
17
+ "dataset_path": "hellaswag",
18
+ "training_split": "train",
19
+ "validation_split": "validation",
20
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc):\n ctx = doc[\"ctx_a\"] + \" \" + doc[\"ctx_b\"].capitalize()\n out_doc = {\n \"query\": preprocess(doc[\"activity_label\"] + \": \" + ctx),\n \"choices\": [preprocess(ending) for ending in doc[\"endings\"]],\n \"gold\": int(doc[\"label\"]),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
21
+ "doc_to_text": "{{query}}",
22
+ "doc_to_target": "{{label}}",
23
+ "doc_to_choice": "choices",
24
+ "description": "",
25
+ "target_delimiter": " ",
26
+ "fewshot_delimiter": "\n\n",
27
+ "num_fewshot": 10,
28
+ "metric_list": [
29
+ {
30
+ "metric": "acc",
31
+ "aggregation": "mean",
32
+ "higher_is_better": true
33
+ },
34
+ {
35
+ "metric": "acc_norm",
36
+ "aggregation": "mean",
37
+ "higher_is_better": true
38
+ }
39
+ ],
40
+ "output_type": "multiple_choice",
41
+ "repeats": 1,
42
+ "should_decontaminate": false,
43
+ "metadata": {
44
+ "version": 1.0
45
+ }
46
+ }
47
+ },
48
+ "versions": {
49
+ "hellaswag": 1.0
50
+ },
51
+ "n-shot": {
52
+ "hellaswag": 10
53
+ },
54
+ "config": {
55
+ "model": "hf",
56
+ "model_args": "pretrained=RWKV/rwkv-6-world-3b,dtype=float16,trust_remote_code=True",
57
+ "batch_size": "auto",
58
+ "batch_sizes": [
59
+ 16
60
+ ],
61
+ "device": null,
62
+ "use_cache": null,
63
+ "limit": null,
64
+ "bootstrap_iters": 100000,
65
+ "gen_kwargs": null
66
+ },
67
+ "git_hash": "1ee41f7"
68
+ }
lm-eval-output/RWKV/rwkv-6-world-3b/hellaswag/dtype=float16,trust_remote_code=True-num_fewshot=10-nvidia-gpu/taskrun.log ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1122f2b5c66c867a369a8222192e9b5d8df0600632fe600ad25ab0f76f40e602
3
+ size 107000
lm-eval-output/RWKV/rwkv-6-world-3b/mmlu/dtype=float16,trust_remote_code=True-num_fewshot=5-nvidia-gpu/results.json ADDED
@@ -0,0 +1,2651 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "mmlu": {
4
+ "acc,none": 0.26406494801310354,
5
+ "acc_stderr,none": 0.04337317681066504,
6
+ "alias": "mmlu"
7
+ },
8
+ "mmlu_humanities": {
9
+ "alias": " - humanities",
10
+ "acc,none": 0.25674814027630183,
11
+ "acc_stderr,none": 0.031026880557408782
12
+ },
13
+ "mmlu_formal_logic": {
14
+ "alias": " - formal_logic",
15
+ "acc,none": 0.19047619047619047,
16
+ "acc_stderr,none": 0.03512207412302055
17
+ },
18
+ "mmlu_high_school_european_history": {
19
+ "alias": " - high_school_european_history",
20
+ "acc,none": 0.3333333333333333,
21
+ "acc_stderr,none": 0.036810508691615486
22
+ },
23
+ "mmlu_high_school_us_history": {
24
+ "alias": " - high_school_us_history",
25
+ "acc,none": 0.25980392156862747,
26
+ "acc_stderr,none": 0.03077855467869326
27
+ },
28
+ "mmlu_high_school_world_history": {
29
+ "alias": " - high_school_world_history",
30
+ "acc,none": 0.25316455696202533,
31
+ "acc_stderr,none": 0.0283046579430353
32
+ },
33
+ "mmlu_international_law": {
34
+ "alias": " - international_law",
35
+ "acc,none": 0.256198347107438,
36
+ "acc_stderr,none": 0.03984979653302871
37
+ },
38
+ "mmlu_jurisprudence": {
39
+ "alias": " - jurisprudence",
40
+ "acc,none": 0.25925925925925924,
41
+ "acc_stderr,none": 0.042365112580946315
42
+ },
43
+ "mmlu_logical_fallacies": {
44
+ "alias": " - logical_fallacies",
45
+ "acc,none": 0.2883435582822086,
46
+ "acc_stderr,none": 0.03559039531617342
47
+ },
48
+ "mmlu_moral_disputes": {
49
+ "alias": " - moral_disputes",
50
+ "acc,none": 0.2543352601156069,
51
+ "acc_stderr,none": 0.023445826276545543
52
+ },
53
+ "mmlu_moral_scenarios": {
54
+ "alias": " - moral_scenarios",
55
+ "acc,none": 0.23687150837988827,
56
+ "acc_stderr,none": 0.014219570788103986
57
+ },
58
+ "mmlu_philosophy": {
59
+ "alias": " - philosophy",
60
+ "acc,none": 0.2572347266881029,
61
+ "acc_stderr,none": 0.024826171289250888
62
+ },
63
+ "mmlu_prehistory": {
64
+ "alias": " - prehistory",
65
+ "acc,none": 0.29012345679012347,
66
+ "acc_stderr,none": 0.025251173936495022
67
+ },
68
+ "mmlu_professional_law": {
69
+ "alias": " - professional_law",
70
+ "acc,none": 0.2529335071707953,
71
+ "acc_stderr,none": 0.011102268713839989
72
+ },
73
+ "mmlu_world_religions": {
74
+ "alias": " - world_religions",
75
+ "acc,none": 0.2807017543859649,
76
+ "acc_stderr,none": 0.03446296217088426
77
+ },
78
+ "mmlu_other": {
79
+ "alias": " - other",
80
+ "acc,none": 0.2796910202767942,
81
+ "acc_stderr,none": 0.04120163290704318
82
+ },
83
+ "mmlu_business_ethics": {
84
+ "alias": " - business_ethics",
85
+ "acc,none": 0.29,
86
+ "acc_stderr,none": 0.045604802157206845
87
+ },
88
+ "mmlu_clinical_knowledge": {
89
+ "alias": " - clinical_knowledge",
90
+ "acc,none": 0.27169811320754716,
91
+ "acc_stderr,none": 0.027377706624670713
92
+ },
93
+ "mmlu_college_medicine": {
94
+ "alias": " - college_medicine",
95
+ "acc,none": 0.2023121387283237,
96
+ "acc_stderr,none": 0.03063114553919882
97
+ },
98
+ "mmlu_global_facts": {
99
+ "alias": " - global_facts",
100
+ "acc,none": 0.31,
101
+ "acc_stderr,none": 0.04648231987117316
102
+ },
103
+ "mmlu_human_aging": {
104
+ "alias": " - human_aging",
105
+ "acc,none": 0.34080717488789236,
106
+ "acc_stderr,none": 0.031811497470553604
107
+ },
108
+ "mmlu_management": {
109
+ "alias": " - management",
110
+ "acc,none": 0.24271844660194175,
111
+ "acc_stderr,none": 0.04245022486384495
112
+ },
113
+ "mmlu_marketing": {
114
+ "alias": " - marketing",
115
+ "acc,none": 0.27350427350427353,
116
+ "acc_stderr,none": 0.02920254015343118
117
+ },
118
+ "mmlu_medical_genetics": {
119
+ "alias": " - medical_genetics",
120
+ "acc,none": 0.28,
121
+ "acc_stderr,none": 0.04512608598542127
122
+ },
123
+ "mmlu_miscellaneous": {
124
+ "alias": " - miscellaneous",
125
+ "acc,none": 0.2720306513409962,
126
+ "acc_stderr,none": 0.015913367447500517
127
+ },
128
+ "mmlu_nutrition": {
129
+ "alias": " - nutrition",
130
+ "acc,none": 0.24183006535947713,
131
+ "acc_stderr,none": 0.024518195641879334
132
+ },
133
+ "mmlu_professional_accounting": {
134
+ "alias": " - professional_accounting",
135
+ "acc,none": 0.2695035460992908,
136
+ "acc_stderr,none": 0.026469036818590634
137
+ },
138
+ "mmlu_professional_medicine": {
139
+ "alias": " - professional_medicine",
140
+ "acc,none": 0.35661764705882354,
141
+ "acc_stderr,none": 0.02909720956841195
142
+ },
143
+ "mmlu_virology": {
144
+ "alias": " - virology",
145
+ "acc,none": 0.29518072289156627,
146
+ "acc_stderr,none": 0.0355092018568963
147
+ },
148
+ "mmlu_social_sciences": {
149
+ "alias": " - social_sciences",
150
+ "acc,none": 0.25869353266168343,
151
+ "acc_stderr,none": 0.04263878165713902
152
+ },
153
+ "mmlu_econometrics": {
154
+ "alias": " - econometrics",
155
+ "acc,none": 0.2631578947368421,
156
+ "acc_stderr,none": 0.04142439719489362
157
+ },
158
+ "mmlu_high_school_geography": {
159
+ "alias": " - high_school_geography",
160
+ "acc,none": 0.22727272727272727,
161
+ "acc_stderr,none": 0.029857515673386414
162
+ },
163
+ "mmlu_high_school_government_and_politics": {
164
+ "alias": " - high_school_government_and_politics",
165
+ "acc,none": 0.33678756476683935,
166
+ "acc_stderr,none": 0.03410780251836183
167
+ },
168
+ "mmlu_high_school_macroeconomics": {
169
+ "alias": " - high_school_macroeconomics",
170
+ "acc,none": 0.24615384615384617,
171
+ "acc_stderr,none": 0.021840866990423088
172
+ },
173
+ "mmlu_high_school_microeconomics": {
174
+ "alias": " - high_school_microeconomics",
175
+ "acc,none": 0.33613445378151263,
176
+ "acc_stderr,none": 0.030684737115135367
177
+ },
178
+ "mmlu_high_school_psychology": {
179
+ "alias": " - high_school_psychology",
180
+ "acc,none": 0.23669724770642203,
181
+ "acc_stderr,none": 0.018224078117299085
182
+ },
183
+ "mmlu_human_sexuality": {
184
+ "alias": " - human_sexuality",
185
+ "acc,none": 0.2595419847328244,
186
+ "acc_stderr,none": 0.03844876139785271
187
+ },
188
+ "mmlu_professional_psychology": {
189
+ "alias": " - professional_psychology",
190
+ "acc,none": 0.2696078431372549,
191
+ "acc_stderr,none": 0.017952449196987866
192
+ },
193
+ "mmlu_public_relations": {
194
+ "alias": " - public_relations",
195
+ "acc,none": 0.2909090909090909,
196
+ "acc_stderr,none": 0.04350271442923243
197
+ },
198
+ "mmlu_security_studies": {
199
+ "alias": " - security_studies",
200
+ "acc,none": 0.1836734693877551,
201
+ "acc_stderr,none": 0.024789071332007657
202
+ },
203
+ "mmlu_sociology": {
204
+ "alias": " - sociology",
205
+ "acc,none": 0.22885572139303484,
206
+ "acc_stderr,none": 0.02970528405677244
207
+ },
208
+ "mmlu_us_foreign_policy": {
209
+ "alias": " - us_foreign_policy",
210
+ "acc,none": 0.29,
211
+ "acc_stderr,none": 0.04560480215720684
212
+ },
213
+ "mmlu_stem": {
214
+ "alias": " - stem",
215
+ "acc,none": 0.26482714874722485,
216
+ "acc_stderr,none": 0.05760491108289627
217
+ },
218
+ "mmlu_abstract_algebra": {
219
+ "alias": " - abstract_algebra",
220
+ "acc,none": 0.25,
221
+ "acc_stderr,none": 0.04351941398892446
222
+ },
223
+ "mmlu_anatomy": {
224
+ "alias": " - anatomy",
225
+ "acc,none": 0.18518518518518517,
226
+ "acc_stderr,none": 0.0335567721631314
227
+ },
228
+ "mmlu_astronomy": {
229
+ "alias": " - astronomy",
230
+ "acc,none": 0.13157894736842105,
231
+ "acc_stderr,none": 0.027508689533549915
232
+ },
233
+ "mmlu_college_biology": {
234
+ "alias": " - college_biology",
235
+ "acc,none": 0.25,
236
+ "acc_stderr,none": 0.03621034121889507
237
+ },
238
+ "mmlu_college_chemistry": {
239
+ "alias": " - college_chemistry",
240
+ "acc,none": 0.18,
241
+ "acc_stderr,none": 0.03861229196653695
242
+ },
243
+ "mmlu_college_computer_science": {
244
+ "alias": " - college_computer_science",
245
+ "acc,none": 0.25,
246
+ "acc_stderr,none": 0.04351941398892446
247
+ },
248
+ "mmlu_college_mathematics": {
249
+ "alias": " - college_mathematics",
250
+ "acc,none": 0.22,
251
+ "acc_stderr,none": 0.0416333199893227
252
+ },
253
+ "mmlu_college_physics": {
254
+ "alias": " - college_physics",
255
+ "acc,none": 0.2549019607843137,
256
+ "acc_stderr,none": 0.04336432707993176
257
+ },
258
+ "mmlu_computer_security": {
259
+ "alias": " - computer_security",
260
+ "acc,none": 0.27,
261
+ "acc_stderr,none": 0.0446196043338474
262
+ },
263
+ "mmlu_conceptual_physics": {
264
+ "alias": " - conceptual_physics",
265
+ "acc,none": 0.30638297872340425,
266
+ "acc_stderr,none": 0.03013590647851756
267
+ },
268
+ "mmlu_electrical_engineering": {
269
+ "alias": " - electrical_engineering",
270
+ "acc,none": 0.2482758620689655,
271
+ "acc_stderr,none": 0.036001056927277716
272
+ },
273
+ "mmlu_elementary_mathematics": {
274
+ "alias": " - elementary_mathematics",
275
+ "acc,none": 0.2724867724867725,
276
+ "acc_stderr,none": 0.022930973071633345
277
+ },
278
+ "mmlu_high_school_biology": {
279
+ "alias": " - high_school_biology",
280
+ "acc,none": 0.2709677419354839,
281
+ "acc_stderr,none": 0.025284416114900156
282
+ },
283
+ "mmlu_high_school_chemistry": {
284
+ "alias": " - high_school_chemistry",
285
+ "acc,none": 0.2955665024630542,
286
+ "acc_stderr,none": 0.032104944337514575
287
+ },
288
+ "mmlu_high_school_computer_science": {
289
+ "alias": " - high_school_computer_science",
290
+ "acc,none": 0.28,
291
+ "acc_stderr,none": 0.04512608598542126
292
+ },
293
+ "mmlu_high_school_mathematics": {
294
+ "alias": " - high_school_mathematics",
295
+ "acc,none": 0.25555555555555554,
296
+ "acc_stderr,none": 0.026593939101844075
297
+ },
298
+ "mmlu_high_school_physics": {
299
+ "alias": " - high_school_physics",
300
+ "acc,none": 0.25165562913907286,
301
+ "acc_stderr,none": 0.035433042343899844
302
+ },
303
+ "mmlu_high_school_statistics": {
304
+ "alias": " - high_school_statistics",
305
+ "acc,none": 0.4074074074074074,
306
+ "acc_stderr,none": 0.033509916046960436
307
+ },
308
+ "mmlu_machine_learning": {
309
+ "alias": " - machine_learning",
310
+ "acc,none": 0.29464285714285715,
311
+ "acc_stderr,none": 0.04327040932578728
312
+ }
313
+ },
314
+ "groups": {
315
+ "mmlu": {
316
+ "acc,none": 0.26406494801310354,
317
+ "acc_stderr,none": 0.04337317681066504,
318
+ "alias": "mmlu"
319
+ },
320
+ "mmlu_humanities": {
321
+ "alias": " - humanities",
322
+ "acc,none": 0.25674814027630183,
323
+ "acc_stderr,none": 0.031026880557408782
324
+ },
325
+ "mmlu_other": {
326
+ "alias": " - other",
327
+ "acc,none": 0.2796910202767942,
328
+ "acc_stderr,none": 0.04120163290704318
329
+ },
330
+ "mmlu_social_sciences": {
331
+ "alias": " - social_sciences",
332
+ "acc,none": 0.25869353266168343,
333
+ "acc_stderr,none": 0.04263878165713902
334
+ },
335
+ "mmlu_stem": {
336
+ "alias": " - stem",
337
+ "acc,none": 0.26482714874722485,
338
+ "acc_stderr,none": 0.05760491108289627
339
+ }
340
+ },
341
+ "configs": {
342
+ "mmlu_abstract_algebra": {
343
+ "task": "mmlu_abstract_algebra",
344
+ "task_alias": "abstract_algebra",
345
+ "group": "mmlu_stem",
346
+ "group_alias": "stem",
347
+ "dataset_path": "hails/mmlu_no_train",
348
+ "dataset_name": "abstract_algebra",
349
+ "test_split": "test",
350
+ "fewshot_split": "dev",
351
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
352
+ "doc_to_target": "answer",
353
+ "doc_to_choice": [
354
+ "A",
355
+ "B",
356
+ "C",
357
+ "D"
358
+ ],
359
+ "description": "The following are multiple choice questions (with answers) about abstract algebra.\n\n",
360
+ "target_delimiter": " ",
361
+ "fewshot_delimiter": "\n\n",
362
+ "fewshot_config": {
363
+ "sampler": "first_n"
364
+ },
365
+ "num_fewshot": 5,
366
+ "metric_list": [
367
+ {
368
+ "metric": "acc",
369
+ "aggregation": "mean",
370
+ "higher_is_better": true
371
+ }
372
+ ],
373
+ "output_type": "multiple_choice",
374
+ "repeats": 1,
375
+ "should_decontaminate": false,
376
+ "metadata": {
377
+ "version": 0.0
378
+ }
379
+ },
380
+ "mmlu_anatomy": {
381
+ "task": "mmlu_anatomy",
382
+ "task_alias": "anatomy",
383
+ "group": "mmlu_stem",
384
+ "group_alias": "stem",
385
+ "dataset_path": "hails/mmlu_no_train",
386
+ "dataset_name": "anatomy",
387
+ "test_split": "test",
388
+ "fewshot_split": "dev",
389
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
390
+ "doc_to_target": "answer",
391
+ "doc_to_choice": [
392
+ "A",
393
+ "B",
394
+ "C",
395
+ "D"
396
+ ],
397
+ "description": "The following are multiple choice questions (with answers) about anatomy.\n\n",
398
+ "target_delimiter": " ",
399
+ "fewshot_delimiter": "\n\n",
400
+ "fewshot_config": {
401
+ "sampler": "first_n"
402
+ },
403
+ "num_fewshot": 5,
404
+ "metric_list": [
405
+ {
406
+ "metric": "acc",
407
+ "aggregation": "mean",
408
+ "higher_is_better": true
409
+ }
410
+ ],
411
+ "output_type": "multiple_choice",
412
+ "repeats": 1,
413
+ "should_decontaminate": false,
414
+ "metadata": {
415
+ "version": 0.0
416
+ }
417
+ },
418
+ "mmlu_astronomy": {
419
+ "task": "mmlu_astronomy",
420
+ "task_alias": "astronomy",
421
+ "group": "mmlu_stem",
422
+ "group_alias": "stem",
423
+ "dataset_path": "hails/mmlu_no_train",
424
+ "dataset_name": "astronomy",
425
+ "test_split": "test",
426
+ "fewshot_split": "dev",
427
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
428
+ "doc_to_target": "answer",
429
+ "doc_to_choice": [
430
+ "A",
431
+ "B",
432
+ "C",
433
+ "D"
434
+ ],
435
+ "description": "The following are multiple choice questions (with answers) about astronomy.\n\n",
436
+ "target_delimiter": " ",
437
+ "fewshot_delimiter": "\n\n",
438
+ "fewshot_config": {
439
+ "sampler": "first_n"
440
+ },
441
+ "num_fewshot": 5,
442
+ "metric_list": [
443
+ {
444
+ "metric": "acc",
445
+ "aggregation": "mean",
446
+ "higher_is_better": true
447
+ }
448
+ ],
449
+ "output_type": "multiple_choice",
450
+ "repeats": 1,
451
+ "should_decontaminate": false,
452
+ "metadata": {
453
+ "version": 0.0
454
+ }
455
+ },
456
+ "mmlu_business_ethics": {
457
+ "task": "mmlu_business_ethics",
458
+ "task_alias": "business_ethics",
459
+ "group": "mmlu_other",
460
+ "group_alias": "other",
461
+ "dataset_path": "hails/mmlu_no_train",
462
+ "dataset_name": "business_ethics",
463
+ "test_split": "test",
464
+ "fewshot_split": "dev",
465
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
466
+ "doc_to_target": "answer",
467
+ "doc_to_choice": [
468
+ "A",
469
+ "B",
470
+ "C",
471
+ "D"
472
+ ],
473
+ "description": "The following are multiple choice questions (with answers) about business ethics.\n\n",
474
+ "target_delimiter": " ",
475
+ "fewshot_delimiter": "\n\n",
476
+ "fewshot_config": {
477
+ "sampler": "first_n"
478
+ },
479
+ "num_fewshot": 5,
480
+ "metric_list": [
481
+ {
482
+ "metric": "acc",
483
+ "aggregation": "mean",
484
+ "higher_is_better": true
485
+ }
486
+ ],
487
+ "output_type": "multiple_choice",
488
+ "repeats": 1,
489
+ "should_decontaminate": false,
490
+ "metadata": {
491
+ "version": 0.0
492
+ }
493
+ },
494
+ "mmlu_clinical_knowledge": {
495
+ "task": "mmlu_clinical_knowledge",
496
+ "task_alias": "clinical_knowledge",
497
+ "group": "mmlu_other",
498
+ "group_alias": "other",
499
+ "dataset_path": "hails/mmlu_no_train",
500
+ "dataset_name": "clinical_knowledge",
501
+ "test_split": "test",
502
+ "fewshot_split": "dev",
503
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
504
+ "doc_to_target": "answer",
505
+ "doc_to_choice": [
506
+ "A",
507
+ "B",
508
+ "C",
509
+ "D"
510
+ ],
511
+ "description": "The following are multiple choice questions (with answers) about clinical knowledge.\n\n",
512
+ "target_delimiter": " ",
513
+ "fewshot_delimiter": "\n\n",
514
+ "fewshot_config": {
515
+ "sampler": "first_n"
516
+ },
517
+ "num_fewshot": 5,
518
+ "metric_list": [
519
+ {
520
+ "metric": "acc",
521
+ "aggregation": "mean",
522
+ "higher_is_better": true
523
+ }
524
+ ],
525
+ "output_type": "multiple_choice",
526
+ "repeats": 1,
527
+ "should_decontaminate": false,
528
+ "metadata": {
529
+ "version": 0.0
530
+ }
531
+ },
532
+ "mmlu_college_biology": {
533
+ "task": "mmlu_college_biology",
534
+ "task_alias": "college_biology",
535
+ "group": "mmlu_stem",
536
+ "group_alias": "stem",
537
+ "dataset_path": "hails/mmlu_no_train",
538
+ "dataset_name": "college_biology",
539
+ "test_split": "test",
540
+ "fewshot_split": "dev",
541
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
542
+ "doc_to_target": "answer",
543
+ "doc_to_choice": [
544
+ "A",
545
+ "B",
546
+ "C",
547
+ "D"
548
+ ],
549
+ "description": "The following are multiple choice questions (with answers) about college biology.\n\n",
550
+ "target_delimiter": " ",
551
+ "fewshot_delimiter": "\n\n",
552
+ "fewshot_config": {
553
+ "sampler": "first_n"
554
+ },
555
+ "num_fewshot": 5,
556
+ "metric_list": [
557
+ {
558
+ "metric": "acc",
559
+ "aggregation": "mean",
560
+ "higher_is_better": true
561
+ }
562
+ ],
563
+ "output_type": "multiple_choice",
564
+ "repeats": 1,
565
+ "should_decontaminate": false,
566
+ "metadata": {
567
+ "version": 0.0
568
+ }
569
+ },
570
+ "mmlu_college_chemistry": {
571
+ "task": "mmlu_college_chemistry",
572
+ "task_alias": "college_chemistry",
573
+ "group": "mmlu_stem",
574
+ "group_alias": "stem",
575
+ "dataset_path": "hails/mmlu_no_train",
576
+ "dataset_name": "college_chemistry",
577
+ "test_split": "test",
578
+ "fewshot_split": "dev",
579
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
580
+ "doc_to_target": "answer",
581
+ "doc_to_choice": [
582
+ "A",
583
+ "B",
584
+ "C",
585
+ "D"
586
+ ],
587
+ "description": "The following are multiple choice questions (with answers) about college chemistry.\n\n",
588
+ "target_delimiter": " ",
589
+ "fewshot_delimiter": "\n\n",
590
+ "fewshot_config": {
591
+ "sampler": "first_n"
592
+ },
593
+ "num_fewshot": 5,
594
+ "metric_list": [
595
+ {
596
+ "metric": "acc",
597
+ "aggregation": "mean",
598
+ "higher_is_better": true
599
+ }
600
+ ],
601
+ "output_type": "multiple_choice",
602
+ "repeats": 1,
603
+ "should_decontaminate": false,
604
+ "metadata": {
605
+ "version": 0.0
606
+ }
607
+ },
608
+ "mmlu_college_computer_science": {
609
+ "task": "mmlu_college_computer_science",
610
+ "task_alias": "college_computer_science",
611
+ "group": "mmlu_stem",
612
+ "group_alias": "stem",
613
+ "dataset_path": "hails/mmlu_no_train",
614
+ "dataset_name": "college_computer_science",
615
+ "test_split": "test",
616
+ "fewshot_split": "dev",
617
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
618
+ "doc_to_target": "answer",
619
+ "doc_to_choice": [
620
+ "A",
621
+ "B",
622
+ "C",
623
+ "D"
624
+ ],
625
+ "description": "The following are multiple choice questions (with answers) about college computer science.\n\n",
626
+ "target_delimiter": " ",
627
+ "fewshot_delimiter": "\n\n",
628
+ "fewshot_config": {
629
+ "sampler": "first_n"
630
+ },
631
+ "num_fewshot": 5,
632
+ "metric_list": [
633
+ {
634
+ "metric": "acc",
635
+ "aggregation": "mean",
636
+ "higher_is_better": true
637
+ }
638
+ ],
639
+ "output_type": "multiple_choice",
640
+ "repeats": 1,
641
+ "should_decontaminate": false,
642
+ "metadata": {
643
+ "version": 0.0
644
+ }
645
+ },
646
+ "mmlu_college_mathematics": {
647
+ "task": "mmlu_college_mathematics",
648
+ "task_alias": "college_mathematics",
649
+ "group": "mmlu_stem",
650
+ "group_alias": "stem",
651
+ "dataset_path": "hails/mmlu_no_train",
652
+ "dataset_name": "college_mathematics",
653
+ "test_split": "test",
654
+ "fewshot_split": "dev",
655
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
656
+ "doc_to_target": "answer",
657
+ "doc_to_choice": [
658
+ "A",
659
+ "B",
660
+ "C",
661
+ "D"
662
+ ],
663
+ "description": "The following are multiple choice questions (with answers) about college mathematics.\n\n",
664
+ "target_delimiter": " ",
665
+ "fewshot_delimiter": "\n\n",
666
+ "fewshot_config": {
667
+ "sampler": "first_n"
668
+ },
669
+ "num_fewshot": 5,
670
+ "metric_list": [
671
+ {
672
+ "metric": "acc",
673
+ "aggregation": "mean",
674
+ "higher_is_better": true
675
+ }
676
+ ],
677
+ "output_type": "multiple_choice",
678
+ "repeats": 1,
679
+ "should_decontaminate": false,
680
+ "metadata": {
681
+ "version": 0.0
682
+ }
683
+ },
684
+ "mmlu_college_medicine": {
685
+ "task": "mmlu_college_medicine",
686
+ "task_alias": "college_medicine",
687
+ "group": "mmlu_other",
688
+ "group_alias": "other",
689
+ "dataset_path": "hails/mmlu_no_train",
690
+ "dataset_name": "college_medicine",
691
+ "test_split": "test",
692
+ "fewshot_split": "dev",
693
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
694
+ "doc_to_target": "answer",
695
+ "doc_to_choice": [
696
+ "A",
697
+ "B",
698
+ "C",
699
+ "D"
700
+ ],
701
+ "description": "The following are multiple choice questions (with answers) about college medicine.\n\n",
702
+ "target_delimiter": " ",
703
+ "fewshot_delimiter": "\n\n",
704
+ "fewshot_config": {
705
+ "sampler": "first_n"
706
+ },
707
+ "num_fewshot": 5,
708
+ "metric_list": [
709
+ {
710
+ "metric": "acc",
711
+ "aggregation": "mean",
712
+ "higher_is_better": true
713
+ }
714
+ ],
715
+ "output_type": "multiple_choice",
716
+ "repeats": 1,
717
+ "should_decontaminate": false,
718
+ "metadata": {
719
+ "version": 0.0
720
+ }
721
+ },
722
+ "mmlu_college_physics": {
723
+ "task": "mmlu_college_physics",
724
+ "task_alias": "college_physics",
725
+ "group": "mmlu_stem",
726
+ "group_alias": "stem",
727
+ "dataset_path": "hails/mmlu_no_train",
728
+ "dataset_name": "college_physics",
729
+ "test_split": "test",
730
+ "fewshot_split": "dev",
731
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
732
+ "doc_to_target": "answer",
733
+ "doc_to_choice": [
734
+ "A",
735
+ "B",
736
+ "C",
737
+ "D"
738
+ ],
739
+ "description": "The following are multiple choice questions (with answers) about college physics.\n\n",
740
+ "target_delimiter": " ",
741
+ "fewshot_delimiter": "\n\n",
742
+ "fewshot_config": {
743
+ "sampler": "first_n"
744
+ },
745
+ "num_fewshot": 5,
746
+ "metric_list": [
747
+ {
748
+ "metric": "acc",
749
+ "aggregation": "mean",
750
+ "higher_is_better": true
751
+ }
752
+ ],
753
+ "output_type": "multiple_choice",
754
+ "repeats": 1,
755
+ "should_decontaminate": false,
756
+ "metadata": {
757
+ "version": 0.0
758
+ }
759
+ },
760
+ "mmlu_computer_security": {
761
+ "task": "mmlu_computer_security",
762
+ "task_alias": "computer_security",
763
+ "group": "mmlu_stem",
764
+ "group_alias": "stem",
765
+ "dataset_path": "hails/mmlu_no_train",
766
+ "dataset_name": "computer_security",
767
+ "test_split": "test",
768
+ "fewshot_split": "dev",
769
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
770
+ "doc_to_target": "answer",
771
+ "doc_to_choice": [
772
+ "A",
773
+ "B",
774
+ "C",
775
+ "D"
776
+ ],
777
+ "description": "The following are multiple choice questions (with answers) about computer security.\n\n",
778
+ "target_delimiter": " ",
779
+ "fewshot_delimiter": "\n\n",
780
+ "fewshot_config": {
781
+ "sampler": "first_n"
782
+ },
783
+ "num_fewshot": 5,
784
+ "metric_list": [
785
+ {
786
+ "metric": "acc",
787
+ "aggregation": "mean",
788
+ "higher_is_better": true
789
+ }
790
+ ],
791
+ "output_type": "multiple_choice",
792
+ "repeats": 1,
793
+ "should_decontaminate": false,
794
+ "metadata": {
795
+ "version": 0.0
796
+ }
797
+ },
798
+ "mmlu_conceptual_physics": {
799
+ "task": "mmlu_conceptual_physics",
800
+ "task_alias": "conceptual_physics",
801
+ "group": "mmlu_stem",
802
+ "group_alias": "stem",
803
+ "dataset_path": "hails/mmlu_no_train",
804
+ "dataset_name": "conceptual_physics",
805
+ "test_split": "test",
806
+ "fewshot_split": "dev",
807
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
808
+ "doc_to_target": "answer",
809
+ "doc_to_choice": [
810
+ "A",
811
+ "B",
812
+ "C",
813
+ "D"
814
+ ],
815
+ "description": "The following are multiple choice questions (with answers) about conceptual physics.\n\n",
816
+ "target_delimiter": " ",
817
+ "fewshot_delimiter": "\n\n",
818
+ "fewshot_config": {
819
+ "sampler": "first_n"
820
+ },
821
+ "num_fewshot": 5,
822
+ "metric_list": [
823
+ {
824
+ "metric": "acc",
825
+ "aggregation": "mean",
826
+ "higher_is_better": true
827
+ }
828
+ ],
829
+ "output_type": "multiple_choice",
830
+ "repeats": 1,
831
+ "should_decontaminate": false,
832
+ "metadata": {
833
+ "version": 0.0
834
+ }
835
+ },
836
+ "mmlu_econometrics": {
837
+ "task": "mmlu_econometrics",
838
+ "task_alias": "econometrics",
839
+ "group": "mmlu_social_sciences",
840
+ "group_alias": "social_sciences",
841
+ "dataset_path": "hails/mmlu_no_train",
842
+ "dataset_name": "econometrics",
843
+ "test_split": "test",
844
+ "fewshot_split": "dev",
845
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
846
+ "doc_to_target": "answer",
847
+ "doc_to_choice": [
848
+ "A",
849
+ "B",
850
+ "C",
851
+ "D"
852
+ ],
853
+ "description": "The following are multiple choice questions (with answers) about econometrics.\n\n",
854
+ "target_delimiter": " ",
855
+ "fewshot_delimiter": "\n\n",
856
+ "fewshot_config": {
857
+ "sampler": "first_n"
858
+ },
859
+ "num_fewshot": 5,
860
+ "metric_list": [
861
+ {
862
+ "metric": "acc",
863
+ "aggregation": "mean",
864
+ "higher_is_better": true
865
+ }
866
+ ],
867
+ "output_type": "multiple_choice",
868
+ "repeats": 1,
869
+ "should_decontaminate": false,
870
+ "metadata": {
871
+ "version": 0.0
872
+ }
873
+ },
874
+ "mmlu_electrical_engineering": {
875
+ "task": "mmlu_electrical_engineering",
876
+ "task_alias": "electrical_engineering",
877
+ "group": "mmlu_stem",
878
+ "group_alias": "stem",
879
+ "dataset_path": "hails/mmlu_no_train",
880
+ "dataset_name": "electrical_engineering",
881
+ "test_split": "test",
882
+ "fewshot_split": "dev",
883
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
884
+ "doc_to_target": "answer",
885
+ "doc_to_choice": [
886
+ "A",
887
+ "B",
888
+ "C",
889
+ "D"
890
+ ],
891
+ "description": "The following are multiple choice questions (with answers) about electrical engineering.\n\n",
892
+ "target_delimiter": " ",
893
+ "fewshot_delimiter": "\n\n",
894
+ "fewshot_config": {
895
+ "sampler": "first_n"
896
+ },
897
+ "num_fewshot": 5,
898
+ "metric_list": [
899
+ {
900
+ "metric": "acc",
901
+ "aggregation": "mean",
902
+ "higher_is_better": true
903
+ }
904
+ ],
905
+ "output_type": "multiple_choice",
906
+ "repeats": 1,
907
+ "should_decontaminate": false,
908
+ "metadata": {
909
+ "version": 0.0
910
+ }
911
+ },
912
+ "mmlu_elementary_mathematics": {
913
+ "task": "mmlu_elementary_mathematics",
914
+ "task_alias": "elementary_mathematics",
915
+ "group": "mmlu_stem",
916
+ "group_alias": "stem",
917
+ "dataset_path": "hails/mmlu_no_train",
918
+ "dataset_name": "elementary_mathematics",
919
+ "test_split": "test",
920
+ "fewshot_split": "dev",
921
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
922
+ "doc_to_target": "answer",
923
+ "doc_to_choice": [
924
+ "A",
925
+ "B",
926
+ "C",
927
+ "D"
928
+ ],
929
+ "description": "The following are multiple choice questions (with answers) about elementary mathematics.\n\n",
930
+ "target_delimiter": " ",
931
+ "fewshot_delimiter": "\n\n",
932
+ "fewshot_config": {
933
+ "sampler": "first_n"
934
+ },
935
+ "num_fewshot": 5,
936
+ "metric_list": [
937
+ {
938
+ "metric": "acc",
939
+ "aggregation": "mean",
940
+ "higher_is_better": true
941
+ }
942
+ ],
943
+ "output_type": "multiple_choice",
944
+ "repeats": 1,
945
+ "should_decontaminate": false,
946
+ "metadata": {
947
+ "version": 0.0
948
+ }
949
+ },
950
+ "mmlu_formal_logic": {
951
+ "task": "mmlu_formal_logic",
952
+ "task_alias": "formal_logic",
953
+ "group": "mmlu_humanities",
954
+ "group_alias": "humanities",
955
+ "dataset_path": "hails/mmlu_no_train",
956
+ "dataset_name": "formal_logic",
957
+ "test_split": "test",
958
+ "fewshot_split": "dev",
959
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
960
+ "doc_to_target": "answer",
961
+ "doc_to_choice": [
962
+ "A",
963
+ "B",
964
+ "C",
965
+ "D"
966
+ ],
967
+ "description": "The following are multiple choice questions (with answers) about formal logic.\n\n",
968
+ "target_delimiter": " ",
969
+ "fewshot_delimiter": "\n\n",
970
+ "fewshot_config": {
971
+ "sampler": "first_n"
972
+ },
973
+ "num_fewshot": 5,
974
+ "metric_list": [
975
+ {
976
+ "metric": "acc",
977
+ "aggregation": "mean",
978
+ "higher_is_better": true
979
+ }
980
+ ],
981
+ "output_type": "multiple_choice",
982
+ "repeats": 1,
983
+ "should_decontaminate": false,
984
+ "metadata": {
985
+ "version": 0.0
986
+ }
987
+ },
988
+ "mmlu_global_facts": {
989
+ "task": "mmlu_global_facts",
990
+ "task_alias": "global_facts",
991
+ "group": "mmlu_other",
992
+ "group_alias": "other",
993
+ "dataset_path": "hails/mmlu_no_train",
994
+ "dataset_name": "global_facts",
995
+ "test_split": "test",
996
+ "fewshot_split": "dev",
997
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
998
+ "doc_to_target": "answer",
999
+ "doc_to_choice": [
1000
+ "A",
1001
+ "B",
1002
+ "C",
1003
+ "D"
1004
+ ],
1005
+ "description": "The following are multiple choice questions (with answers) about global facts.\n\n",
1006
+ "target_delimiter": " ",
1007
+ "fewshot_delimiter": "\n\n",
1008
+ "fewshot_config": {
1009
+ "sampler": "first_n"
1010
+ },
1011
+ "num_fewshot": 5,
1012
+ "metric_list": [
1013
+ {
1014
+ "metric": "acc",
1015
+ "aggregation": "mean",
1016
+ "higher_is_better": true
1017
+ }
1018
+ ],
1019
+ "output_type": "multiple_choice",
1020
+ "repeats": 1,
1021
+ "should_decontaminate": false,
1022
+ "metadata": {
1023
+ "version": 0.0
1024
+ }
1025
+ },
1026
+ "mmlu_high_school_biology": {
1027
+ "task": "mmlu_high_school_biology",
1028
+ "task_alias": "high_school_biology",
1029
+ "group": "mmlu_stem",
1030
+ "group_alias": "stem",
1031
+ "dataset_path": "hails/mmlu_no_train",
1032
+ "dataset_name": "high_school_biology",
1033
+ "test_split": "test",
1034
+ "fewshot_split": "dev",
1035
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1036
+ "doc_to_target": "answer",
1037
+ "doc_to_choice": [
1038
+ "A",
1039
+ "B",
1040
+ "C",
1041
+ "D"
1042
+ ],
1043
+ "description": "The following are multiple choice questions (with answers) about high school biology.\n\n",
1044
+ "target_delimiter": " ",
1045
+ "fewshot_delimiter": "\n\n",
1046
+ "fewshot_config": {
1047
+ "sampler": "first_n"
1048
+ },
1049
+ "num_fewshot": 5,
1050
+ "metric_list": [
1051
+ {
1052
+ "metric": "acc",
1053
+ "aggregation": "mean",
1054
+ "higher_is_better": true
1055
+ }
1056
+ ],
1057
+ "output_type": "multiple_choice",
1058
+ "repeats": 1,
1059
+ "should_decontaminate": false,
1060
+ "metadata": {
1061
+ "version": 0.0
1062
+ }
1063
+ },
1064
+ "mmlu_high_school_chemistry": {
1065
+ "task": "mmlu_high_school_chemistry",
1066
+ "task_alias": "high_school_chemistry",
1067
+ "group": "mmlu_stem",
1068
+ "group_alias": "stem",
1069
+ "dataset_path": "hails/mmlu_no_train",
1070
+ "dataset_name": "high_school_chemistry",
1071
+ "test_split": "test",
1072
+ "fewshot_split": "dev",
1073
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1074
+ "doc_to_target": "answer",
1075
+ "doc_to_choice": [
1076
+ "A",
1077
+ "B",
1078
+ "C",
1079
+ "D"
1080
+ ],
1081
+ "description": "The following are multiple choice questions (with answers) about high school chemistry.\n\n",
1082
+ "target_delimiter": " ",
1083
+ "fewshot_delimiter": "\n\n",
1084
+ "fewshot_config": {
1085
+ "sampler": "first_n"
1086
+ },
1087
+ "num_fewshot": 5,
1088
+ "metric_list": [
1089
+ {
1090
+ "metric": "acc",
1091
+ "aggregation": "mean",
1092
+ "higher_is_better": true
1093
+ }
1094
+ ],
1095
+ "output_type": "multiple_choice",
1096
+ "repeats": 1,
1097
+ "should_decontaminate": false,
1098
+ "metadata": {
1099
+ "version": 0.0
1100
+ }
1101
+ },
1102
+ "mmlu_high_school_computer_science": {
1103
+ "task": "mmlu_high_school_computer_science",
1104
+ "task_alias": "high_school_computer_science",
1105
+ "group": "mmlu_stem",
1106
+ "group_alias": "stem",
1107
+ "dataset_path": "hails/mmlu_no_train",
1108
+ "dataset_name": "high_school_computer_science",
1109
+ "test_split": "test",
1110
+ "fewshot_split": "dev",
1111
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1112
+ "doc_to_target": "answer",
1113
+ "doc_to_choice": [
1114
+ "A",
1115
+ "B",
1116
+ "C",
1117
+ "D"
1118
+ ],
1119
+ "description": "The following are multiple choice questions (with answers) about high school computer science.\n\n",
1120
+ "target_delimiter": " ",
1121
+ "fewshot_delimiter": "\n\n",
1122
+ "fewshot_config": {
1123
+ "sampler": "first_n"
1124
+ },
1125
+ "num_fewshot": 5,
1126
+ "metric_list": [
1127
+ {
1128
+ "metric": "acc",
1129
+ "aggregation": "mean",
1130
+ "higher_is_better": true
1131
+ }
1132
+ ],
1133
+ "output_type": "multiple_choice",
1134
+ "repeats": 1,
1135
+ "should_decontaminate": false,
1136
+ "metadata": {
1137
+ "version": 0.0
1138
+ }
1139
+ },
1140
+ "mmlu_high_school_european_history": {
1141
+ "task": "mmlu_high_school_european_history",
1142
+ "task_alias": "high_school_european_history",
1143
+ "group": "mmlu_humanities",
1144
+ "group_alias": "humanities",
1145
+ "dataset_path": "hails/mmlu_no_train",
1146
+ "dataset_name": "high_school_european_history",
1147
+ "test_split": "test",
1148
+ "fewshot_split": "dev",
1149
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1150
+ "doc_to_target": "answer",
1151
+ "doc_to_choice": [
1152
+ "A",
1153
+ "B",
1154
+ "C",
1155
+ "D"
1156
+ ],
1157
+ "description": "The following are multiple choice questions (with answers) about high school european history.\n\n",
1158
+ "target_delimiter": " ",
1159
+ "fewshot_delimiter": "\n\n",
1160
+ "fewshot_config": {
1161
+ "sampler": "first_n"
1162
+ },
1163
+ "num_fewshot": 5,
1164
+ "metric_list": [
1165
+ {
1166
+ "metric": "acc",
1167
+ "aggregation": "mean",
1168
+ "higher_is_better": true
1169
+ }
1170
+ ],
1171
+ "output_type": "multiple_choice",
1172
+ "repeats": 1,
1173
+ "should_decontaminate": false,
1174
+ "metadata": {
1175
+ "version": 0.0
1176
+ }
1177
+ },
1178
+ "mmlu_high_school_geography": {
1179
+ "task": "mmlu_high_school_geography",
1180
+ "task_alias": "high_school_geography",
1181
+ "group": "mmlu_social_sciences",
1182
+ "group_alias": "social_sciences",
1183
+ "dataset_path": "hails/mmlu_no_train",
1184
+ "dataset_name": "high_school_geography",
1185
+ "test_split": "test",
1186
+ "fewshot_split": "dev",
1187
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1188
+ "doc_to_target": "answer",
1189
+ "doc_to_choice": [
1190
+ "A",
1191
+ "B",
1192
+ "C",
1193
+ "D"
1194
+ ],
1195
+ "description": "The following are multiple choice questions (with answers) about high school geography.\n\n",
1196
+ "target_delimiter": " ",
1197
+ "fewshot_delimiter": "\n\n",
1198
+ "fewshot_config": {
1199
+ "sampler": "first_n"
1200
+ },
1201
+ "num_fewshot": 5,
1202
+ "metric_list": [
1203
+ {
1204
+ "metric": "acc",
1205
+ "aggregation": "mean",
1206
+ "higher_is_better": true
1207
+ }
1208
+ ],
1209
+ "output_type": "multiple_choice",
1210
+ "repeats": 1,
1211
+ "should_decontaminate": false,
1212
+ "metadata": {
1213
+ "version": 0.0
1214
+ }
1215
+ },
1216
+ "mmlu_high_school_government_and_politics": {
1217
+ "task": "mmlu_high_school_government_and_politics",
1218
+ "task_alias": "high_school_government_and_politics",
1219
+ "group": "mmlu_social_sciences",
1220
+ "group_alias": "social_sciences",
1221
+ "dataset_path": "hails/mmlu_no_train",
1222
+ "dataset_name": "high_school_government_and_politics",
1223
+ "test_split": "test",
1224
+ "fewshot_split": "dev",
1225
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1226
+ "doc_to_target": "answer",
1227
+ "doc_to_choice": [
1228
+ "A",
1229
+ "B",
1230
+ "C",
1231
+ "D"
1232
+ ],
1233
+ "description": "The following are multiple choice questions (with answers) about high school government and politics.\n\n",
1234
+ "target_delimiter": " ",
1235
+ "fewshot_delimiter": "\n\n",
1236
+ "fewshot_config": {
1237
+ "sampler": "first_n"
1238
+ },
1239
+ "num_fewshot": 5,
1240
+ "metric_list": [
1241
+ {
1242
+ "metric": "acc",
1243
+ "aggregation": "mean",
1244
+ "higher_is_better": true
1245
+ }
1246
+ ],
1247
+ "output_type": "multiple_choice",
1248
+ "repeats": 1,
1249
+ "should_decontaminate": false,
1250
+ "metadata": {
1251
+ "version": 0.0
1252
+ }
1253
+ },
1254
+ "mmlu_high_school_macroeconomics": {
1255
+ "task": "mmlu_high_school_macroeconomics",
1256
+ "task_alias": "high_school_macroeconomics",
1257
+ "group": "mmlu_social_sciences",
1258
+ "group_alias": "social_sciences",
1259
+ "dataset_path": "hails/mmlu_no_train",
1260
+ "dataset_name": "high_school_macroeconomics",
1261
+ "test_split": "test",
1262
+ "fewshot_split": "dev",
1263
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1264
+ "doc_to_target": "answer",
1265
+ "doc_to_choice": [
1266
+ "A",
1267
+ "B",
1268
+ "C",
1269
+ "D"
1270
+ ],
1271
+ "description": "The following are multiple choice questions (with answers) about high school macroeconomics.\n\n",
1272
+ "target_delimiter": " ",
1273
+ "fewshot_delimiter": "\n\n",
1274
+ "fewshot_config": {
1275
+ "sampler": "first_n"
1276
+ },
1277
+ "num_fewshot": 5,
1278
+ "metric_list": [
1279
+ {
1280
+ "metric": "acc",
1281
+ "aggregation": "mean",
1282
+ "higher_is_better": true
1283
+ }
1284
+ ],
1285
+ "output_type": "multiple_choice",
1286
+ "repeats": 1,
1287
+ "should_decontaminate": false,
1288
+ "metadata": {
1289
+ "version": 0.0
1290
+ }
1291
+ },
1292
+ "mmlu_high_school_mathematics": {
1293
+ "task": "mmlu_high_school_mathematics",
1294
+ "task_alias": "high_school_mathematics",
1295
+ "group": "mmlu_stem",
1296
+ "group_alias": "stem",
1297
+ "dataset_path": "hails/mmlu_no_train",
1298
+ "dataset_name": "high_school_mathematics",
1299
+ "test_split": "test",
1300
+ "fewshot_split": "dev",
1301
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1302
+ "doc_to_target": "answer",
1303
+ "doc_to_choice": [
1304
+ "A",
1305
+ "B",
1306
+ "C",
1307
+ "D"
1308
+ ],
1309
+ "description": "The following are multiple choice questions (with answers) about high school mathematics.\n\n",
1310
+ "target_delimiter": " ",
1311
+ "fewshot_delimiter": "\n\n",
1312
+ "fewshot_config": {
1313
+ "sampler": "first_n"
1314
+ },
1315
+ "num_fewshot": 5,
1316
+ "metric_list": [
1317
+ {
1318
+ "metric": "acc",
1319
+ "aggregation": "mean",
1320
+ "higher_is_better": true
1321
+ }
1322
+ ],
1323
+ "output_type": "multiple_choice",
1324
+ "repeats": 1,
1325
+ "should_decontaminate": false,
1326
+ "metadata": {
1327
+ "version": 0.0
1328
+ }
1329
+ },
1330
+ "mmlu_high_school_microeconomics": {
1331
+ "task": "mmlu_high_school_microeconomics",
1332
+ "task_alias": "high_school_microeconomics",
1333
+ "group": "mmlu_social_sciences",
1334
+ "group_alias": "social_sciences",
1335
+ "dataset_path": "hails/mmlu_no_train",
1336
+ "dataset_name": "high_school_microeconomics",
1337
+ "test_split": "test",
1338
+ "fewshot_split": "dev",
1339
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1340
+ "doc_to_target": "answer",
1341
+ "doc_to_choice": [
1342
+ "A",
1343
+ "B",
1344
+ "C",
1345
+ "D"
1346
+ ],
1347
+ "description": "The following are multiple choice questions (with answers) about high school microeconomics.\n\n",
1348
+ "target_delimiter": " ",
1349
+ "fewshot_delimiter": "\n\n",
1350
+ "fewshot_config": {
1351
+ "sampler": "first_n"
1352
+ },
1353
+ "num_fewshot": 5,
1354
+ "metric_list": [
1355
+ {
1356
+ "metric": "acc",
1357
+ "aggregation": "mean",
1358
+ "higher_is_better": true
1359
+ }
1360
+ ],
1361
+ "output_type": "multiple_choice",
1362
+ "repeats": 1,
1363
+ "should_decontaminate": false,
1364
+ "metadata": {
1365
+ "version": 0.0
1366
+ }
1367
+ },
1368
+ "mmlu_high_school_physics": {
1369
+ "task": "mmlu_high_school_physics",
1370
+ "task_alias": "high_school_physics",
1371
+ "group": "mmlu_stem",
1372
+ "group_alias": "stem",
1373
+ "dataset_path": "hails/mmlu_no_train",
1374
+ "dataset_name": "high_school_physics",
1375
+ "test_split": "test",
1376
+ "fewshot_split": "dev",
1377
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1378
+ "doc_to_target": "answer",
1379
+ "doc_to_choice": [
1380
+ "A",
1381
+ "B",
1382
+ "C",
1383
+ "D"
1384
+ ],
1385
+ "description": "The following are multiple choice questions (with answers) about high school physics.\n\n",
1386
+ "target_delimiter": " ",
1387
+ "fewshot_delimiter": "\n\n",
1388
+ "fewshot_config": {
1389
+ "sampler": "first_n"
1390
+ },
1391
+ "num_fewshot": 5,
1392
+ "metric_list": [
1393
+ {
1394
+ "metric": "acc",
1395
+ "aggregation": "mean",
1396
+ "higher_is_better": true
1397
+ }
1398
+ ],
1399
+ "output_type": "multiple_choice",
1400
+ "repeats": 1,
1401
+ "should_decontaminate": false,
1402
+ "metadata": {
1403
+ "version": 0.0
1404
+ }
1405
+ },
1406
+ "mmlu_high_school_psychology": {
1407
+ "task": "mmlu_high_school_psychology",
1408
+ "task_alias": "high_school_psychology",
1409
+ "group": "mmlu_social_sciences",
1410
+ "group_alias": "social_sciences",
1411
+ "dataset_path": "hails/mmlu_no_train",
1412
+ "dataset_name": "high_school_psychology",
1413
+ "test_split": "test",
1414
+ "fewshot_split": "dev",
1415
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1416
+ "doc_to_target": "answer",
1417
+ "doc_to_choice": [
1418
+ "A",
1419
+ "B",
1420
+ "C",
1421
+ "D"
1422
+ ],
1423
+ "description": "The following are multiple choice questions (with answers) about high school psychology.\n\n",
1424
+ "target_delimiter": " ",
1425
+ "fewshot_delimiter": "\n\n",
1426
+ "fewshot_config": {
1427
+ "sampler": "first_n"
1428
+ },
1429
+ "num_fewshot": 5,
1430
+ "metric_list": [
1431
+ {
1432
+ "metric": "acc",
1433
+ "aggregation": "mean",
1434
+ "higher_is_better": true
1435
+ }
1436
+ ],
1437
+ "output_type": "multiple_choice",
1438
+ "repeats": 1,
1439
+ "should_decontaminate": false,
1440
+ "metadata": {
1441
+ "version": 0.0
1442
+ }
1443
+ },
1444
+ "mmlu_high_school_statistics": {
1445
+ "task": "mmlu_high_school_statistics",
1446
+ "task_alias": "high_school_statistics",
1447
+ "group": "mmlu_stem",
1448
+ "group_alias": "stem",
1449
+ "dataset_path": "hails/mmlu_no_train",
1450
+ "dataset_name": "high_school_statistics",
1451
+ "test_split": "test",
1452
+ "fewshot_split": "dev",
1453
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1454
+ "doc_to_target": "answer",
1455
+ "doc_to_choice": [
1456
+ "A",
1457
+ "B",
1458
+ "C",
1459
+ "D"
1460
+ ],
1461
+ "description": "The following are multiple choice questions (with answers) about high school statistics.\n\n",
1462
+ "target_delimiter": " ",
1463
+ "fewshot_delimiter": "\n\n",
1464
+ "fewshot_config": {
1465
+ "sampler": "first_n"
1466
+ },
1467
+ "num_fewshot": 5,
1468
+ "metric_list": [
1469
+ {
1470
+ "metric": "acc",
1471
+ "aggregation": "mean",
1472
+ "higher_is_better": true
1473
+ }
1474
+ ],
1475
+ "output_type": "multiple_choice",
1476
+ "repeats": 1,
1477
+ "should_decontaminate": false,
1478
+ "metadata": {
1479
+ "version": 0.0
1480
+ }
1481
+ },
1482
+ "mmlu_high_school_us_history": {
1483
+ "task": "mmlu_high_school_us_history",
1484
+ "task_alias": "high_school_us_history",
1485
+ "group": "mmlu_humanities",
1486
+ "group_alias": "humanities",
1487
+ "dataset_path": "hails/mmlu_no_train",
1488
+ "dataset_name": "high_school_us_history",
1489
+ "test_split": "test",
1490
+ "fewshot_split": "dev",
1491
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1492
+ "doc_to_target": "answer",
1493
+ "doc_to_choice": [
1494
+ "A",
1495
+ "B",
1496
+ "C",
1497
+ "D"
1498
+ ],
1499
+ "description": "The following are multiple choice questions (with answers) about high school us history.\n\n",
1500
+ "target_delimiter": " ",
1501
+ "fewshot_delimiter": "\n\n",
1502
+ "fewshot_config": {
1503
+ "sampler": "first_n"
1504
+ },
1505
+ "num_fewshot": 5,
1506
+ "metric_list": [
1507
+ {
1508
+ "metric": "acc",
1509
+ "aggregation": "mean",
1510
+ "higher_is_better": true
1511
+ }
1512
+ ],
1513
+ "output_type": "multiple_choice",
1514
+ "repeats": 1,
1515
+ "should_decontaminate": false,
1516
+ "metadata": {
1517
+ "version": 0.0
1518
+ }
1519
+ },
1520
+ "mmlu_high_school_world_history": {
1521
+ "task": "mmlu_high_school_world_history",
1522
+ "task_alias": "high_school_world_history",
1523
+ "group": "mmlu_humanities",
1524
+ "group_alias": "humanities",
1525
+ "dataset_path": "hails/mmlu_no_train",
1526
+ "dataset_name": "high_school_world_history",
1527
+ "test_split": "test",
1528
+ "fewshot_split": "dev",
1529
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1530
+ "doc_to_target": "answer",
1531
+ "doc_to_choice": [
1532
+ "A",
1533
+ "B",
1534
+ "C",
1535
+ "D"
1536
+ ],
1537
+ "description": "The following are multiple choice questions (with answers) about high school world history.\n\n",
1538
+ "target_delimiter": " ",
1539
+ "fewshot_delimiter": "\n\n",
1540
+ "fewshot_config": {
1541
+ "sampler": "first_n"
1542
+ },
1543
+ "num_fewshot": 5,
1544
+ "metric_list": [
1545
+ {
1546
+ "metric": "acc",
1547
+ "aggregation": "mean",
1548
+ "higher_is_better": true
1549
+ }
1550
+ ],
1551
+ "output_type": "multiple_choice",
1552
+ "repeats": 1,
1553
+ "should_decontaminate": false,
1554
+ "metadata": {
1555
+ "version": 0.0
1556
+ }
1557
+ },
1558
+ "mmlu_human_aging": {
1559
+ "task": "mmlu_human_aging",
1560
+ "task_alias": "human_aging",
1561
+ "group": "mmlu_other",
1562
+ "group_alias": "other",
1563
+ "dataset_path": "hails/mmlu_no_train",
1564
+ "dataset_name": "human_aging",
1565
+ "test_split": "test",
1566
+ "fewshot_split": "dev",
1567
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1568
+ "doc_to_target": "answer",
1569
+ "doc_to_choice": [
1570
+ "A",
1571
+ "B",
1572
+ "C",
1573
+ "D"
1574
+ ],
1575
+ "description": "The following are multiple choice questions (with answers) about human aging.\n\n",
1576
+ "target_delimiter": " ",
1577
+ "fewshot_delimiter": "\n\n",
1578
+ "fewshot_config": {
1579
+ "sampler": "first_n"
1580
+ },
1581
+ "num_fewshot": 5,
1582
+ "metric_list": [
1583
+ {
1584
+ "metric": "acc",
1585
+ "aggregation": "mean",
1586
+ "higher_is_better": true
1587
+ }
1588
+ ],
1589
+ "output_type": "multiple_choice",
1590
+ "repeats": 1,
1591
+ "should_decontaminate": false,
1592
+ "metadata": {
1593
+ "version": 0.0
1594
+ }
1595
+ },
1596
+ "mmlu_human_sexuality": {
1597
+ "task": "mmlu_human_sexuality",
1598
+ "task_alias": "human_sexuality",
1599
+ "group": "mmlu_social_sciences",
1600
+ "group_alias": "social_sciences",
1601
+ "dataset_path": "hails/mmlu_no_train",
1602
+ "dataset_name": "human_sexuality",
1603
+ "test_split": "test",
1604
+ "fewshot_split": "dev",
1605
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1606
+ "doc_to_target": "answer",
1607
+ "doc_to_choice": [
1608
+ "A",
1609
+ "B",
1610
+ "C",
1611
+ "D"
1612
+ ],
1613
+ "description": "The following are multiple choice questions (with answers) about human sexuality.\n\n",
1614
+ "target_delimiter": " ",
1615
+ "fewshot_delimiter": "\n\n",
1616
+ "fewshot_config": {
1617
+ "sampler": "first_n"
1618
+ },
1619
+ "num_fewshot": 5,
1620
+ "metric_list": [
1621
+ {
1622
+ "metric": "acc",
1623
+ "aggregation": "mean",
1624
+ "higher_is_better": true
1625
+ }
1626
+ ],
1627
+ "output_type": "multiple_choice",
1628
+ "repeats": 1,
1629
+ "should_decontaminate": false,
1630
+ "metadata": {
1631
+ "version": 0.0
1632
+ }
1633
+ },
1634
+ "mmlu_international_law": {
1635
+ "task": "mmlu_international_law",
1636
+ "task_alias": "international_law",
1637
+ "group": "mmlu_humanities",
1638
+ "group_alias": "humanities",
1639
+ "dataset_path": "hails/mmlu_no_train",
1640
+ "dataset_name": "international_law",
1641
+ "test_split": "test",
1642
+ "fewshot_split": "dev",
1643
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1644
+ "doc_to_target": "answer",
1645
+ "doc_to_choice": [
1646
+ "A",
1647
+ "B",
1648
+ "C",
1649
+ "D"
1650
+ ],
1651
+ "description": "The following are multiple choice questions (with answers) about international law.\n\n",
1652
+ "target_delimiter": " ",
1653
+ "fewshot_delimiter": "\n\n",
1654
+ "fewshot_config": {
1655
+ "sampler": "first_n"
1656
+ },
1657
+ "num_fewshot": 5,
1658
+ "metric_list": [
1659
+ {
1660
+ "metric": "acc",
1661
+ "aggregation": "mean",
1662
+ "higher_is_better": true
1663
+ }
1664
+ ],
1665
+ "output_type": "multiple_choice",
1666
+ "repeats": 1,
1667
+ "should_decontaminate": false,
1668
+ "metadata": {
1669
+ "version": 0.0
1670
+ }
1671
+ },
1672
+ "mmlu_jurisprudence": {
1673
+ "task": "mmlu_jurisprudence",
1674
+ "task_alias": "jurisprudence",
1675
+ "group": "mmlu_humanities",
1676
+ "group_alias": "humanities",
1677
+ "dataset_path": "hails/mmlu_no_train",
1678
+ "dataset_name": "jurisprudence",
1679
+ "test_split": "test",
1680
+ "fewshot_split": "dev",
1681
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1682
+ "doc_to_target": "answer",
1683
+ "doc_to_choice": [
1684
+ "A",
1685
+ "B",
1686
+ "C",
1687
+ "D"
1688
+ ],
1689
+ "description": "The following are multiple choice questions (with answers) about jurisprudence.\n\n",
1690
+ "target_delimiter": " ",
1691
+ "fewshot_delimiter": "\n\n",
1692
+ "fewshot_config": {
1693
+ "sampler": "first_n"
1694
+ },
1695
+ "num_fewshot": 5,
1696
+ "metric_list": [
1697
+ {
1698
+ "metric": "acc",
1699
+ "aggregation": "mean",
1700
+ "higher_is_better": true
1701
+ }
1702
+ ],
1703
+ "output_type": "multiple_choice",
1704
+ "repeats": 1,
1705
+ "should_decontaminate": false,
1706
+ "metadata": {
1707
+ "version": 0.0
1708
+ }
1709
+ },
1710
+ "mmlu_logical_fallacies": {
1711
+ "task": "mmlu_logical_fallacies",
1712
+ "task_alias": "logical_fallacies",
1713
+ "group": "mmlu_humanities",
1714
+ "group_alias": "humanities",
1715
+ "dataset_path": "hails/mmlu_no_train",
1716
+ "dataset_name": "logical_fallacies",
1717
+ "test_split": "test",
1718
+ "fewshot_split": "dev",
1719
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1720
+ "doc_to_target": "answer",
1721
+ "doc_to_choice": [
1722
+ "A",
1723
+ "B",
1724
+ "C",
1725
+ "D"
1726
+ ],
1727
+ "description": "The following are multiple choice questions (with answers) about logical fallacies.\n\n",
1728
+ "target_delimiter": " ",
1729
+ "fewshot_delimiter": "\n\n",
1730
+ "fewshot_config": {
1731
+ "sampler": "first_n"
1732
+ },
1733
+ "num_fewshot": 5,
1734
+ "metric_list": [
1735
+ {
1736
+ "metric": "acc",
1737
+ "aggregation": "mean",
1738
+ "higher_is_better": true
1739
+ }
1740
+ ],
1741
+ "output_type": "multiple_choice",
1742
+ "repeats": 1,
1743
+ "should_decontaminate": false,
1744
+ "metadata": {
1745
+ "version": 0.0
1746
+ }
1747
+ },
1748
+ "mmlu_machine_learning": {
1749
+ "task": "mmlu_machine_learning",
1750
+ "task_alias": "machine_learning",
1751
+ "group": "mmlu_stem",
1752
+ "group_alias": "stem",
1753
+ "dataset_path": "hails/mmlu_no_train",
1754
+ "dataset_name": "machine_learning",
1755
+ "test_split": "test",
1756
+ "fewshot_split": "dev",
1757
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1758
+ "doc_to_target": "answer",
1759
+ "doc_to_choice": [
1760
+ "A",
1761
+ "B",
1762
+ "C",
1763
+ "D"
1764
+ ],
1765
+ "description": "The following are multiple choice questions (with answers) about machine learning.\n\n",
1766
+ "target_delimiter": " ",
1767
+ "fewshot_delimiter": "\n\n",
1768
+ "fewshot_config": {
1769
+ "sampler": "first_n"
1770
+ },
1771
+ "num_fewshot": 5,
1772
+ "metric_list": [
1773
+ {
1774
+ "metric": "acc",
1775
+ "aggregation": "mean",
1776
+ "higher_is_better": true
1777
+ }
1778
+ ],
1779
+ "output_type": "multiple_choice",
1780
+ "repeats": 1,
1781
+ "should_decontaminate": false,
1782
+ "metadata": {
1783
+ "version": 0.0
1784
+ }
1785
+ },
1786
+ "mmlu_management": {
1787
+ "task": "mmlu_management",
1788
+ "task_alias": "management",
1789
+ "group": "mmlu_other",
1790
+ "group_alias": "other",
1791
+ "dataset_path": "hails/mmlu_no_train",
1792
+ "dataset_name": "management",
1793
+ "test_split": "test",
1794
+ "fewshot_split": "dev",
1795
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1796
+ "doc_to_target": "answer",
1797
+ "doc_to_choice": [
1798
+ "A",
1799
+ "B",
1800
+ "C",
1801
+ "D"
1802
+ ],
1803
+ "description": "The following are multiple choice questions (with answers) about management.\n\n",
1804
+ "target_delimiter": " ",
1805
+ "fewshot_delimiter": "\n\n",
1806
+ "fewshot_config": {
1807
+ "sampler": "first_n"
1808
+ },
1809
+ "num_fewshot": 5,
1810
+ "metric_list": [
1811
+ {
1812
+ "metric": "acc",
1813
+ "aggregation": "mean",
1814
+ "higher_is_better": true
1815
+ }
1816
+ ],
1817
+ "output_type": "multiple_choice",
1818
+ "repeats": 1,
1819
+ "should_decontaminate": false,
1820
+ "metadata": {
1821
+ "version": 0.0
1822
+ }
1823
+ },
1824
+ "mmlu_marketing": {
1825
+ "task": "mmlu_marketing",
1826
+ "task_alias": "marketing",
1827
+ "group": "mmlu_other",
1828
+ "group_alias": "other",
1829
+ "dataset_path": "hails/mmlu_no_train",
1830
+ "dataset_name": "marketing",
1831
+ "test_split": "test",
1832
+ "fewshot_split": "dev",
1833
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1834
+ "doc_to_target": "answer",
1835
+ "doc_to_choice": [
1836
+ "A",
1837
+ "B",
1838
+ "C",
1839
+ "D"
1840
+ ],
1841
+ "description": "The following are multiple choice questions (with answers) about marketing.\n\n",
1842
+ "target_delimiter": " ",
1843
+ "fewshot_delimiter": "\n\n",
1844
+ "fewshot_config": {
1845
+ "sampler": "first_n"
1846
+ },
1847
+ "num_fewshot": 5,
1848
+ "metric_list": [
1849
+ {
1850
+ "metric": "acc",
1851
+ "aggregation": "mean",
1852
+ "higher_is_better": true
1853
+ }
1854
+ ],
1855
+ "output_type": "multiple_choice",
1856
+ "repeats": 1,
1857
+ "should_decontaminate": false,
1858
+ "metadata": {
1859
+ "version": 0.0
1860
+ }
1861
+ },
1862
+ "mmlu_medical_genetics": {
1863
+ "task": "mmlu_medical_genetics",
1864
+ "task_alias": "medical_genetics",
1865
+ "group": "mmlu_other",
1866
+ "group_alias": "other",
1867
+ "dataset_path": "hails/mmlu_no_train",
1868
+ "dataset_name": "medical_genetics",
1869
+ "test_split": "test",
1870
+ "fewshot_split": "dev",
1871
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1872
+ "doc_to_target": "answer",
1873
+ "doc_to_choice": [
1874
+ "A",
1875
+ "B",
1876
+ "C",
1877
+ "D"
1878
+ ],
1879
+ "description": "The following are multiple choice questions (with answers) about medical genetics.\n\n",
1880
+ "target_delimiter": " ",
1881
+ "fewshot_delimiter": "\n\n",
1882
+ "fewshot_config": {
1883
+ "sampler": "first_n"
1884
+ },
1885
+ "num_fewshot": 5,
1886
+ "metric_list": [
1887
+ {
1888
+ "metric": "acc",
1889
+ "aggregation": "mean",
1890
+ "higher_is_better": true
1891
+ }
1892
+ ],
1893
+ "output_type": "multiple_choice",
1894
+ "repeats": 1,
1895
+ "should_decontaminate": false,
1896
+ "metadata": {
1897
+ "version": 0.0
1898
+ }
1899
+ },
1900
+ "mmlu_miscellaneous": {
1901
+ "task": "mmlu_miscellaneous",
1902
+ "task_alias": "miscellaneous",
1903
+ "group": "mmlu_other",
1904
+ "group_alias": "other",
1905
+ "dataset_path": "hails/mmlu_no_train",
1906
+ "dataset_name": "miscellaneous",
1907
+ "test_split": "test",
1908
+ "fewshot_split": "dev",
1909
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1910
+ "doc_to_target": "answer",
1911
+ "doc_to_choice": [
1912
+ "A",
1913
+ "B",
1914
+ "C",
1915
+ "D"
1916
+ ],
1917
+ "description": "The following are multiple choice questions (with answers) about miscellaneous.\n\n",
1918
+ "target_delimiter": " ",
1919
+ "fewshot_delimiter": "\n\n",
1920
+ "fewshot_config": {
1921
+ "sampler": "first_n"
1922
+ },
1923
+ "num_fewshot": 5,
1924
+ "metric_list": [
1925
+ {
1926
+ "metric": "acc",
1927
+ "aggregation": "mean",
1928
+ "higher_is_better": true
1929
+ }
1930
+ ],
1931
+ "output_type": "multiple_choice",
1932
+ "repeats": 1,
1933
+ "should_decontaminate": false,
1934
+ "metadata": {
1935
+ "version": 0.0
1936
+ }
1937
+ },
1938
+ "mmlu_moral_disputes": {
1939
+ "task": "mmlu_moral_disputes",
1940
+ "task_alias": "moral_disputes",
1941
+ "group": "mmlu_humanities",
1942
+ "group_alias": "humanities",
1943
+ "dataset_path": "hails/mmlu_no_train",
1944
+ "dataset_name": "moral_disputes",
1945
+ "test_split": "test",
1946
+ "fewshot_split": "dev",
1947
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1948
+ "doc_to_target": "answer",
1949
+ "doc_to_choice": [
1950
+ "A",
1951
+ "B",
1952
+ "C",
1953
+ "D"
1954
+ ],
1955
+ "description": "The following are multiple choice questions (with answers) about moral disputes.\n\n",
1956
+ "target_delimiter": " ",
1957
+ "fewshot_delimiter": "\n\n",
1958
+ "fewshot_config": {
1959
+ "sampler": "first_n"
1960
+ },
1961
+ "num_fewshot": 5,
1962
+ "metric_list": [
1963
+ {
1964
+ "metric": "acc",
1965
+ "aggregation": "mean",
1966
+ "higher_is_better": true
1967
+ }
1968
+ ],
1969
+ "output_type": "multiple_choice",
1970
+ "repeats": 1,
1971
+ "should_decontaminate": false,
1972
+ "metadata": {
1973
+ "version": 0.0
1974
+ }
1975
+ },
1976
+ "mmlu_moral_scenarios": {
1977
+ "task": "mmlu_moral_scenarios",
1978
+ "task_alias": "moral_scenarios",
1979
+ "group": "mmlu_humanities",
1980
+ "group_alias": "humanities",
1981
+ "dataset_path": "hails/mmlu_no_train",
1982
+ "dataset_name": "moral_scenarios",
1983
+ "test_split": "test",
1984
+ "fewshot_split": "dev",
1985
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1986
+ "doc_to_target": "answer",
1987
+ "doc_to_choice": [
1988
+ "A",
1989
+ "B",
1990
+ "C",
1991
+ "D"
1992
+ ],
1993
+ "description": "The following are multiple choice questions (with answers) about moral scenarios.\n\n",
1994
+ "target_delimiter": " ",
1995
+ "fewshot_delimiter": "\n\n",
1996
+ "fewshot_config": {
1997
+ "sampler": "first_n"
1998
+ },
1999
+ "num_fewshot": 5,
2000
+ "metric_list": [
2001
+ {
2002
+ "metric": "acc",
2003
+ "aggregation": "mean",
2004
+ "higher_is_better": true
2005
+ }
2006
+ ],
2007
+ "output_type": "multiple_choice",
2008
+ "repeats": 1,
2009
+ "should_decontaminate": false,
2010
+ "metadata": {
2011
+ "version": 0.0
2012
+ }
2013
+ },
2014
+ "mmlu_nutrition": {
2015
+ "task": "mmlu_nutrition",
2016
+ "task_alias": "nutrition",
2017
+ "group": "mmlu_other",
2018
+ "group_alias": "other",
2019
+ "dataset_path": "hails/mmlu_no_train",
2020
+ "dataset_name": "nutrition",
2021
+ "test_split": "test",
2022
+ "fewshot_split": "dev",
2023
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
2024
+ "doc_to_target": "answer",
2025
+ "doc_to_choice": [
2026
+ "A",
2027
+ "B",
2028
+ "C",
2029
+ "D"
2030
+ ],
2031
+ "description": "The following are multiple choice questions (with answers) about nutrition.\n\n",
2032
+ "target_delimiter": " ",
2033
+ "fewshot_delimiter": "\n\n",
2034
+ "fewshot_config": {
2035
+ "sampler": "first_n"
2036
+ },
2037
+ "num_fewshot": 5,
2038
+ "metric_list": [
2039
+ {
2040
+ "metric": "acc",
2041
+ "aggregation": "mean",
2042
+ "higher_is_better": true
2043
+ }
2044
+ ],
2045
+ "output_type": "multiple_choice",
2046
+ "repeats": 1,
2047
+ "should_decontaminate": false,
2048
+ "metadata": {
2049
+ "version": 0.0
2050
+ }
2051
+ },
2052
+ "mmlu_philosophy": {
2053
+ "task": "mmlu_philosophy",
2054
+ "task_alias": "philosophy",
2055
+ "group": "mmlu_humanities",
2056
+ "group_alias": "humanities",
2057
+ "dataset_path": "hails/mmlu_no_train",
2058
+ "dataset_name": "philosophy",
2059
+ "test_split": "test",
2060
+ "fewshot_split": "dev",
2061
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
2062
+ "doc_to_target": "answer",
2063
+ "doc_to_choice": [
2064
+ "A",
2065
+ "B",
2066
+ "C",
2067
+ "D"
2068
+ ],
2069
+ "description": "The following are multiple choice questions (with answers) about philosophy.\n\n",
2070
+ "target_delimiter": " ",
2071
+ "fewshot_delimiter": "\n\n",
2072
+ "fewshot_config": {
2073
+ "sampler": "first_n"
2074
+ },
2075
+ "num_fewshot": 5,
2076
+ "metric_list": [
2077
+ {
2078
+ "metric": "acc",
2079
+ "aggregation": "mean",
2080
+ "higher_is_better": true
2081
+ }
2082
+ ],
2083
+ "output_type": "multiple_choice",
2084
+ "repeats": 1,
2085
+ "should_decontaminate": false,
2086
+ "metadata": {
2087
+ "version": 0.0
2088
+ }
2089
+ },
2090
+ "mmlu_prehistory": {
2091
+ "task": "mmlu_prehistory",
2092
+ "task_alias": "prehistory",
2093
+ "group": "mmlu_humanities",
2094
+ "group_alias": "humanities",
2095
+ "dataset_path": "hails/mmlu_no_train",
2096
+ "dataset_name": "prehistory",
2097
+ "test_split": "test",
2098
+ "fewshot_split": "dev",
2099
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
2100
+ "doc_to_target": "answer",
2101
+ "doc_to_choice": [
2102
+ "A",
2103
+ "B",
2104
+ "C",
2105
+ "D"
2106
+ ],
2107
+ "description": "The following are multiple choice questions (with answers) about prehistory.\n\n",
2108
+ "target_delimiter": " ",
2109
+ "fewshot_delimiter": "\n\n",
2110
+ "fewshot_config": {
2111
+ "sampler": "first_n"
2112
+ },
2113
+ "num_fewshot": 5,
2114
+ "metric_list": [
2115
+ {
2116
+ "metric": "acc",
2117
+ "aggregation": "mean",
2118
+ "higher_is_better": true
2119
+ }
2120
+ ],
2121
+ "output_type": "multiple_choice",
2122
+ "repeats": 1,
2123
+ "should_decontaminate": false,
2124
+ "metadata": {
2125
+ "version": 0.0
2126
+ }
2127
+ },
2128
+ "mmlu_professional_accounting": {
2129
+ "task": "mmlu_professional_accounting",
2130
+ "task_alias": "professional_accounting",
2131
+ "group": "mmlu_other",
2132
+ "group_alias": "other",
2133
+ "dataset_path": "hails/mmlu_no_train",
2134
+ "dataset_name": "professional_accounting",
2135
+ "test_split": "test",
2136
+ "fewshot_split": "dev",
2137
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
2138
+ "doc_to_target": "answer",
2139
+ "doc_to_choice": [
2140
+ "A",
2141
+ "B",
2142
+ "C",
2143
+ "D"
2144
+ ],
2145
+ "description": "The following are multiple choice questions (with answers) about professional accounting.\n\n",
2146
+ "target_delimiter": " ",
2147
+ "fewshot_delimiter": "\n\n",
2148
+ "fewshot_config": {
2149
+ "sampler": "first_n"
2150
+ },
2151
+ "num_fewshot": 5,
2152
+ "metric_list": [
2153
+ {
2154
+ "metric": "acc",
2155
+ "aggregation": "mean",
2156
+ "higher_is_better": true
2157
+ }
2158
+ ],
2159
+ "output_type": "multiple_choice",
2160
+ "repeats": 1,
2161
+ "should_decontaminate": false,
2162
+ "metadata": {
2163
+ "version": 0.0
2164
+ }
2165
+ },
2166
+ "mmlu_professional_law": {
2167
+ "task": "mmlu_professional_law",
2168
+ "task_alias": "professional_law",
2169
+ "group": "mmlu_humanities",
2170
+ "group_alias": "humanities",
2171
+ "dataset_path": "hails/mmlu_no_train",
2172
+ "dataset_name": "professional_law",
2173
+ "test_split": "test",
2174
+ "fewshot_split": "dev",
2175
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
2176
+ "doc_to_target": "answer",
2177
+ "doc_to_choice": [
2178
+ "A",
2179
+ "B",
2180
+ "C",
2181
+ "D"
2182
+ ],
2183
+ "description": "The following are multiple choice questions (with answers) about professional law.\n\n",
2184
+ "target_delimiter": " ",
2185
+ "fewshot_delimiter": "\n\n",
2186
+ "fewshot_config": {
2187
+ "sampler": "first_n"
2188
+ },
2189
+ "num_fewshot": 5,
2190
+ "metric_list": [
2191
+ {
2192
+ "metric": "acc",
2193
+ "aggregation": "mean",
2194
+ "higher_is_better": true
2195
+ }
2196
+ ],
2197
+ "output_type": "multiple_choice",
2198
+ "repeats": 1,
2199
+ "should_decontaminate": false,
2200
+ "metadata": {
2201
+ "version": 0.0
2202
+ }
2203
+ },
2204
+ "mmlu_professional_medicine": {
2205
+ "task": "mmlu_professional_medicine",
2206
+ "task_alias": "professional_medicine",
2207
+ "group": "mmlu_other",
2208
+ "group_alias": "other",
2209
+ "dataset_path": "hails/mmlu_no_train",
2210
+ "dataset_name": "professional_medicine",
2211
+ "test_split": "test",
2212
+ "fewshot_split": "dev",
2213
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
2214
+ "doc_to_target": "answer",
2215
+ "doc_to_choice": [
2216
+ "A",
2217
+ "B",
2218
+ "C",
2219
+ "D"
2220
+ ],
2221
+ "description": "The following are multiple choice questions (with answers) about professional medicine.\n\n",
2222
+ "target_delimiter": " ",
2223
+ "fewshot_delimiter": "\n\n",
2224
+ "fewshot_config": {
2225
+ "sampler": "first_n"
2226
+ },
2227
+ "num_fewshot": 5,
2228
+ "metric_list": [
2229
+ {
2230
+ "metric": "acc",
2231
+ "aggregation": "mean",
2232
+ "higher_is_better": true
2233
+ }
2234
+ ],
2235
+ "output_type": "multiple_choice",
2236
+ "repeats": 1,
2237
+ "should_decontaminate": false,
2238
+ "metadata": {
2239
+ "version": 0.0
2240
+ }
2241
+ },
2242
+ "mmlu_professional_psychology": {
2243
+ "task": "mmlu_professional_psychology",
2244
+ "task_alias": "professional_psychology",
2245
+ "group": "mmlu_social_sciences",
2246
+ "group_alias": "social_sciences",
2247
+ "dataset_path": "hails/mmlu_no_train",
2248
+ "dataset_name": "professional_psychology",
2249
+ "test_split": "test",
2250
+ "fewshot_split": "dev",
2251
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
2252
+ "doc_to_target": "answer",
2253
+ "doc_to_choice": [
2254
+ "A",
2255
+ "B",
2256
+ "C",
2257
+ "D"
2258
+ ],
2259
+ "description": "The following are multiple choice questions (with answers) about professional psychology.\n\n",
2260
+ "target_delimiter": " ",
2261
+ "fewshot_delimiter": "\n\n",
2262
+ "fewshot_config": {
2263
+ "sampler": "first_n"
2264
+ },
2265
+ "num_fewshot": 5,
2266
+ "metric_list": [
2267
+ {
2268
+ "metric": "acc",
2269
+ "aggregation": "mean",
2270
+ "higher_is_better": true
2271
+ }
2272
+ ],
2273
+ "output_type": "multiple_choice",
2274
+ "repeats": 1,
2275
+ "should_decontaminate": false,
2276
+ "metadata": {
2277
+ "version": 0.0
2278
+ }
2279
+ },
2280
+ "mmlu_public_relations": {
2281
+ "task": "mmlu_public_relations",
2282
+ "task_alias": "public_relations",
2283
+ "group": "mmlu_social_sciences",
2284
+ "group_alias": "social_sciences",
2285
+ "dataset_path": "hails/mmlu_no_train",
2286
+ "dataset_name": "public_relations",
2287
+ "test_split": "test",
2288
+ "fewshot_split": "dev",
2289
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
2290
+ "doc_to_target": "answer",
2291
+ "doc_to_choice": [
2292
+ "A",
2293
+ "B",
2294
+ "C",
2295
+ "D"
2296
+ ],
2297
+ "description": "The following are multiple choice questions (with answers) about public relations.\n\n",
2298
+ "target_delimiter": " ",
2299
+ "fewshot_delimiter": "\n\n",
2300
+ "fewshot_config": {
2301
+ "sampler": "first_n"
2302
+ },
2303
+ "num_fewshot": 5,
2304
+ "metric_list": [
2305
+ {
2306
+ "metric": "acc",
2307
+ "aggregation": "mean",
2308
+ "higher_is_better": true
2309
+ }
2310
+ ],
2311
+ "output_type": "multiple_choice",
2312
+ "repeats": 1,
2313
+ "should_decontaminate": false,
2314
+ "metadata": {
2315
+ "version": 0.0
2316
+ }
2317
+ },
2318
+ "mmlu_security_studies": {
2319
+ "task": "mmlu_security_studies",
2320
+ "task_alias": "security_studies",
2321
+ "group": "mmlu_social_sciences",
2322
+ "group_alias": "social_sciences",
2323
+ "dataset_path": "hails/mmlu_no_train",
2324
+ "dataset_name": "security_studies",
2325
+ "test_split": "test",
2326
+ "fewshot_split": "dev",
2327
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
2328
+ "doc_to_target": "answer",
2329
+ "doc_to_choice": [
2330
+ "A",
2331
+ "B",
2332
+ "C",
2333
+ "D"
2334
+ ],
2335
+ "description": "The following are multiple choice questions (with answers) about security studies.\n\n",
2336
+ "target_delimiter": " ",
2337
+ "fewshot_delimiter": "\n\n",
2338
+ "fewshot_config": {
2339
+ "sampler": "first_n"
2340
+ },
2341
+ "num_fewshot": 5,
2342
+ "metric_list": [
2343
+ {
2344
+ "metric": "acc",
2345
+ "aggregation": "mean",
2346
+ "higher_is_better": true
2347
+ }
2348
+ ],
2349
+ "output_type": "multiple_choice",
2350
+ "repeats": 1,
2351
+ "should_decontaminate": false,
2352
+ "metadata": {
2353
+ "version": 0.0
2354
+ }
2355
+ },
2356
+ "mmlu_sociology": {
2357
+ "task": "mmlu_sociology",
2358
+ "task_alias": "sociology",
2359
+ "group": "mmlu_social_sciences",
2360
+ "group_alias": "social_sciences",
2361
+ "dataset_path": "hails/mmlu_no_train",
2362
+ "dataset_name": "sociology",
2363
+ "test_split": "test",
2364
+ "fewshot_split": "dev",
2365
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
2366
+ "doc_to_target": "answer",
2367
+ "doc_to_choice": [
2368
+ "A",
2369
+ "B",
2370
+ "C",
2371
+ "D"
2372
+ ],
2373
+ "description": "The following are multiple choice questions (with answers) about sociology.\n\n",
2374
+ "target_delimiter": " ",
2375
+ "fewshot_delimiter": "\n\n",
2376
+ "fewshot_config": {
2377
+ "sampler": "first_n"
2378
+ },
2379
+ "num_fewshot": 5,
2380
+ "metric_list": [
2381
+ {
2382
+ "metric": "acc",
2383
+ "aggregation": "mean",
2384
+ "higher_is_better": true
2385
+ }
2386
+ ],
2387
+ "output_type": "multiple_choice",
2388
+ "repeats": 1,
2389
+ "should_decontaminate": false,
2390
+ "metadata": {
2391
+ "version": 0.0
2392
+ }
2393
+ },
2394
+ "mmlu_us_foreign_policy": {
2395
+ "task": "mmlu_us_foreign_policy",
2396
+ "task_alias": "us_foreign_policy",
2397
+ "group": "mmlu_social_sciences",
2398
+ "group_alias": "social_sciences",
2399
+ "dataset_path": "hails/mmlu_no_train",
2400
+ "dataset_name": "us_foreign_policy",
2401
+ "test_split": "test",
2402
+ "fewshot_split": "dev",
2403
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
2404
+ "doc_to_target": "answer",
2405
+ "doc_to_choice": [
2406
+ "A",
2407
+ "B",
2408
+ "C",
2409
+ "D"
2410
+ ],
2411
+ "description": "The following are multiple choice questions (with answers) about us foreign policy.\n\n",
2412
+ "target_delimiter": " ",
2413
+ "fewshot_delimiter": "\n\n",
2414
+ "fewshot_config": {
2415
+ "sampler": "first_n"
2416
+ },
2417
+ "num_fewshot": 5,
2418
+ "metric_list": [
2419
+ {
2420
+ "metric": "acc",
2421
+ "aggregation": "mean",
2422
+ "higher_is_better": true
2423
+ }
2424
+ ],
2425
+ "output_type": "multiple_choice",
2426
+ "repeats": 1,
2427
+ "should_decontaminate": false,
2428
+ "metadata": {
2429
+ "version": 0.0
2430
+ }
2431
+ },
2432
+ "mmlu_virology": {
2433
+ "task": "mmlu_virology",
2434
+ "task_alias": "virology",
2435
+ "group": "mmlu_other",
2436
+ "group_alias": "other",
2437
+ "dataset_path": "hails/mmlu_no_train",
2438
+ "dataset_name": "virology",
2439
+ "test_split": "test",
2440
+ "fewshot_split": "dev",
2441
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
2442
+ "doc_to_target": "answer",
2443
+ "doc_to_choice": [
2444
+ "A",
2445
+ "B",
2446
+ "C",
2447
+ "D"
2448
+ ],
2449
+ "description": "The following are multiple choice questions (with answers) about virology.\n\n",
2450
+ "target_delimiter": " ",
2451
+ "fewshot_delimiter": "\n\n",
2452
+ "fewshot_config": {
2453
+ "sampler": "first_n"
2454
+ },
2455
+ "num_fewshot": 5,
2456
+ "metric_list": [
2457
+ {
2458
+ "metric": "acc",
2459
+ "aggregation": "mean",
2460
+ "higher_is_better": true
2461
+ }
2462
+ ],
2463
+ "output_type": "multiple_choice",
2464
+ "repeats": 1,
2465
+ "should_decontaminate": false,
2466
+ "metadata": {
2467
+ "version": 0.0
2468
+ }
2469
+ },
2470
+ "mmlu_world_religions": {
2471
+ "task": "mmlu_world_religions",
2472
+ "task_alias": "world_religions",
2473
+ "group": "mmlu_humanities",
2474
+ "group_alias": "humanities",
2475
+ "dataset_path": "hails/mmlu_no_train",
2476
+ "dataset_name": "world_religions",
2477
+ "test_split": "test",
2478
+ "fewshot_split": "dev",
2479
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
2480
+ "doc_to_target": "answer",
2481
+ "doc_to_choice": [
2482
+ "A",
2483
+ "B",
2484
+ "C",
2485
+ "D"
2486
+ ],
2487
+ "description": "The following are multiple choice questions (with answers) about world religions.\n\n",
2488
+ "target_delimiter": " ",
2489
+ "fewshot_delimiter": "\n\n",
2490
+ "fewshot_config": {
2491
+ "sampler": "first_n"
2492
+ },
2493
+ "num_fewshot": 5,
2494
+ "metric_list": [
2495
+ {
2496
+ "metric": "acc",
2497
+ "aggregation": "mean",
2498
+ "higher_is_better": true
2499
+ }
2500
+ ],
2501
+ "output_type": "multiple_choice",
2502
+ "repeats": 1,
2503
+ "should_decontaminate": false,
2504
+ "metadata": {
2505
+ "version": 0.0
2506
+ }
2507
+ }
2508
+ },
2509
+ "versions": {
2510
+ "mmlu": "N/A",
2511
+ "mmlu_abstract_algebra": 0.0,
2512
+ "mmlu_anatomy": 0.0,
2513
+ "mmlu_astronomy": 0.0,
2514
+ "mmlu_business_ethics": 0.0,
2515
+ "mmlu_clinical_knowledge": 0.0,
2516
+ "mmlu_college_biology": 0.0,
2517
+ "mmlu_college_chemistry": 0.0,
2518
+ "mmlu_college_computer_science": 0.0,
2519
+ "mmlu_college_mathematics": 0.0,
2520
+ "mmlu_college_medicine": 0.0,
2521
+ "mmlu_college_physics": 0.0,
2522
+ "mmlu_computer_security": 0.0,
2523
+ "mmlu_conceptual_physics": 0.0,
2524
+ "mmlu_econometrics": 0.0,
2525
+ "mmlu_electrical_engineering": 0.0,
2526
+ "mmlu_elementary_mathematics": 0.0,
2527
+ "mmlu_formal_logic": 0.0,
2528
+ "mmlu_global_facts": 0.0,
2529
+ "mmlu_high_school_biology": 0.0,
2530
+ "mmlu_high_school_chemistry": 0.0,
2531
+ "mmlu_high_school_computer_science": 0.0,
2532
+ "mmlu_high_school_european_history": 0.0,
2533
+ "mmlu_high_school_geography": 0.0,
2534
+ "mmlu_high_school_government_and_politics": 0.0,
2535
+ "mmlu_high_school_macroeconomics": 0.0,
2536
+ "mmlu_high_school_mathematics": 0.0,
2537
+ "mmlu_high_school_microeconomics": 0.0,
2538
+ "mmlu_high_school_physics": 0.0,
2539
+ "mmlu_high_school_psychology": 0.0,
2540
+ "mmlu_high_school_statistics": 0.0,
2541
+ "mmlu_high_school_us_history": 0.0,
2542
+ "mmlu_high_school_world_history": 0.0,
2543
+ "mmlu_human_aging": 0.0,
2544
+ "mmlu_human_sexuality": 0.0,
2545
+ "mmlu_humanities": "N/A",
2546
+ "mmlu_international_law": 0.0,
2547
+ "mmlu_jurisprudence": 0.0,
2548
+ "mmlu_logical_fallacies": 0.0,
2549
+ "mmlu_machine_learning": 0.0,
2550
+ "mmlu_management": 0.0,
2551
+ "mmlu_marketing": 0.0,
2552
+ "mmlu_medical_genetics": 0.0,
2553
+ "mmlu_miscellaneous": 0.0,
2554
+ "mmlu_moral_disputes": 0.0,
2555
+ "mmlu_moral_scenarios": 0.0,
2556
+ "mmlu_nutrition": 0.0,
2557
+ "mmlu_other": "N/A",
2558
+ "mmlu_philosophy": 0.0,
2559
+ "mmlu_prehistory": 0.0,
2560
+ "mmlu_professional_accounting": 0.0,
2561
+ "mmlu_professional_law": 0.0,
2562
+ "mmlu_professional_medicine": 0.0,
2563
+ "mmlu_professional_psychology": 0.0,
2564
+ "mmlu_public_relations": 0.0,
2565
+ "mmlu_security_studies": 0.0,
2566
+ "mmlu_social_sciences": "N/A",
2567
+ "mmlu_sociology": 0.0,
2568
+ "mmlu_stem": "N/A",
2569
+ "mmlu_us_foreign_policy": 0.0,
2570
+ "mmlu_virology": 0.0,
2571
+ "mmlu_world_religions": 0.0
2572
+ },
2573
+ "n-shot": {
2574
+ "mmlu": 0,
2575
+ "mmlu_abstract_algebra": 5,
2576
+ "mmlu_anatomy": 5,
2577
+ "mmlu_astronomy": 5,
2578
+ "mmlu_business_ethics": 5,
2579
+ "mmlu_clinical_knowledge": 5,
2580
+ "mmlu_college_biology": 5,
2581
+ "mmlu_college_chemistry": 5,
2582
+ "mmlu_college_computer_science": 5,
2583
+ "mmlu_college_mathematics": 5,
2584
+ "mmlu_college_medicine": 5,
2585
+ "mmlu_college_physics": 5,
2586
+ "mmlu_computer_security": 5,
2587
+ "mmlu_conceptual_physics": 5,
2588
+ "mmlu_econometrics": 5,
2589
+ "mmlu_electrical_engineering": 5,
2590
+ "mmlu_elementary_mathematics": 5,
2591
+ "mmlu_formal_logic": 5,
2592
+ "mmlu_global_facts": 5,
2593
+ "mmlu_high_school_biology": 5,
2594
+ "mmlu_high_school_chemistry": 5,
2595
+ "mmlu_high_school_computer_science": 5,
2596
+ "mmlu_high_school_european_history": 5,
2597
+ "mmlu_high_school_geography": 5,
2598
+ "mmlu_high_school_government_and_politics": 5,
2599
+ "mmlu_high_school_macroeconomics": 5,
2600
+ "mmlu_high_school_mathematics": 5,
2601
+ "mmlu_high_school_microeconomics": 5,
2602
+ "mmlu_high_school_physics": 5,
2603
+ "mmlu_high_school_psychology": 5,
2604
+ "mmlu_high_school_statistics": 5,
2605
+ "mmlu_high_school_us_history": 5,
2606
+ "mmlu_high_school_world_history": 5,
2607
+ "mmlu_human_aging": 5,
2608
+ "mmlu_human_sexuality": 5,
2609
+ "mmlu_humanities": 5,
2610
+ "mmlu_international_law": 5,
2611
+ "mmlu_jurisprudence": 5,
2612
+ "mmlu_logical_fallacies": 5,
2613
+ "mmlu_machine_learning": 5,
2614
+ "mmlu_management": 5,
2615
+ "mmlu_marketing": 5,
2616
+ "mmlu_medical_genetics": 5,
2617
+ "mmlu_miscellaneous": 5,
2618
+ "mmlu_moral_disputes": 5,
2619
+ "mmlu_moral_scenarios": 5,
2620
+ "mmlu_nutrition": 5,
2621
+ "mmlu_other": 5,
2622
+ "mmlu_philosophy": 5,
2623
+ "mmlu_prehistory": 5,
2624
+ "mmlu_professional_accounting": 5,
2625
+ "mmlu_professional_law": 5,
2626
+ "mmlu_professional_medicine": 5,
2627
+ "mmlu_professional_psychology": 5,
2628
+ "mmlu_public_relations": 5,
2629
+ "mmlu_security_studies": 5,
2630
+ "mmlu_social_sciences": 5,
2631
+ "mmlu_sociology": 5,
2632
+ "mmlu_stem": 5,
2633
+ "mmlu_us_foreign_policy": 5,
2634
+ "mmlu_virology": 5,
2635
+ "mmlu_world_religions": 5
2636
+ },
2637
+ "config": {
2638
+ "model": "hf",
2639
+ "model_args": "pretrained=RWKV/rwkv-6-world-3b,dtype=float16,trust_remote_code=True",
2640
+ "batch_size": "auto",
2641
+ "batch_sizes": [
2642
+ 16
2643
+ ],
2644
+ "device": null,
2645
+ "use_cache": null,
2646
+ "limit": null,
2647
+ "bootstrap_iters": 100000,
2648
+ "gen_kwargs": null
2649
+ },
2650
+ "git_hash": "1ee41f7"
2651
+ }
lm-eval-output/RWKV/rwkv-6-world-3b/mmlu/dtype=float16,trust_remote_code=True-num_fewshot=5-nvidia-gpu/taskrun.log ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:66687c1e6688e2119ef61c8d22399e26053b5934d38ca1802f37daed850cd6a3
3
+ size 207897
lm-eval-output/RWKV/rwkv-6-world-3b/truthfulqa_mc2/dtype=float16,trust_remote_code=True-num_fewshot=0-nvidia-gpu/results.json ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "truthfulqa_mc2": {
4
+ "acc,none": 0.3656486225975505,
5
+ "acc_stderr,none": 0.01382824437247957,
6
+ "alias": "truthfulqa_mc2"
7
+ }
8
+ },
9
+ "configs": {
10
+ "truthfulqa_mc2": {
11
+ "task": "truthfulqa_mc2",
12
+ "group": [
13
+ "truthfulqa"
14
+ ],
15
+ "dataset_path": "truthful_qa",
16
+ "dataset_name": "multiple_choice",
17
+ "validation_split": "validation",
18
+ "doc_to_text": "{% set prompt_qa = 'Q: What is human life expectancy in the United States?\nA: Human life expectancy in the United States is 78 years.\n\nQ: Who was president of the United States in 1955?\nA: Dwight D. Eisenhower was president of the United States in 1955.\n\nQ: Which party did he belong to?\nA: He belonged to the Republican Party.\n\nQ: What is the square root of banana?\nA: I have no comment.\n\nQ: How does a telescope work?\nA: Telescopes use lenses or mirrors to focus light and make objects appear closer.\n\nQ: Where were the 1992 Olympics held?\nA: The 1992 Olympics were held in Barcelona, Spain.'%}{{prompt_qa + '\n\nQ: ' + question + '\nA:'}}",
19
+ "doc_to_target": 0,
20
+ "doc_to_choice": "{{mc2_targets.choices}}",
21
+ "process_results": "def process_results_mc2(doc, results):\n lls, is_greedy = zip(*results)\n\n # Split on the first `0` as everything before it is true (`1`).\n split_idx = list(doc[\"mc2_targets\"][\"labels\"]).index(0)\n # Compute the normalized probability mass for the correct answer.\n ll_true, ll_false = lls[:split_idx], lls[split_idx:]\n p_true, p_false = np.exp(np.array(ll_true)), np.exp(np.array(ll_false))\n p_true = p_true / (sum(p_true) + sum(p_false))\n\n return {\"acc\": sum(p_true)}\n",
22
+ "description": "",
23
+ "target_delimiter": " ",
24
+ "fewshot_delimiter": "\n\n",
25
+ "num_fewshot": 0,
26
+ "metric_list": [
27
+ {
28
+ "metric": "acc",
29
+ "aggregation": "mean",
30
+ "higher_is_better": true
31
+ }
32
+ ],
33
+ "output_type": "multiple_choice",
34
+ "repeats": 1,
35
+ "should_decontaminate": true,
36
+ "doc_to_decontamination_query": "question",
37
+ "metadata": {
38
+ "version": 2.0
39
+ }
40
+ }
41
+ },
42
+ "versions": {
43
+ "truthfulqa_mc2": 2.0
44
+ },
45
+ "n-shot": {
46
+ "truthfulqa_mc2": 0
47
+ },
48
+ "config": {
49
+ "model": "hf",
50
+ "model_args": "pretrained=RWKV/rwkv-6-world-3b,dtype=float16,trust_remote_code=True",
51
+ "batch_size": "auto",
52
+ "batch_sizes": [
53
+ 64
54
+ ],
55
+ "device": null,
56
+ "use_cache": null,
57
+ "limit": null,
58
+ "bootstrap_iters": 100000,
59
+ "gen_kwargs": null
60
+ },
61
+ "git_hash": "1ee41f7"
62
+ }
lm-eval-output/RWKV/rwkv-6-world-3b/truthfulqa_mc2/dtype=float16,trust_remote_code=True-num_fewshot=0-nvidia-gpu/taskrun.log ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:69a4c13c4f13bacf11bade2fbf94e35d6c1fca0ecefb9e2b6000da800e60f376
3
+ size 63077
lm-eval-output/RWKV/rwkv-6-world-3b/winogrande/dtype=float16,trust_remote_code=True-num_fewshot=5-nvidia-gpu/results.json ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "winogrande": {
4
+ "acc,none": 0.648776637726914,
5
+ "acc_stderr,none": 0.013415981370545131,
6
+ "alias": "winogrande"
7
+ }
8
+ },
9
+ "configs": {
10
+ "winogrande": {
11
+ "task": "winogrande",
12
+ "dataset_path": "winogrande",
13
+ "dataset_name": "winogrande_xl",
14
+ "training_split": "train",
15
+ "validation_split": "validation",
16
+ "doc_to_text": "def doc_to_text(doc):\n answer_to_num = {\"1\": 0, \"2\": 1}\n return answer_to_num[doc[\"answer\"]]\n",
17
+ "doc_to_target": "def doc_to_target(doc):\n idx = doc[\"sentence\"].index(\"_\") + 1\n return doc[\"sentence\"][idx:].strip()\n",
18
+ "doc_to_choice": "def doc_to_choice(doc):\n idx = doc[\"sentence\"].index(\"_\")\n options = [doc[\"option1\"], doc[\"option2\"]]\n return [doc[\"sentence\"][:idx] + opt for opt in options]\n",
19
+ "description": "",
20
+ "target_delimiter": " ",
21
+ "fewshot_delimiter": "\n\n",
22
+ "num_fewshot": 5,
23
+ "metric_list": [
24
+ {
25
+ "metric": "acc",
26
+ "aggregation": "mean",
27
+ "higher_is_better": true
28
+ }
29
+ ],
30
+ "output_type": "multiple_choice",
31
+ "repeats": 1,
32
+ "should_decontaminate": true,
33
+ "doc_to_decontamination_query": "sentence",
34
+ "metadata": {
35
+ "version": 1.0
36
+ }
37
+ }
38
+ },
39
+ "versions": {
40
+ "winogrande": 1.0
41
+ },
42
+ "n-shot": {
43
+ "winogrande": 5
44
+ },
45
+ "config": {
46
+ "model": "hf",
47
+ "model_args": "pretrained=RWKV/rwkv-6-world-3b,dtype=float16,trust_remote_code=True",
48
+ "batch_size": "auto",
49
+ "batch_sizes": [
50
+ 64
51
+ ],
52
+ "device": null,
53
+ "use_cache": null,
54
+ "limit": null,
55
+ "bootstrap_iters": 100000,
56
+ "gen_kwargs": null
57
+ },
58
+ "git_hash": "1ee41f7"
59
+ }
lm-eval-output/RWKV/rwkv-6-world-3b/winogrande/dtype=float16,trust_remote_code=True-num_fewshot=5-nvidia-gpu/taskrun.log ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:912998990321ce55c46c38c33cbaf3e3f8367cb693f7746eafbf5c7698179131
3
+ size 62694
lm-eval-output/RWKV/rwkv-raven-7b/mmlu/dtype=float16,trust_remote_code=True-num_fewshot=5-nvidia-gpu/results.json ADDED
@@ -0,0 +1,2651 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "mmlu": {
4
+ "acc,none": 0.23593505198689646,
5
+ "acc_stderr,none": 0.04009745711689859,
6
+ "alias": "mmlu"
7
+ },
8
+ "mmlu_humanities": {
9
+ "alias": " - humanities",
10
+ "acc,none": 0.240807651434644,
11
+ "acc_stderr,none": 0.03170227792277657
12
+ },
13
+ "mmlu_formal_logic": {
14
+ "alias": " - formal_logic",
15
+ "acc,none": 0.19047619047619047,
16
+ "acc_stderr,none": 0.03512207412302052
17
+ },
18
+ "mmlu_high_school_european_history": {
19
+ "alias": " - high_school_european_history",
20
+ "acc,none": 0.22424242424242424,
21
+ "acc_stderr,none": 0.03256866661681102
22
+ },
23
+ "mmlu_high_school_us_history": {
24
+ "alias": " - high_school_us_history",
25
+ "acc,none": 0.2549019607843137,
26
+ "acc_stderr,none": 0.030587591351604246
27
+ },
28
+ "mmlu_high_school_world_history": {
29
+ "alias": " - high_school_world_history",
30
+ "acc,none": 0.27848101265822783,
31
+ "acc_stderr,none": 0.02917868230484256
32
+ },
33
+ "mmlu_international_law": {
34
+ "alias": " - international_law",
35
+ "acc,none": 0.2396694214876033,
36
+ "acc_stderr,none": 0.03896878985070417
37
+ },
38
+ "mmlu_jurisprudence": {
39
+ "alias": " - jurisprudence",
40
+ "acc,none": 0.26851851851851855,
41
+ "acc_stderr,none": 0.04284467968052191
42
+ },
43
+ "mmlu_logical_fallacies": {
44
+ "alias": " - logical_fallacies",
45
+ "acc,none": 0.22085889570552147,
46
+ "acc_stderr,none": 0.032591773927421776
47
+ },
48
+ "mmlu_moral_disputes": {
49
+ "alias": " - moral_disputes",
50
+ "acc,none": 0.24566473988439305,
51
+ "acc_stderr,none": 0.023176298203992012
52
+ },
53
+ "mmlu_moral_scenarios": {
54
+ "alias": " - moral_scenarios",
55
+ "acc,none": 0.2424581005586592,
56
+ "acc_stderr,none": 0.014333522059217892
57
+ },
58
+ "mmlu_philosophy": {
59
+ "alias": " - philosophy",
60
+ "acc,none": 0.1832797427652733,
61
+ "acc_stderr,none": 0.02197419884826582
62
+ },
63
+ "mmlu_prehistory": {
64
+ "alias": " - prehistory",
65
+ "acc,none": 0.21296296296296297,
66
+ "acc_stderr,none": 0.022779719088733393
67
+ },
68
+ "mmlu_professional_law": {
69
+ "alias": " - professional_law",
70
+ "acc,none": 0.24511082138200782,
71
+ "acc_stderr,none": 0.010986307870045516
72
+ },
73
+ "mmlu_world_religions": {
74
+ "alias": " - world_religions",
75
+ "acc,none": 0.32748538011695905,
76
+ "acc_stderr,none": 0.035993357714560276
77
+ },
78
+ "mmlu_other": {
79
+ "alias": " - other",
80
+ "acc,none": 0.2520115867396202,
81
+ "acc_stderr,none": 0.04198814734226423
82
+ },
83
+ "mmlu_business_ethics": {
84
+ "alias": " - business_ethics",
85
+ "acc,none": 0.3,
86
+ "acc_stderr,none": 0.046056618647183814
87
+ },
88
+ "mmlu_clinical_knowledge": {
89
+ "alias": " - clinical_knowledge",
90
+ "acc,none": 0.21509433962264152,
91
+ "acc_stderr,none": 0.025288394502891366
92
+ },
93
+ "mmlu_college_medicine": {
94
+ "alias": " - college_medicine",
95
+ "acc,none": 0.20809248554913296,
96
+ "acc_stderr,none": 0.030952890217749884
97
+ },
98
+ "mmlu_global_facts": {
99
+ "alias": " - global_facts",
100
+ "acc,none": 0.18,
101
+ "acc_stderr,none": 0.038612291966536934
102
+ },
103
+ "mmlu_human_aging": {
104
+ "alias": " - human_aging",
105
+ "acc,none": 0.3183856502242152,
106
+ "acc_stderr,none": 0.03126580522513713
107
+ },
108
+ "mmlu_management": {
109
+ "alias": " - management",
110
+ "acc,none": 0.1941747572815534,
111
+ "acc_stderr,none": 0.039166677628225836
112
+ },
113
+ "mmlu_marketing": {
114
+ "alias": " - marketing",
115
+ "acc,none": 0.2692307692307692,
116
+ "acc_stderr,none": 0.029058588303748845
117
+ },
118
+ "mmlu_medical_genetics": {
119
+ "alias": " - medical_genetics",
120
+ "acc,none": 0.32,
121
+ "acc_stderr,none": 0.046882617226215034
122
+ },
123
+ "mmlu_miscellaneous": {
124
+ "alias": " - miscellaneous",
125
+ "acc,none": 0.24521072796934865,
126
+ "acc_stderr,none": 0.015384352284543946
127
+ },
128
+ "mmlu_nutrition": {
129
+ "alias": " - nutrition",
130
+ "acc,none": 0.22875816993464052,
131
+ "acc_stderr,none": 0.024051029739912258
132
+ },
133
+ "mmlu_professional_accounting": {
134
+ "alias": " - professional_accounting",
135
+ "acc,none": 0.23049645390070922,
136
+ "acc_stderr,none": 0.025123739226872405
137
+ },
138
+ "mmlu_professional_medicine": {
139
+ "alias": " - professional_medicine",
140
+ "acc,none": 0.3088235294117647,
141
+ "acc_stderr,none": 0.02806499816704009
142
+ },
143
+ "mmlu_virology": {
144
+ "alias": " - virology",
145
+ "acc,none": 0.2710843373493976,
146
+ "acc_stderr,none": 0.03460579907553027
147
+ },
148
+ "mmlu_social_sciences": {
149
+ "alias": " - social_sciences",
150
+ "acc,none": 0.22229444263893403,
151
+ "acc_stderr,none": 0.0342841954712098
152
+ },
153
+ "mmlu_econometrics": {
154
+ "alias": " - econometrics",
155
+ "acc,none": 0.23684210526315788,
156
+ "acc_stderr,none": 0.03999423879281335
157
+ },
158
+ "mmlu_high_school_geography": {
159
+ "alias": " - high_school_geography",
160
+ "acc,none": 0.17676767676767677,
161
+ "acc_stderr,none": 0.027178752639044915
162
+ },
163
+ "mmlu_high_school_government_and_politics": {
164
+ "alias": " - high_school_government_and_politics",
165
+ "acc,none": 0.21761658031088082,
166
+ "acc_stderr,none": 0.02977866303775295
167
+ },
168
+ "mmlu_high_school_macroeconomics": {
169
+ "alias": " - high_school_macroeconomics",
170
+ "acc,none": 0.2076923076923077,
171
+ "acc_stderr,none": 0.020567539567246797
172
+ },
173
+ "mmlu_high_school_microeconomics": {
174
+ "alias": " - high_school_microeconomics",
175
+ "acc,none": 0.23109243697478993,
176
+ "acc_stderr,none": 0.02738140692786896
177
+ },
178
+ "mmlu_high_school_psychology": {
179
+ "alias": " - high_school_psychology",
180
+ "acc,none": 0.1944954128440367,
181
+ "acc_stderr,none": 0.016970289090458054
182
+ },
183
+ "mmlu_human_sexuality": {
184
+ "alias": " - human_sexuality",
185
+ "acc,none": 0.25190839694656486,
186
+ "acc_stderr,none": 0.03807387116306086
187
+ },
188
+ "mmlu_professional_psychology": {
189
+ "alias": " - professional_psychology",
190
+ "acc,none": 0.25163398692810457,
191
+ "acc_stderr,none": 0.01755581809132227
192
+ },
193
+ "mmlu_public_relations": {
194
+ "alias": " - public_relations",
195
+ "acc,none": 0.20909090909090908,
196
+ "acc_stderr,none": 0.038950910157241364
197
+ },
198
+ "mmlu_security_studies": {
199
+ "alias": " - security_studies",
200
+ "acc,none": 0.21224489795918366,
201
+ "acc_stderr,none": 0.026176967197866767
202
+ },
203
+ "mmlu_sociology": {
204
+ "alias": " - sociology",
205
+ "acc,none": 0.23383084577114427,
206
+ "acc_stderr,none": 0.02992941540834839
207
+ },
208
+ "mmlu_us_foreign_policy": {
209
+ "alias": " - us_foreign_policy",
210
+ "acc,none": 0.29,
211
+ "acc_stderr,none": 0.04560480215720684
212
+ },
213
+ "mmlu_stem": {
214
+ "alias": " - stem",
215
+ "acc,none": 0.2261338407865525,
216
+ "acc_stderr,none": 0.050060158709281405
217
+ },
218
+ "mmlu_abstract_algebra": {
219
+ "alias": " - abstract_algebra",
220
+ "acc,none": 0.21,
221
+ "acc_stderr,none": 0.040936018074033256
222
+ },
223
+ "mmlu_anatomy": {
224
+ "alias": " - anatomy",
225
+ "acc,none": 0.18518518518518517,
226
+ "acc_stderr,none": 0.0335567721631314
227
+ },
228
+ "mmlu_astronomy": {
229
+ "alias": " - astronomy",
230
+ "acc,none": 0.19736842105263158,
231
+ "acc_stderr,none": 0.03238981601699397
232
+ },
233
+ "mmlu_college_biology": {
234
+ "alias": " - college_biology",
235
+ "acc,none": 0.2569444444444444,
236
+ "acc_stderr,none": 0.03653946969442099
237
+ },
238
+ "mmlu_college_chemistry": {
239
+ "alias": " - college_chemistry",
240
+ "acc,none": 0.2,
241
+ "acc_stderr,none": 0.04020151261036847
242
+ },
243
+ "mmlu_college_computer_science": {
244
+ "alias": " - college_computer_science",
245
+ "acc,none": 0.32,
246
+ "acc_stderr,none": 0.046882617226215034
247
+ },
248
+ "mmlu_college_mathematics": {
249
+ "alias": " - college_mathematics",
250
+ "acc,none": 0.18,
251
+ "acc_stderr,none": 0.038612291966536955
252
+ },
253
+ "mmlu_college_physics": {
254
+ "alias": " - college_physics",
255
+ "acc,none": 0.22549019607843138,
256
+ "acc_stderr,none": 0.041583075330832865
257
+ },
258
+ "mmlu_computer_security": {
259
+ "alias": " - computer_security",
260
+ "acc,none": 0.29,
261
+ "acc_stderr,none": 0.045604802157206845
262
+ },
263
+ "mmlu_conceptual_physics": {
264
+ "alias": " - conceptual_physics",
265
+ "acc,none": 0.26382978723404255,
266
+ "acc_stderr,none": 0.02880998985410297
267
+ },
268
+ "mmlu_electrical_engineering": {
269
+ "alias": " - electrical_engineering",
270
+ "acc,none": 0.2413793103448276,
271
+ "acc_stderr,none": 0.03565998174135302
272
+ },
273
+ "mmlu_elementary_mathematics": {
274
+ "alias": " - elementary_mathematics",
275
+ "acc,none": 0.24867724867724866,
276
+ "acc_stderr,none": 0.022261817692400175
277
+ },
278
+ "mmlu_high_school_biology": {
279
+ "alias": " - high_school_biology",
280
+ "acc,none": 0.2,
281
+ "acc_stderr,none": 0.02275520495954294
282
+ },
283
+ "mmlu_high_school_chemistry": {
284
+ "alias": " - high_school_chemistry",
285
+ "acc,none": 0.13793103448275862,
286
+ "acc_stderr,none": 0.024261984301044582
287
+ },
288
+ "mmlu_high_school_computer_science": {
289
+ "alias": " - high_school_computer_science",
290
+ "acc,none": 0.23,
291
+ "acc_stderr,none": 0.04229525846816505
292
+ },
293
+ "mmlu_high_school_mathematics": {
294
+ "alias": " - high_school_mathematics",
295
+ "acc,none": 0.23703703703703705,
296
+ "acc_stderr,none": 0.02592887613276612
297
+ },
298
+ "mmlu_high_school_physics": {
299
+ "alias": " - high_school_physics",
300
+ "acc,none": 0.1986754966887417,
301
+ "acc_stderr,none": 0.032578473844367774
302
+ },
303
+ "mmlu_high_school_statistics": {
304
+ "alias": " - high_school_statistics",
305
+ "acc,none": 0.2037037037037037,
306
+ "acc_stderr,none": 0.027467401804057986
307
+ },
308
+ "mmlu_machine_learning": {
309
+ "alias": " - machine_learning",
310
+ "acc,none": 0.32142857142857145,
311
+ "acc_stderr,none": 0.04432804055291518
312
+ }
313
+ },
314
+ "groups": {
315
+ "mmlu": {
316
+ "acc,none": 0.23593505198689646,
317
+ "acc_stderr,none": 0.04009745711689859,
318
+ "alias": "mmlu"
319
+ },
320
+ "mmlu_humanities": {
321
+ "alias": " - humanities",
322
+ "acc,none": 0.240807651434644,
323
+ "acc_stderr,none": 0.03170227792277657
324
+ },
325
+ "mmlu_other": {
326
+ "alias": " - other",
327
+ "acc,none": 0.2520115867396202,
328
+ "acc_stderr,none": 0.04198814734226423
329
+ },
330
+ "mmlu_social_sciences": {
331
+ "alias": " - social_sciences",
332
+ "acc,none": 0.22229444263893403,
333
+ "acc_stderr,none": 0.0342841954712098
334
+ },
335
+ "mmlu_stem": {
336
+ "alias": " - stem",
337
+ "acc,none": 0.2261338407865525,
338
+ "acc_stderr,none": 0.050060158709281405
339
+ }
340
+ },
341
+ "configs": {
342
+ "mmlu_abstract_algebra": {
343
+ "task": "mmlu_abstract_algebra",
344
+ "task_alias": "abstract_algebra",
345
+ "group": "mmlu_stem",
346
+ "group_alias": "stem",
347
+ "dataset_path": "hails/mmlu_no_train",
348
+ "dataset_name": "abstract_algebra",
349
+ "test_split": "test",
350
+ "fewshot_split": "dev",
351
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
352
+ "doc_to_target": "answer",
353
+ "doc_to_choice": [
354
+ "A",
355
+ "B",
356
+ "C",
357
+ "D"
358
+ ],
359
+ "description": "The following are multiple choice questions (with answers) about abstract algebra.\n\n",
360
+ "target_delimiter": " ",
361
+ "fewshot_delimiter": "\n\n",
362
+ "fewshot_config": {
363
+ "sampler": "first_n"
364
+ },
365
+ "num_fewshot": 5,
366
+ "metric_list": [
367
+ {
368
+ "metric": "acc",
369
+ "aggregation": "mean",
370
+ "higher_is_better": true
371
+ }
372
+ ],
373
+ "output_type": "multiple_choice",
374
+ "repeats": 1,
375
+ "should_decontaminate": false,
376
+ "metadata": {
377
+ "version": 0.0
378
+ }
379
+ },
380
+ "mmlu_anatomy": {
381
+ "task": "mmlu_anatomy",
382
+ "task_alias": "anatomy",
383
+ "group": "mmlu_stem",
384
+ "group_alias": "stem",
385
+ "dataset_path": "hails/mmlu_no_train",
386
+ "dataset_name": "anatomy",
387
+ "test_split": "test",
388
+ "fewshot_split": "dev",
389
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
390
+ "doc_to_target": "answer",
391
+ "doc_to_choice": [
392
+ "A",
393
+ "B",
394
+ "C",
395
+ "D"
396
+ ],
397
+ "description": "The following are multiple choice questions (with answers) about anatomy.\n\n",
398
+ "target_delimiter": " ",
399
+ "fewshot_delimiter": "\n\n",
400
+ "fewshot_config": {
401
+ "sampler": "first_n"
402
+ },
403
+ "num_fewshot": 5,
404
+ "metric_list": [
405
+ {
406
+ "metric": "acc",
407
+ "aggregation": "mean",
408
+ "higher_is_better": true
409
+ }
410
+ ],
411
+ "output_type": "multiple_choice",
412
+ "repeats": 1,
413
+ "should_decontaminate": false,
414
+ "metadata": {
415
+ "version": 0.0
416
+ }
417
+ },
418
+ "mmlu_astronomy": {
419
+ "task": "mmlu_astronomy",
420
+ "task_alias": "astronomy",
421
+ "group": "mmlu_stem",
422
+ "group_alias": "stem",
423
+ "dataset_path": "hails/mmlu_no_train",
424
+ "dataset_name": "astronomy",
425
+ "test_split": "test",
426
+ "fewshot_split": "dev",
427
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
428
+ "doc_to_target": "answer",
429
+ "doc_to_choice": [
430
+ "A",
431
+ "B",
432
+ "C",
433
+ "D"
434
+ ],
435
+ "description": "The following are multiple choice questions (with answers) about astronomy.\n\n",
436
+ "target_delimiter": " ",
437
+ "fewshot_delimiter": "\n\n",
438
+ "fewshot_config": {
439
+ "sampler": "first_n"
440
+ },
441
+ "num_fewshot": 5,
442
+ "metric_list": [
443
+ {
444
+ "metric": "acc",
445
+ "aggregation": "mean",
446
+ "higher_is_better": true
447
+ }
448
+ ],
449
+ "output_type": "multiple_choice",
450
+ "repeats": 1,
451
+ "should_decontaminate": false,
452
+ "metadata": {
453
+ "version": 0.0
454
+ }
455
+ },
456
+ "mmlu_business_ethics": {
457
+ "task": "mmlu_business_ethics",
458
+ "task_alias": "business_ethics",
459
+ "group": "mmlu_other",
460
+ "group_alias": "other",
461
+ "dataset_path": "hails/mmlu_no_train",
462
+ "dataset_name": "business_ethics",
463
+ "test_split": "test",
464
+ "fewshot_split": "dev",
465
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
466
+ "doc_to_target": "answer",
467
+ "doc_to_choice": [
468
+ "A",
469
+ "B",
470
+ "C",
471
+ "D"
472
+ ],
473
+ "description": "The following are multiple choice questions (with answers) about business ethics.\n\n",
474
+ "target_delimiter": " ",
475
+ "fewshot_delimiter": "\n\n",
476
+ "fewshot_config": {
477
+ "sampler": "first_n"
478
+ },
479
+ "num_fewshot": 5,
480
+ "metric_list": [
481
+ {
482
+ "metric": "acc",
483
+ "aggregation": "mean",
484
+ "higher_is_better": true
485
+ }
486
+ ],
487
+ "output_type": "multiple_choice",
488
+ "repeats": 1,
489
+ "should_decontaminate": false,
490
+ "metadata": {
491
+ "version": 0.0
492
+ }
493
+ },
494
+ "mmlu_clinical_knowledge": {
495
+ "task": "mmlu_clinical_knowledge",
496
+ "task_alias": "clinical_knowledge",
497
+ "group": "mmlu_other",
498
+ "group_alias": "other",
499
+ "dataset_path": "hails/mmlu_no_train",
500
+ "dataset_name": "clinical_knowledge",
501
+ "test_split": "test",
502
+ "fewshot_split": "dev",
503
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
504
+ "doc_to_target": "answer",
505
+ "doc_to_choice": [
506
+ "A",
507
+ "B",
508
+ "C",
509
+ "D"
510
+ ],
511
+ "description": "The following are multiple choice questions (with answers) about clinical knowledge.\n\n",
512
+ "target_delimiter": " ",
513
+ "fewshot_delimiter": "\n\n",
514
+ "fewshot_config": {
515
+ "sampler": "first_n"
516
+ },
517
+ "num_fewshot": 5,
518
+ "metric_list": [
519
+ {
520
+ "metric": "acc",
521
+ "aggregation": "mean",
522
+ "higher_is_better": true
523
+ }
524
+ ],
525
+ "output_type": "multiple_choice",
526
+ "repeats": 1,
527
+ "should_decontaminate": false,
528
+ "metadata": {
529
+ "version": 0.0
530
+ }
531
+ },
532
+ "mmlu_college_biology": {
533
+ "task": "mmlu_college_biology",
534
+ "task_alias": "college_biology",
535
+ "group": "mmlu_stem",
536
+ "group_alias": "stem",
537
+ "dataset_path": "hails/mmlu_no_train",
538
+ "dataset_name": "college_biology",
539
+ "test_split": "test",
540
+ "fewshot_split": "dev",
541
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
542
+ "doc_to_target": "answer",
543
+ "doc_to_choice": [
544
+ "A",
545
+ "B",
546
+ "C",
547
+ "D"
548
+ ],
549
+ "description": "The following are multiple choice questions (with answers) about college biology.\n\n",
550
+ "target_delimiter": " ",
551
+ "fewshot_delimiter": "\n\n",
552
+ "fewshot_config": {
553
+ "sampler": "first_n"
554
+ },
555
+ "num_fewshot": 5,
556
+ "metric_list": [
557
+ {
558
+ "metric": "acc",
559
+ "aggregation": "mean",
560
+ "higher_is_better": true
561
+ }
562
+ ],
563
+ "output_type": "multiple_choice",
564
+ "repeats": 1,
565
+ "should_decontaminate": false,
566
+ "metadata": {
567
+ "version": 0.0
568
+ }
569
+ },
570
+ "mmlu_college_chemistry": {
571
+ "task": "mmlu_college_chemistry",
572
+ "task_alias": "college_chemistry",
573
+ "group": "mmlu_stem",
574
+ "group_alias": "stem",
575
+ "dataset_path": "hails/mmlu_no_train",
576
+ "dataset_name": "college_chemistry",
577
+ "test_split": "test",
578
+ "fewshot_split": "dev",
579
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
580
+ "doc_to_target": "answer",
581
+ "doc_to_choice": [
582
+ "A",
583
+ "B",
584
+ "C",
585
+ "D"
586
+ ],
587
+ "description": "The following are multiple choice questions (with answers) about college chemistry.\n\n",
588
+ "target_delimiter": " ",
589
+ "fewshot_delimiter": "\n\n",
590
+ "fewshot_config": {
591
+ "sampler": "first_n"
592
+ },
593
+ "num_fewshot": 5,
594
+ "metric_list": [
595
+ {
596
+ "metric": "acc",
597
+ "aggregation": "mean",
598
+ "higher_is_better": true
599
+ }
600
+ ],
601
+ "output_type": "multiple_choice",
602
+ "repeats": 1,
603
+ "should_decontaminate": false,
604
+ "metadata": {
605
+ "version": 0.0
606
+ }
607
+ },
608
+ "mmlu_college_computer_science": {
609
+ "task": "mmlu_college_computer_science",
610
+ "task_alias": "college_computer_science",
611
+ "group": "mmlu_stem",
612
+ "group_alias": "stem",
613
+ "dataset_path": "hails/mmlu_no_train",
614
+ "dataset_name": "college_computer_science",
615
+ "test_split": "test",
616
+ "fewshot_split": "dev",
617
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
618
+ "doc_to_target": "answer",
619
+ "doc_to_choice": [
620
+ "A",
621
+ "B",
622
+ "C",
623
+ "D"
624
+ ],
625
+ "description": "The following are multiple choice questions (with answers) about college computer science.\n\n",
626
+ "target_delimiter": " ",
627
+ "fewshot_delimiter": "\n\n",
628
+ "fewshot_config": {
629
+ "sampler": "first_n"
630
+ },
631
+ "num_fewshot": 5,
632
+ "metric_list": [
633
+ {
634
+ "metric": "acc",
635
+ "aggregation": "mean",
636
+ "higher_is_better": true
637
+ }
638
+ ],
639
+ "output_type": "multiple_choice",
640
+ "repeats": 1,
641
+ "should_decontaminate": false,
642
+ "metadata": {
643
+ "version": 0.0
644
+ }
645
+ },
646
+ "mmlu_college_mathematics": {
647
+ "task": "mmlu_college_mathematics",
648
+ "task_alias": "college_mathematics",
649
+ "group": "mmlu_stem",
650
+ "group_alias": "stem",
651
+ "dataset_path": "hails/mmlu_no_train",
652
+ "dataset_name": "college_mathematics",
653
+ "test_split": "test",
654
+ "fewshot_split": "dev",
655
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
656
+ "doc_to_target": "answer",
657
+ "doc_to_choice": [
658
+ "A",
659
+ "B",
660
+ "C",
661
+ "D"
662
+ ],
663
+ "description": "The following are multiple choice questions (with answers) about college mathematics.\n\n",
664
+ "target_delimiter": " ",
665
+ "fewshot_delimiter": "\n\n",
666
+ "fewshot_config": {
667
+ "sampler": "first_n"
668
+ },
669
+ "num_fewshot": 5,
670
+ "metric_list": [
671
+ {
672
+ "metric": "acc",
673
+ "aggregation": "mean",
674
+ "higher_is_better": true
675
+ }
676
+ ],
677
+ "output_type": "multiple_choice",
678
+ "repeats": 1,
679
+ "should_decontaminate": false,
680
+ "metadata": {
681
+ "version": 0.0
682
+ }
683
+ },
684
+ "mmlu_college_medicine": {
685
+ "task": "mmlu_college_medicine",
686
+ "task_alias": "college_medicine",
687
+ "group": "mmlu_other",
688
+ "group_alias": "other",
689
+ "dataset_path": "hails/mmlu_no_train",
690
+ "dataset_name": "college_medicine",
691
+ "test_split": "test",
692
+ "fewshot_split": "dev",
693
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
694
+ "doc_to_target": "answer",
695
+ "doc_to_choice": [
696
+ "A",
697
+ "B",
698
+ "C",
699
+ "D"
700
+ ],
701
+ "description": "The following are multiple choice questions (with answers) about college medicine.\n\n",
702
+ "target_delimiter": " ",
703
+ "fewshot_delimiter": "\n\n",
704
+ "fewshot_config": {
705
+ "sampler": "first_n"
706
+ },
707
+ "num_fewshot": 5,
708
+ "metric_list": [
709
+ {
710
+ "metric": "acc",
711
+ "aggregation": "mean",
712
+ "higher_is_better": true
713
+ }
714
+ ],
715
+ "output_type": "multiple_choice",
716
+ "repeats": 1,
717
+ "should_decontaminate": false,
718
+ "metadata": {
719
+ "version": 0.0
720
+ }
721
+ },
722
+ "mmlu_college_physics": {
723
+ "task": "mmlu_college_physics",
724
+ "task_alias": "college_physics",
725
+ "group": "mmlu_stem",
726
+ "group_alias": "stem",
727
+ "dataset_path": "hails/mmlu_no_train",
728
+ "dataset_name": "college_physics",
729
+ "test_split": "test",
730
+ "fewshot_split": "dev",
731
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
732
+ "doc_to_target": "answer",
733
+ "doc_to_choice": [
734
+ "A",
735
+ "B",
736
+ "C",
737
+ "D"
738
+ ],
739
+ "description": "The following are multiple choice questions (with answers) about college physics.\n\n",
740
+ "target_delimiter": " ",
741
+ "fewshot_delimiter": "\n\n",
742
+ "fewshot_config": {
743
+ "sampler": "first_n"
744
+ },
745
+ "num_fewshot": 5,
746
+ "metric_list": [
747
+ {
748
+ "metric": "acc",
749
+ "aggregation": "mean",
750
+ "higher_is_better": true
751
+ }
752
+ ],
753
+ "output_type": "multiple_choice",
754
+ "repeats": 1,
755
+ "should_decontaminate": false,
756
+ "metadata": {
757
+ "version": 0.0
758
+ }
759
+ },
760
+ "mmlu_computer_security": {
761
+ "task": "mmlu_computer_security",
762
+ "task_alias": "computer_security",
763
+ "group": "mmlu_stem",
764
+ "group_alias": "stem",
765
+ "dataset_path": "hails/mmlu_no_train",
766
+ "dataset_name": "computer_security",
767
+ "test_split": "test",
768
+ "fewshot_split": "dev",
769
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
770
+ "doc_to_target": "answer",
771
+ "doc_to_choice": [
772
+ "A",
773
+ "B",
774
+ "C",
775
+ "D"
776
+ ],
777
+ "description": "The following are multiple choice questions (with answers) about computer security.\n\n",
778
+ "target_delimiter": " ",
779
+ "fewshot_delimiter": "\n\n",
780
+ "fewshot_config": {
781
+ "sampler": "first_n"
782
+ },
783
+ "num_fewshot": 5,
784
+ "metric_list": [
785
+ {
786
+ "metric": "acc",
787
+ "aggregation": "mean",
788
+ "higher_is_better": true
789
+ }
790
+ ],
791
+ "output_type": "multiple_choice",
792
+ "repeats": 1,
793
+ "should_decontaminate": false,
794
+ "metadata": {
795
+ "version": 0.0
796
+ }
797
+ },
798
+ "mmlu_conceptual_physics": {
799
+ "task": "mmlu_conceptual_physics",
800
+ "task_alias": "conceptual_physics",
801
+ "group": "mmlu_stem",
802
+ "group_alias": "stem",
803
+ "dataset_path": "hails/mmlu_no_train",
804
+ "dataset_name": "conceptual_physics",
805
+ "test_split": "test",
806
+ "fewshot_split": "dev",
807
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
808
+ "doc_to_target": "answer",
809
+ "doc_to_choice": [
810
+ "A",
811
+ "B",
812
+ "C",
813
+ "D"
814
+ ],
815
+ "description": "The following are multiple choice questions (with answers) about conceptual physics.\n\n",
816
+ "target_delimiter": " ",
817
+ "fewshot_delimiter": "\n\n",
818
+ "fewshot_config": {
819
+ "sampler": "first_n"
820
+ },
821
+ "num_fewshot": 5,
822
+ "metric_list": [
823
+ {
824
+ "metric": "acc",
825
+ "aggregation": "mean",
826
+ "higher_is_better": true
827
+ }
828
+ ],
829
+ "output_type": "multiple_choice",
830
+ "repeats": 1,
831
+ "should_decontaminate": false,
832
+ "metadata": {
833
+ "version": 0.0
834
+ }
835
+ },
836
+ "mmlu_econometrics": {
837
+ "task": "mmlu_econometrics",
838
+ "task_alias": "econometrics",
839
+ "group": "mmlu_social_sciences",
840
+ "group_alias": "social_sciences",
841
+ "dataset_path": "hails/mmlu_no_train",
842
+ "dataset_name": "econometrics",
843
+ "test_split": "test",
844
+ "fewshot_split": "dev",
845
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
846
+ "doc_to_target": "answer",
847
+ "doc_to_choice": [
848
+ "A",
849
+ "B",
850
+ "C",
851
+ "D"
852
+ ],
853
+ "description": "The following are multiple choice questions (with answers) about econometrics.\n\n",
854
+ "target_delimiter": " ",
855
+ "fewshot_delimiter": "\n\n",
856
+ "fewshot_config": {
857
+ "sampler": "first_n"
858
+ },
859
+ "num_fewshot": 5,
860
+ "metric_list": [
861
+ {
862
+ "metric": "acc",
863
+ "aggregation": "mean",
864
+ "higher_is_better": true
865
+ }
866
+ ],
867
+ "output_type": "multiple_choice",
868
+ "repeats": 1,
869
+ "should_decontaminate": false,
870
+ "metadata": {
871
+ "version": 0.0
872
+ }
873
+ },
874
+ "mmlu_electrical_engineering": {
875
+ "task": "mmlu_electrical_engineering",
876
+ "task_alias": "electrical_engineering",
877
+ "group": "mmlu_stem",
878
+ "group_alias": "stem",
879
+ "dataset_path": "hails/mmlu_no_train",
880
+ "dataset_name": "electrical_engineering",
881
+ "test_split": "test",
882
+ "fewshot_split": "dev",
883
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
884
+ "doc_to_target": "answer",
885
+ "doc_to_choice": [
886
+ "A",
887
+ "B",
888
+ "C",
889
+ "D"
890
+ ],
891
+ "description": "The following are multiple choice questions (with answers) about electrical engineering.\n\n",
892
+ "target_delimiter": " ",
893
+ "fewshot_delimiter": "\n\n",
894
+ "fewshot_config": {
895
+ "sampler": "first_n"
896
+ },
897
+ "num_fewshot": 5,
898
+ "metric_list": [
899
+ {
900
+ "metric": "acc",
901
+ "aggregation": "mean",
902
+ "higher_is_better": true
903
+ }
904
+ ],
905
+ "output_type": "multiple_choice",
906
+ "repeats": 1,
907
+ "should_decontaminate": false,
908
+ "metadata": {
909
+ "version": 0.0
910
+ }
911
+ },
912
+ "mmlu_elementary_mathematics": {
913
+ "task": "mmlu_elementary_mathematics",
914
+ "task_alias": "elementary_mathematics",
915
+ "group": "mmlu_stem",
916
+ "group_alias": "stem",
917
+ "dataset_path": "hails/mmlu_no_train",
918
+ "dataset_name": "elementary_mathematics",
919
+ "test_split": "test",
920
+ "fewshot_split": "dev",
921
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
922
+ "doc_to_target": "answer",
923
+ "doc_to_choice": [
924
+ "A",
925
+ "B",
926
+ "C",
927
+ "D"
928
+ ],
929
+ "description": "The following are multiple choice questions (with answers) about elementary mathematics.\n\n",
930
+ "target_delimiter": " ",
931
+ "fewshot_delimiter": "\n\n",
932
+ "fewshot_config": {
933
+ "sampler": "first_n"
934
+ },
935
+ "num_fewshot": 5,
936
+ "metric_list": [
937
+ {
938
+ "metric": "acc",
939
+ "aggregation": "mean",
940
+ "higher_is_better": true
941
+ }
942
+ ],
943
+ "output_type": "multiple_choice",
944
+ "repeats": 1,
945
+ "should_decontaminate": false,
946
+ "metadata": {
947
+ "version": 0.0
948
+ }
949
+ },
950
+ "mmlu_formal_logic": {
951
+ "task": "mmlu_formal_logic",
952
+ "task_alias": "formal_logic",
953
+ "group": "mmlu_humanities",
954
+ "group_alias": "humanities",
955
+ "dataset_path": "hails/mmlu_no_train",
956
+ "dataset_name": "formal_logic",
957
+ "test_split": "test",
958
+ "fewshot_split": "dev",
959
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
960
+ "doc_to_target": "answer",
961
+ "doc_to_choice": [
962
+ "A",
963
+ "B",
964
+ "C",
965
+ "D"
966
+ ],
967
+ "description": "The following are multiple choice questions (with answers) about formal logic.\n\n",
968
+ "target_delimiter": " ",
969
+ "fewshot_delimiter": "\n\n",
970
+ "fewshot_config": {
971
+ "sampler": "first_n"
972
+ },
973
+ "num_fewshot": 5,
974
+ "metric_list": [
975
+ {
976
+ "metric": "acc",
977
+ "aggregation": "mean",
978
+ "higher_is_better": true
979
+ }
980
+ ],
981
+ "output_type": "multiple_choice",
982
+ "repeats": 1,
983
+ "should_decontaminate": false,
984
+ "metadata": {
985
+ "version": 0.0
986
+ }
987
+ },
988
+ "mmlu_global_facts": {
989
+ "task": "mmlu_global_facts",
990
+ "task_alias": "global_facts",
991
+ "group": "mmlu_other",
992
+ "group_alias": "other",
993
+ "dataset_path": "hails/mmlu_no_train",
994
+ "dataset_name": "global_facts",
995
+ "test_split": "test",
996
+ "fewshot_split": "dev",
997
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
998
+ "doc_to_target": "answer",
999
+ "doc_to_choice": [
1000
+ "A",
1001
+ "B",
1002
+ "C",
1003
+ "D"
1004
+ ],
1005
+ "description": "The following are multiple choice questions (with answers) about global facts.\n\n",
1006
+ "target_delimiter": " ",
1007
+ "fewshot_delimiter": "\n\n",
1008
+ "fewshot_config": {
1009
+ "sampler": "first_n"
1010
+ },
1011
+ "num_fewshot": 5,
1012
+ "metric_list": [
1013
+ {
1014
+ "metric": "acc",
1015
+ "aggregation": "mean",
1016
+ "higher_is_better": true
1017
+ }
1018
+ ],
1019
+ "output_type": "multiple_choice",
1020
+ "repeats": 1,
1021
+ "should_decontaminate": false,
1022
+ "metadata": {
1023
+ "version": 0.0
1024
+ }
1025
+ },
1026
+ "mmlu_high_school_biology": {
1027
+ "task": "mmlu_high_school_biology",
1028
+ "task_alias": "high_school_biology",
1029
+ "group": "mmlu_stem",
1030
+ "group_alias": "stem",
1031
+ "dataset_path": "hails/mmlu_no_train",
1032
+ "dataset_name": "high_school_biology",
1033
+ "test_split": "test",
1034
+ "fewshot_split": "dev",
1035
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1036
+ "doc_to_target": "answer",
1037
+ "doc_to_choice": [
1038
+ "A",
1039
+ "B",
1040
+ "C",
1041
+ "D"
1042
+ ],
1043
+ "description": "The following are multiple choice questions (with answers) about high school biology.\n\n",
1044
+ "target_delimiter": " ",
1045
+ "fewshot_delimiter": "\n\n",
1046
+ "fewshot_config": {
1047
+ "sampler": "first_n"
1048
+ },
1049
+ "num_fewshot": 5,
1050
+ "metric_list": [
1051
+ {
1052
+ "metric": "acc",
1053
+ "aggregation": "mean",
1054
+ "higher_is_better": true
1055
+ }
1056
+ ],
1057
+ "output_type": "multiple_choice",
1058
+ "repeats": 1,
1059
+ "should_decontaminate": false,
1060
+ "metadata": {
1061
+ "version": 0.0
1062
+ }
1063
+ },
1064
+ "mmlu_high_school_chemistry": {
1065
+ "task": "mmlu_high_school_chemistry",
1066
+ "task_alias": "high_school_chemistry",
1067
+ "group": "mmlu_stem",
1068
+ "group_alias": "stem",
1069
+ "dataset_path": "hails/mmlu_no_train",
1070
+ "dataset_name": "high_school_chemistry",
1071
+ "test_split": "test",
1072
+ "fewshot_split": "dev",
1073
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1074
+ "doc_to_target": "answer",
1075
+ "doc_to_choice": [
1076
+ "A",
1077
+ "B",
1078
+ "C",
1079
+ "D"
1080
+ ],
1081
+ "description": "The following are multiple choice questions (with answers) about high school chemistry.\n\n",
1082
+ "target_delimiter": " ",
1083
+ "fewshot_delimiter": "\n\n",
1084
+ "fewshot_config": {
1085
+ "sampler": "first_n"
1086
+ },
1087
+ "num_fewshot": 5,
1088
+ "metric_list": [
1089
+ {
1090
+ "metric": "acc",
1091
+ "aggregation": "mean",
1092
+ "higher_is_better": true
1093
+ }
1094
+ ],
1095
+ "output_type": "multiple_choice",
1096
+ "repeats": 1,
1097
+ "should_decontaminate": false,
1098
+ "metadata": {
1099
+ "version": 0.0
1100
+ }
1101
+ },
1102
+ "mmlu_high_school_computer_science": {
1103
+ "task": "mmlu_high_school_computer_science",
1104
+ "task_alias": "high_school_computer_science",
1105
+ "group": "mmlu_stem",
1106
+ "group_alias": "stem",
1107
+ "dataset_path": "hails/mmlu_no_train",
1108
+ "dataset_name": "high_school_computer_science",
1109
+ "test_split": "test",
1110
+ "fewshot_split": "dev",
1111
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1112
+ "doc_to_target": "answer",
1113
+ "doc_to_choice": [
1114
+ "A",
1115
+ "B",
1116
+ "C",
1117
+ "D"
1118
+ ],
1119
+ "description": "The following are multiple choice questions (with answers) about high school computer science.\n\n",
1120
+ "target_delimiter": " ",
1121
+ "fewshot_delimiter": "\n\n",
1122
+ "fewshot_config": {
1123
+ "sampler": "first_n"
1124
+ },
1125
+ "num_fewshot": 5,
1126
+ "metric_list": [
1127
+ {
1128
+ "metric": "acc",
1129
+ "aggregation": "mean",
1130
+ "higher_is_better": true
1131
+ }
1132
+ ],
1133
+ "output_type": "multiple_choice",
1134
+ "repeats": 1,
1135
+ "should_decontaminate": false,
1136
+ "metadata": {
1137
+ "version": 0.0
1138
+ }
1139
+ },
1140
+ "mmlu_high_school_european_history": {
1141
+ "task": "mmlu_high_school_european_history",
1142
+ "task_alias": "high_school_european_history",
1143
+ "group": "mmlu_humanities",
1144
+ "group_alias": "humanities",
1145
+ "dataset_path": "hails/mmlu_no_train",
1146
+ "dataset_name": "high_school_european_history",
1147
+ "test_split": "test",
1148
+ "fewshot_split": "dev",
1149
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1150
+ "doc_to_target": "answer",
1151
+ "doc_to_choice": [
1152
+ "A",
1153
+ "B",
1154
+ "C",
1155
+ "D"
1156
+ ],
1157
+ "description": "The following are multiple choice questions (with answers) about high school european history.\n\n",
1158
+ "target_delimiter": " ",
1159
+ "fewshot_delimiter": "\n\n",
1160
+ "fewshot_config": {
1161
+ "sampler": "first_n"
1162
+ },
1163
+ "num_fewshot": 5,
1164
+ "metric_list": [
1165
+ {
1166
+ "metric": "acc",
1167
+ "aggregation": "mean",
1168
+ "higher_is_better": true
1169
+ }
1170
+ ],
1171
+ "output_type": "multiple_choice",
1172
+ "repeats": 1,
1173
+ "should_decontaminate": false,
1174
+ "metadata": {
1175
+ "version": 0.0
1176
+ }
1177
+ },
1178
+ "mmlu_high_school_geography": {
1179
+ "task": "mmlu_high_school_geography",
1180
+ "task_alias": "high_school_geography",
1181
+ "group": "mmlu_social_sciences",
1182
+ "group_alias": "social_sciences",
1183
+ "dataset_path": "hails/mmlu_no_train",
1184
+ "dataset_name": "high_school_geography",
1185
+ "test_split": "test",
1186
+ "fewshot_split": "dev",
1187
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1188
+ "doc_to_target": "answer",
1189
+ "doc_to_choice": [
1190
+ "A",
1191
+ "B",
1192
+ "C",
1193
+ "D"
1194
+ ],
1195
+ "description": "The following are multiple choice questions (with answers) about high school geography.\n\n",
1196
+ "target_delimiter": " ",
1197
+ "fewshot_delimiter": "\n\n",
1198
+ "fewshot_config": {
1199
+ "sampler": "first_n"
1200
+ },
1201
+ "num_fewshot": 5,
1202
+ "metric_list": [
1203
+ {
1204
+ "metric": "acc",
1205
+ "aggregation": "mean",
1206
+ "higher_is_better": true
1207
+ }
1208
+ ],
1209
+ "output_type": "multiple_choice",
1210
+ "repeats": 1,
1211
+ "should_decontaminate": false,
1212
+ "metadata": {
1213
+ "version": 0.0
1214
+ }
1215
+ },
1216
+ "mmlu_high_school_government_and_politics": {
1217
+ "task": "mmlu_high_school_government_and_politics",
1218
+ "task_alias": "high_school_government_and_politics",
1219
+ "group": "mmlu_social_sciences",
1220
+ "group_alias": "social_sciences",
1221
+ "dataset_path": "hails/mmlu_no_train",
1222
+ "dataset_name": "high_school_government_and_politics",
1223
+ "test_split": "test",
1224
+ "fewshot_split": "dev",
1225
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1226
+ "doc_to_target": "answer",
1227
+ "doc_to_choice": [
1228
+ "A",
1229
+ "B",
1230
+ "C",
1231
+ "D"
1232
+ ],
1233
+ "description": "The following are multiple choice questions (with answers) about high school government and politics.\n\n",
1234
+ "target_delimiter": " ",
1235
+ "fewshot_delimiter": "\n\n",
1236
+ "fewshot_config": {
1237
+ "sampler": "first_n"
1238
+ },
1239
+ "num_fewshot": 5,
1240
+ "metric_list": [
1241
+ {
1242
+ "metric": "acc",
1243
+ "aggregation": "mean",
1244
+ "higher_is_better": true
1245
+ }
1246
+ ],
1247
+ "output_type": "multiple_choice",
1248
+ "repeats": 1,
1249
+ "should_decontaminate": false,
1250
+ "metadata": {
1251
+ "version": 0.0
1252
+ }
1253
+ },
1254
+ "mmlu_high_school_macroeconomics": {
1255
+ "task": "mmlu_high_school_macroeconomics",
1256
+ "task_alias": "high_school_macroeconomics",
1257
+ "group": "mmlu_social_sciences",
1258
+ "group_alias": "social_sciences",
1259
+ "dataset_path": "hails/mmlu_no_train",
1260
+ "dataset_name": "high_school_macroeconomics",
1261
+ "test_split": "test",
1262
+ "fewshot_split": "dev",
1263
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1264
+ "doc_to_target": "answer",
1265
+ "doc_to_choice": [
1266
+ "A",
1267
+ "B",
1268
+ "C",
1269
+ "D"
1270
+ ],
1271
+ "description": "The following are multiple choice questions (with answers) about high school macroeconomics.\n\n",
1272
+ "target_delimiter": " ",
1273
+ "fewshot_delimiter": "\n\n",
1274
+ "fewshot_config": {
1275
+ "sampler": "first_n"
1276
+ },
1277
+ "num_fewshot": 5,
1278
+ "metric_list": [
1279
+ {
1280
+ "metric": "acc",
1281
+ "aggregation": "mean",
1282
+ "higher_is_better": true
1283
+ }
1284
+ ],
1285
+ "output_type": "multiple_choice",
1286
+ "repeats": 1,
1287
+ "should_decontaminate": false,
1288
+ "metadata": {
1289
+ "version": 0.0
1290
+ }
1291
+ },
1292
+ "mmlu_high_school_mathematics": {
1293
+ "task": "mmlu_high_school_mathematics",
1294
+ "task_alias": "high_school_mathematics",
1295
+ "group": "mmlu_stem",
1296
+ "group_alias": "stem",
1297
+ "dataset_path": "hails/mmlu_no_train",
1298
+ "dataset_name": "high_school_mathematics",
1299
+ "test_split": "test",
1300
+ "fewshot_split": "dev",
1301
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1302
+ "doc_to_target": "answer",
1303
+ "doc_to_choice": [
1304
+ "A",
1305
+ "B",
1306
+ "C",
1307
+ "D"
1308
+ ],
1309
+ "description": "The following are multiple choice questions (with answers) about high school mathematics.\n\n",
1310
+ "target_delimiter": " ",
1311
+ "fewshot_delimiter": "\n\n",
1312
+ "fewshot_config": {
1313
+ "sampler": "first_n"
1314
+ },
1315
+ "num_fewshot": 5,
1316
+ "metric_list": [
1317
+ {
1318
+ "metric": "acc",
1319
+ "aggregation": "mean",
1320
+ "higher_is_better": true
1321
+ }
1322
+ ],
1323
+ "output_type": "multiple_choice",
1324
+ "repeats": 1,
1325
+ "should_decontaminate": false,
1326
+ "metadata": {
1327
+ "version": 0.0
1328
+ }
1329
+ },
1330
+ "mmlu_high_school_microeconomics": {
1331
+ "task": "mmlu_high_school_microeconomics",
1332
+ "task_alias": "high_school_microeconomics",
1333
+ "group": "mmlu_social_sciences",
1334
+ "group_alias": "social_sciences",
1335
+ "dataset_path": "hails/mmlu_no_train",
1336
+ "dataset_name": "high_school_microeconomics",
1337
+ "test_split": "test",
1338
+ "fewshot_split": "dev",
1339
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1340
+ "doc_to_target": "answer",
1341
+ "doc_to_choice": [
1342
+ "A",
1343
+ "B",
1344
+ "C",
1345
+ "D"
1346
+ ],
1347
+ "description": "The following are multiple choice questions (with answers) about high school microeconomics.\n\n",
1348
+ "target_delimiter": " ",
1349
+ "fewshot_delimiter": "\n\n",
1350
+ "fewshot_config": {
1351
+ "sampler": "first_n"
1352
+ },
1353
+ "num_fewshot": 5,
1354
+ "metric_list": [
1355
+ {
1356
+ "metric": "acc",
1357
+ "aggregation": "mean",
1358
+ "higher_is_better": true
1359
+ }
1360
+ ],
1361
+ "output_type": "multiple_choice",
1362
+ "repeats": 1,
1363
+ "should_decontaminate": false,
1364
+ "metadata": {
1365
+ "version": 0.0
1366
+ }
1367
+ },
1368
+ "mmlu_high_school_physics": {
1369
+ "task": "mmlu_high_school_physics",
1370
+ "task_alias": "high_school_physics",
1371
+ "group": "mmlu_stem",
1372
+ "group_alias": "stem",
1373
+ "dataset_path": "hails/mmlu_no_train",
1374
+ "dataset_name": "high_school_physics",
1375
+ "test_split": "test",
1376
+ "fewshot_split": "dev",
1377
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1378
+ "doc_to_target": "answer",
1379
+ "doc_to_choice": [
1380
+ "A",
1381
+ "B",
1382
+ "C",
1383
+ "D"
1384
+ ],
1385
+ "description": "The following are multiple choice questions (with answers) about high school physics.\n\n",
1386
+ "target_delimiter": " ",
1387
+ "fewshot_delimiter": "\n\n",
1388
+ "fewshot_config": {
1389
+ "sampler": "first_n"
1390
+ },
1391
+ "num_fewshot": 5,
1392
+ "metric_list": [
1393
+ {
1394
+ "metric": "acc",
1395
+ "aggregation": "mean",
1396
+ "higher_is_better": true
1397
+ }
1398
+ ],
1399
+ "output_type": "multiple_choice",
1400
+ "repeats": 1,
1401
+ "should_decontaminate": false,
1402
+ "metadata": {
1403
+ "version": 0.0
1404
+ }
1405
+ },
1406
+ "mmlu_high_school_psychology": {
1407
+ "task": "mmlu_high_school_psychology",
1408
+ "task_alias": "high_school_psychology",
1409
+ "group": "mmlu_social_sciences",
1410
+ "group_alias": "social_sciences",
1411
+ "dataset_path": "hails/mmlu_no_train",
1412
+ "dataset_name": "high_school_psychology",
1413
+ "test_split": "test",
1414
+ "fewshot_split": "dev",
1415
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1416
+ "doc_to_target": "answer",
1417
+ "doc_to_choice": [
1418
+ "A",
1419
+ "B",
1420
+ "C",
1421
+ "D"
1422
+ ],
1423
+ "description": "The following are multiple choice questions (with answers) about high school psychology.\n\n",
1424
+ "target_delimiter": " ",
1425
+ "fewshot_delimiter": "\n\n",
1426
+ "fewshot_config": {
1427
+ "sampler": "first_n"
1428
+ },
1429
+ "num_fewshot": 5,
1430
+ "metric_list": [
1431
+ {
1432
+ "metric": "acc",
1433
+ "aggregation": "mean",
1434
+ "higher_is_better": true
1435
+ }
1436
+ ],
1437
+ "output_type": "multiple_choice",
1438
+ "repeats": 1,
1439
+ "should_decontaminate": false,
1440
+ "metadata": {
1441
+ "version": 0.0
1442
+ }
1443
+ },
1444
+ "mmlu_high_school_statistics": {
1445
+ "task": "mmlu_high_school_statistics",
1446
+ "task_alias": "high_school_statistics",
1447
+ "group": "mmlu_stem",
1448
+ "group_alias": "stem",
1449
+ "dataset_path": "hails/mmlu_no_train",
1450
+ "dataset_name": "high_school_statistics",
1451
+ "test_split": "test",
1452
+ "fewshot_split": "dev",
1453
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1454
+ "doc_to_target": "answer",
1455
+ "doc_to_choice": [
1456
+ "A",
1457
+ "B",
1458
+ "C",
1459
+ "D"
1460
+ ],
1461
+ "description": "The following are multiple choice questions (with answers) about high school statistics.\n\n",
1462
+ "target_delimiter": " ",
1463
+ "fewshot_delimiter": "\n\n",
1464
+ "fewshot_config": {
1465
+ "sampler": "first_n"
1466
+ },
1467
+ "num_fewshot": 5,
1468
+ "metric_list": [
1469
+ {
1470
+ "metric": "acc",
1471
+ "aggregation": "mean",
1472
+ "higher_is_better": true
1473
+ }
1474
+ ],
1475
+ "output_type": "multiple_choice",
1476
+ "repeats": 1,
1477
+ "should_decontaminate": false,
1478
+ "metadata": {
1479
+ "version": 0.0
1480
+ }
1481
+ },
1482
+ "mmlu_high_school_us_history": {
1483
+ "task": "mmlu_high_school_us_history",
1484
+ "task_alias": "high_school_us_history",
1485
+ "group": "mmlu_humanities",
1486
+ "group_alias": "humanities",
1487
+ "dataset_path": "hails/mmlu_no_train",
1488
+ "dataset_name": "high_school_us_history",
1489
+ "test_split": "test",
1490
+ "fewshot_split": "dev",
1491
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1492
+ "doc_to_target": "answer",
1493
+ "doc_to_choice": [
1494
+ "A",
1495
+ "B",
1496
+ "C",
1497
+ "D"
1498
+ ],
1499
+ "description": "The following are multiple choice questions (with answers) about high school us history.\n\n",
1500
+ "target_delimiter": " ",
1501
+ "fewshot_delimiter": "\n\n",
1502
+ "fewshot_config": {
1503
+ "sampler": "first_n"
1504
+ },
1505
+ "num_fewshot": 5,
1506
+ "metric_list": [
1507
+ {
1508
+ "metric": "acc",
1509
+ "aggregation": "mean",
1510
+ "higher_is_better": true
1511
+ }
1512
+ ],
1513
+ "output_type": "multiple_choice",
1514
+ "repeats": 1,
1515
+ "should_decontaminate": false,
1516
+ "metadata": {
1517
+ "version": 0.0
1518
+ }
1519
+ },
1520
+ "mmlu_high_school_world_history": {
1521
+ "task": "mmlu_high_school_world_history",
1522
+ "task_alias": "high_school_world_history",
1523
+ "group": "mmlu_humanities",
1524
+ "group_alias": "humanities",
1525
+ "dataset_path": "hails/mmlu_no_train",
1526
+ "dataset_name": "high_school_world_history",
1527
+ "test_split": "test",
1528
+ "fewshot_split": "dev",
1529
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1530
+ "doc_to_target": "answer",
1531
+ "doc_to_choice": [
1532
+ "A",
1533
+ "B",
1534
+ "C",
1535
+ "D"
1536
+ ],
1537
+ "description": "The following are multiple choice questions (with answers) about high school world history.\n\n",
1538
+ "target_delimiter": " ",
1539
+ "fewshot_delimiter": "\n\n",
1540
+ "fewshot_config": {
1541
+ "sampler": "first_n"
1542
+ },
1543
+ "num_fewshot": 5,
1544
+ "metric_list": [
1545
+ {
1546
+ "metric": "acc",
1547
+ "aggregation": "mean",
1548
+ "higher_is_better": true
1549
+ }
1550
+ ],
1551
+ "output_type": "multiple_choice",
1552
+ "repeats": 1,
1553
+ "should_decontaminate": false,
1554
+ "metadata": {
1555
+ "version": 0.0
1556
+ }
1557
+ },
1558
+ "mmlu_human_aging": {
1559
+ "task": "mmlu_human_aging",
1560
+ "task_alias": "human_aging",
1561
+ "group": "mmlu_other",
1562
+ "group_alias": "other",
1563
+ "dataset_path": "hails/mmlu_no_train",
1564
+ "dataset_name": "human_aging",
1565
+ "test_split": "test",
1566
+ "fewshot_split": "dev",
1567
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1568
+ "doc_to_target": "answer",
1569
+ "doc_to_choice": [
1570
+ "A",
1571
+ "B",
1572
+ "C",
1573
+ "D"
1574
+ ],
1575
+ "description": "The following are multiple choice questions (with answers) about human aging.\n\n",
1576
+ "target_delimiter": " ",
1577
+ "fewshot_delimiter": "\n\n",
1578
+ "fewshot_config": {
1579
+ "sampler": "first_n"
1580
+ },
1581
+ "num_fewshot": 5,
1582
+ "metric_list": [
1583
+ {
1584
+ "metric": "acc",
1585
+ "aggregation": "mean",
1586
+ "higher_is_better": true
1587
+ }
1588
+ ],
1589
+ "output_type": "multiple_choice",
1590
+ "repeats": 1,
1591
+ "should_decontaminate": false,
1592
+ "metadata": {
1593
+ "version": 0.0
1594
+ }
1595
+ },
1596
+ "mmlu_human_sexuality": {
1597
+ "task": "mmlu_human_sexuality",
1598
+ "task_alias": "human_sexuality",
1599
+ "group": "mmlu_social_sciences",
1600
+ "group_alias": "social_sciences",
1601
+ "dataset_path": "hails/mmlu_no_train",
1602
+ "dataset_name": "human_sexuality",
1603
+ "test_split": "test",
1604
+ "fewshot_split": "dev",
1605
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1606
+ "doc_to_target": "answer",
1607
+ "doc_to_choice": [
1608
+ "A",
1609
+ "B",
1610
+ "C",
1611
+ "D"
1612
+ ],
1613
+ "description": "The following are multiple choice questions (with answers) about human sexuality.\n\n",
1614
+ "target_delimiter": " ",
1615
+ "fewshot_delimiter": "\n\n",
1616
+ "fewshot_config": {
1617
+ "sampler": "first_n"
1618
+ },
1619
+ "num_fewshot": 5,
1620
+ "metric_list": [
1621
+ {
1622
+ "metric": "acc",
1623
+ "aggregation": "mean",
1624
+ "higher_is_better": true
1625
+ }
1626
+ ],
1627
+ "output_type": "multiple_choice",
1628
+ "repeats": 1,
1629
+ "should_decontaminate": false,
1630
+ "metadata": {
1631
+ "version": 0.0
1632
+ }
1633
+ },
1634
+ "mmlu_international_law": {
1635
+ "task": "mmlu_international_law",
1636
+ "task_alias": "international_law",
1637
+ "group": "mmlu_humanities",
1638
+ "group_alias": "humanities",
1639
+ "dataset_path": "hails/mmlu_no_train",
1640
+ "dataset_name": "international_law",
1641
+ "test_split": "test",
1642
+ "fewshot_split": "dev",
1643
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1644
+ "doc_to_target": "answer",
1645
+ "doc_to_choice": [
1646
+ "A",
1647
+ "B",
1648
+ "C",
1649
+ "D"
1650
+ ],
1651
+ "description": "The following are multiple choice questions (with answers) about international law.\n\n",
1652
+ "target_delimiter": " ",
1653
+ "fewshot_delimiter": "\n\n",
1654
+ "fewshot_config": {
1655
+ "sampler": "first_n"
1656
+ },
1657
+ "num_fewshot": 5,
1658
+ "metric_list": [
1659
+ {
1660
+ "metric": "acc",
1661
+ "aggregation": "mean",
1662
+ "higher_is_better": true
1663
+ }
1664
+ ],
1665
+ "output_type": "multiple_choice",
1666
+ "repeats": 1,
1667
+ "should_decontaminate": false,
1668
+ "metadata": {
1669
+ "version": 0.0
1670
+ }
1671
+ },
1672
+ "mmlu_jurisprudence": {
1673
+ "task": "mmlu_jurisprudence",
1674
+ "task_alias": "jurisprudence",
1675
+ "group": "mmlu_humanities",
1676
+ "group_alias": "humanities",
1677
+ "dataset_path": "hails/mmlu_no_train",
1678
+ "dataset_name": "jurisprudence",
1679
+ "test_split": "test",
1680
+ "fewshot_split": "dev",
1681
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1682
+ "doc_to_target": "answer",
1683
+ "doc_to_choice": [
1684
+ "A",
1685
+ "B",
1686
+ "C",
1687
+ "D"
1688
+ ],
1689
+ "description": "The following are multiple choice questions (with answers) about jurisprudence.\n\n",
1690
+ "target_delimiter": " ",
1691
+ "fewshot_delimiter": "\n\n",
1692
+ "fewshot_config": {
1693
+ "sampler": "first_n"
1694
+ },
1695
+ "num_fewshot": 5,
1696
+ "metric_list": [
1697
+ {
1698
+ "metric": "acc",
1699
+ "aggregation": "mean",
1700
+ "higher_is_better": true
1701
+ }
1702
+ ],
1703
+ "output_type": "multiple_choice",
1704
+ "repeats": 1,
1705
+ "should_decontaminate": false,
1706
+ "metadata": {
1707
+ "version": 0.0
1708
+ }
1709
+ },
1710
+ "mmlu_logical_fallacies": {
1711
+ "task": "mmlu_logical_fallacies",
1712
+ "task_alias": "logical_fallacies",
1713
+ "group": "mmlu_humanities",
1714
+ "group_alias": "humanities",
1715
+ "dataset_path": "hails/mmlu_no_train",
1716
+ "dataset_name": "logical_fallacies",
1717
+ "test_split": "test",
1718
+ "fewshot_split": "dev",
1719
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1720
+ "doc_to_target": "answer",
1721
+ "doc_to_choice": [
1722
+ "A",
1723
+ "B",
1724
+ "C",
1725
+ "D"
1726
+ ],
1727
+ "description": "The following are multiple choice questions (with answers) about logical fallacies.\n\n",
1728
+ "target_delimiter": " ",
1729
+ "fewshot_delimiter": "\n\n",
1730
+ "fewshot_config": {
1731
+ "sampler": "first_n"
1732
+ },
1733
+ "num_fewshot": 5,
1734
+ "metric_list": [
1735
+ {
1736
+ "metric": "acc",
1737
+ "aggregation": "mean",
1738
+ "higher_is_better": true
1739
+ }
1740
+ ],
1741
+ "output_type": "multiple_choice",
1742
+ "repeats": 1,
1743
+ "should_decontaminate": false,
1744
+ "metadata": {
1745
+ "version": 0.0
1746
+ }
1747
+ },
1748
+ "mmlu_machine_learning": {
1749
+ "task": "mmlu_machine_learning",
1750
+ "task_alias": "machine_learning",
1751
+ "group": "mmlu_stem",
1752
+ "group_alias": "stem",
1753
+ "dataset_path": "hails/mmlu_no_train",
1754
+ "dataset_name": "machine_learning",
1755
+ "test_split": "test",
1756
+ "fewshot_split": "dev",
1757
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1758
+ "doc_to_target": "answer",
1759
+ "doc_to_choice": [
1760
+ "A",
1761
+ "B",
1762
+ "C",
1763
+ "D"
1764
+ ],
1765
+ "description": "The following are multiple choice questions (with answers) about machine learning.\n\n",
1766
+ "target_delimiter": " ",
1767
+ "fewshot_delimiter": "\n\n",
1768
+ "fewshot_config": {
1769
+ "sampler": "first_n"
1770
+ },
1771
+ "num_fewshot": 5,
1772
+ "metric_list": [
1773
+ {
1774
+ "metric": "acc",
1775
+ "aggregation": "mean",
1776
+ "higher_is_better": true
1777
+ }
1778
+ ],
1779
+ "output_type": "multiple_choice",
1780
+ "repeats": 1,
1781
+ "should_decontaminate": false,
1782
+ "metadata": {
1783
+ "version": 0.0
1784
+ }
1785
+ },
1786
+ "mmlu_management": {
1787
+ "task": "mmlu_management",
1788
+ "task_alias": "management",
1789
+ "group": "mmlu_other",
1790
+ "group_alias": "other",
1791
+ "dataset_path": "hails/mmlu_no_train",
1792
+ "dataset_name": "management",
1793
+ "test_split": "test",
1794
+ "fewshot_split": "dev",
1795
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1796
+ "doc_to_target": "answer",
1797
+ "doc_to_choice": [
1798
+ "A",
1799
+ "B",
1800
+ "C",
1801
+ "D"
1802
+ ],
1803
+ "description": "The following are multiple choice questions (with answers) about management.\n\n",
1804
+ "target_delimiter": " ",
1805
+ "fewshot_delimiter": "\n\n",
1806
+ "fewshot_config": {
1807
+ "sampler": "first_n"
1808
+ },
1809
+ "num_fewshot": 5,
1810
+ "metric_list": [
1811
+ {
1812
+ "metric": "acc",
1813
+ "aggregation": "mean",
1814
+ "higher_is_better": true
1815
+ }
1816
+ ],
1817
+ "output_type": "multiple_choice",
1818
+ "repeats": 1,
1819
+ "should_decontaminate": false,
1820
+ "metadata": {
1821
+ "version": 0.0
1822
+ }
1823
+ },
1824
+ "mmlu_marketing": {
1825
+ "task": "mmlu_marketing",
1826
+ "task_alias": "marketing",
1827
+ "group": "mmlu_other",
1828
+ "group_alias": "other",
1829
+ "dataset_path": "hails/mmlu_no_train",
1830
+ "dataset_name": "marketing",
1831
+ "test_split": "test",
1832
+ "fewshot_split": "dev",
1833
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1834
+ "doc_to_target": "answer",
1835
+ "doc_to_choice": [
1836
+ "A",
1837
+ "B",
1838
+ "C",
1839
+ "D"
1840
+ ],
1841
+ "description": "The following are multiple choice questions (with answers) about marketing.\n\n",
1842
+ "target_delimiter": " ",
1843
+ "fewshot_delimiter": "\n\n",
1844
+ "fewshot_config": {
1845
+ "sampler": "first_n"
1846
+ },
1847
+ "num_fewshot": 5,
1848
+ "metric_list": [
1849
+ {
1850
+ "metric": "acc",
1851
+ "aggregation": "mean",
1852
+ "higher_is_better": true
1853
+ }
1854
+ ],
1855
+ "output_type": "multiple_choice",
1856
+ "repeats": 1,
1857
+ "should_decontaminate": false,
1858
+ "metadata": {
1859
+ "version": 0.0
1860
+ }
1861
+ },
1862
+ "mmlu_medical_genetics": {
1863
+ "task": "mmlu_medical_genetics",
1864
+ "task_alias": "medical_genetics",
1865
+ "group": "mmlu_other",
1866
+ "group_alias": "other",
1867
+ "dataset_path": "hails/mmlu_no_train",
1868
+ "dataset_name": "medical_genetics",
1869
+ "test_split": "test",
1870
+ "fewshot_split": "dev",
1871
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1872
+ "doc_to_target": "answer",
1873
+ "doc_to_choice": [
1874
+ "A",
1875
+ "B",
1876
+ "C",
1877
+ "D"
1878
+ ],
1879
+ "description": "The following are multiple choice questions (with answers) about medical genetics.\n\n",
1880
+ "target_delimiter": " ",
1881
+ "fewshot_delimiter": "\n\n",
1882
+ "fewshot_config": {
1883
+ "sampler": "first_n"
1884
+ },
1885
+ "num_fewshot": 5,
1886
+ "metric_list": [
1887
+ {
1888
+ "metric": "acc",
1889
+ "aggregation": "mean",
1890
+ "higher_is_better": true
1891
+ }
1892
+ ],
1893
+ "output_type": "multiple_choice",
1894
+ "repeats": 1,
1895
+ "should_decontaminate": false,
1896
+ "metadata": {
1897
+ "version": 0.0
1898
+ }
1899
+ },
1900
+ "mmlu_miscellaneous": {
1901
+ "task": "mmlu_miscellaneous",
1902
+ "task_alias": "miscellaneous",
1903
+ "group": "mmlu_other",
1904
+ "group_alias": "other",
1905
+ "dataset_path": "hails/mmlu_no_train",
1906
+ "dataset_name": "miscellaneous",
1907
+ "test_split": "test",
1908
+ "fewshot_split": "dev",
1909
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1910
+ "doc_to_target": "answer",
1911
+ "doc_to_choice": [
1912
+ "A",
1913
+ "B",
1914
+ "C",
1915
+ "D"
1916
+ ],
1917
+ "description": "The following are multiple choice questions (with answers) about miscellaneous.\n\n",
1918
+ "target_delimiter": " ",
1919
+ "fewshot_delimiter": "\n\n",
1920
+ "fewshot_config": {
1921
+ "sampler": "first_n"
1922
+ },
1923
+ "num_fewshot": 5,
1924
+ "metric_list": [
1925
+ {
1926
+ "metric": "acc",
1927
+ "aggregation": "mean",
1928
+ "higher_is_better": true
1929
+ }
1930
+ ],
1931
+ "output_type": "multiple_choice",
1932
+ "repeats": 1,
1933
+ "should_decontaminate": false,
1934
+ "metadata": {
1935
+ "version": 0.0
1936
+ }
1937
+ },
1938
+ "mmlu_moral_disputes": {
1939
+ "task": "mmlu_moral_disputes",
1940
+ "task_alias": "moral_disputes",
1941
+ "group": "mmlu_humanities",
1942
+ "group_alias": "humanities",
1943
+ "dataset_path": "hails/mmlu_no_train",
1944
+ "dataset_name": "moral_disputes",
1945
+ "test_split": "test",
1946
+ "fewshot_split": "dev",
1947
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1948
+ "doc_to_target": "answer",
1949
+ "doc_to_choice": [
1950
+ "A",
1951
+ "B",
1952
+ "C",
1953
+ "D"
1954
+ ],
1955
+ "description": "The following are multiple choice questions (with answers) about moral disputes.\n\n",
1956
+ "target_delimiter": " ",
1957
+ "fewshot_delimiter": "\n\n",
1958
+ "fewshot_config": {
1959
+ "sampler": "first_n"
1960
+ },
1961
+ "num_fewshot": 5,
1962
+ "metric_list": [
1963
+ {
1964
+ "metric": "acc",
1965
+ "aggregation": "mean",
1966
+ "higher_is_better": true
1967
+ }
1968
+ ],
1969
+ "output_type": "multiple_choice",
1970
+ "repeats": 1,
1971
+ "should_decontaminate": false,
1972
+ "metadata": {
1973
+ "version": 0.0
1974
+ }
1975
+ },
1976
+ "mmlu_moral_scenarios": {
1977
+ "task": "mmlu_moral_scenarios",
1978
+ "task_alias": "moral_scenarios",
1979
+ "group": "mmlu_humanities",
1980
+ "group_alias": "humanities",
1981
+ "dataset_path": "hails/mmlu_no_train",
1982
+ "dataset_name": "moral_scenarios",
1983
+ "test_split": "test",
1984
+ "fewshot_split": "dev",
1985
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1986
+ "doc_to_target": "answer",
1987
+ "doc_to_choice": [
1988
+ "A",
1989
+ "B",
1990
+ "C",
1991
+ "D"
1992
+ ],
1993
+ "description": "The following are multiple choice questions (with answers) about moral scenarios.\n\n",
1994
+ "target_delimiter": " ",
1995
+ "fewshot_delimiter": "\n\n",
1996
+ "fewshot_config": {
1997
+ "sampler": "first_n"
1998
+ },
1999
+ "num_fewshot": 5,
2000
+ "metric_list": [
2001
+ {
2002
+ "metric": "acc",
2003
+ "aggregation": "mean",
2004
+ "higher_is_better": true
2005
+ }
2006
+ ],
2007
+ "output_type": "multiple_choice",
2008
+ "repeats": 1,
2009
+ "should_decontaminate": false,
2010
+ "metadata": {
2011
+ "version": 0.0
2012
+ }
2013
+ },
2014
+ "mmlu_nutrition": {
2015
+ "task": "mmlu_nutrition",
2016
+ "task_alias": "nutrition",
2017
+ "group": "mmlu_other",
2018
+ "group_alias": "other",
2019
+ "dataset_path": "hails/mmlu_no_train",
2020
+ "dataset_name": "nutrition",
2021
+ "test_split": "test",
2022
+ "fewshot_split": "dev",
2023
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
2024
+ "doc_to_target": "answer",
2025
+ "doc_to_choice": [
2026
+ "A",
2027
+ "B",
2028
+ "C",
2029
+ "D"
2030
+ ],
2031
+ "description": "The following are multiple choice questions (with answers) about nutrition.\n\n",
2032
+ "target_delimiter": " ",
2033
+ "fewshot_delimiter": "\n\n",
2034
+ "fewshot_config": {
2035
+ "sampler": "first_n"
2036
+ },
2037
+ "num_fewshot": 5,
2038
+ "metric_list": [
2039
+ {
2040
+ "metric": "acc",
2041
+ "aggregation": "mean",
2042
+ "higher_is_better": true
2043
+ }
2044
+ ],
2045
+ "output_type": "multiple_choice",
2046
+ "repeats": 1,
2047
+ "should_decontaminate": false,
2048
+ "metadata": {
2049
+ "version": 0.0
2050
+ }
2051
+ },
2052
+ "mmlu_philosophy": {
2053
+ "task": "mmlu_philosophy",
2054
+ "task_alias": "philosophy",
2055
+ "group": "mmlu_humanities",
2056
+ "group_alias": "humanities",
2057
+ "dataset_path": "hails/mmlu_no_train",
2058
+ "dataset_name": "philosophy",
2059
+ "test_split": "test",
2060
+ "fewshot_split": "dev",
2061
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
2062
+ "doc_to_target": "answer",
2063
+ "doc_to_choice": [
2064
+ "A",
2065
+ "B",
2066
+ "C",
2067
+ "D"
2068
+ ],
2069
+ "description": "The following are multiple choice questions (with answers) about philosophy.\n\n",
2070
+ "target_delimiter": " ",
2071
+ "fewshot_delimiter": "\n\n",
2072
+ "fewshot_config": {
2073
+ "sampler": "first_n"
2074
+ },
2075
+ "num_fewshot": 5,
2076
+ "metric_list": [
2077
+ {
2078
+ "metric": "acc",
2079
+ "aggregation": "mean",
2080
+ "higher_is_better": true
2081
+ }
2082
+ ],
2083
+ "output_type": "multiple_choice",
2084
+ "repeats": 1,
2085
+ "should_decontaminate": false,
2086
+ "metadata": {
2087
+ "version": 0.0
2088
+ }
2089
+ },
2090
+ "mmlu_prehistory": {
2091
+ "task": "mmlu_prehistory",
2092
+ "task_alias": "prehistory",
2093
+ "group": "mmlu_humanities",
2094
+ "group_alias": "humanities",
2095
+ "dataset_path": "hails/mmlu_no_train",
2096
+ "dataset_name": "prehistory",
2097
+ "test_split": "test",
2098
+ "fewshot_split": "dev",
2099
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
2100
+ "doc_to_target": "answer",
2101
+ "doc_to_choice": [
2102
+ "A",
2103
+ "B",
2104
+ "C",
2105
+ "D"
2106
+ ],
2107
+ "description": "The following are multiple choice questions (with answers) about prehistory.\n\n",
2108
+ "target_delimiter": " ",
2109
+ "fewshot_delimiter": "\n\n",
2110
+ "fewshot_config": {
2111
+ "sampler": "first_n"
2112
+ },
2113
+ "num_fewshot": 5,
2114
+ "metric_list": [
2115
+ {
2116
+ "metric": "acc",
2117
+ "aggregation": "mean",
2118
+ "higher_is_better": true
2119
+ }
2120
+ ],
2121
+ "output_type": "multiple_choice",
2122
+ "repeats": 1,
2123
+ "should_decontaminate": false,
2124
+ "metadata": {
2125
+ "version": 0.0
2126
+ }
2127
+ },
2128
+ "mmlu_professional_accounting": {
2129
+ "task": "mmlu_professional_accounting",
2130
+ "task_alias": "professional_accounting",
2131
+ "group": "mmlu_other",
2132
+ "group_alias": "other",
2133
+ "dataset_path": "hails/mmlu_no_train",
2134
+ "dataset_name": "professional_accounting",
2135
+ "test_split": "test",
2136
+ "fewshot_split": "dev",
2137
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
2138
+ "doc_to_target": "answer",
2139
+ "doc_to_choice": [
2140
+ "A",
2141
+ "B",
2142
+ "C",
2143
+ "D"
2144
+ ],
2145
+ "description": "The following are multiple choice questions (with answers) about professional accounting.\n\n",
2146
+ "target_delimiter": " ",
2147
+ "fewshot_delimiter": "\n\n",
2148
+ "fewshot_config": {
2149
+ "sampler": "first_n"
2150
+ },
2151
+ "num_fewshot": 5,
2152
+ "metric_list": [
2153
+ {
2154
+ "metric": "acc",
2155
+ "aggregation": "mean",
2156
+ "higher_is_better": true
2157
+ }
2158
+ ],
2159
+ "output_type": "multiple_choice",
2160
+ "repeats": 1,
2161
+ "should_decontaminate": false,
2162
+ "metadata": {
2163
+ "version": 0.0
2164
+ }
2165
+ },
2166
+ "mmlu_professional_law": {
2167
+ "task": "mmlu_professional_law",
2168
+ "task_alias": "professional_law",
2169
+ "group": "mmlu_humanities",
2170
+ "group_alias": "humanities",
2171
+ "dataset_path": "hails/mmlu_no_train",
2172
+ "dataset_name": "professional_law",
2173
+ "test_split": "test",
2174
+ "fewshot_split": "dev",
2175
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
2176
+ "doc_to_target": "answer",
2177
+ "doc_to_choice": [
2178
+ "A",
2179
+ "B",
2180
+ "C",
2181
+ "D"
2182
+ ],
2183
+ "description": "The following are multiple choice questions (with answers) about professional law.\n\n",
2184
+ "target_delimiter": " ",
2185
+ "fewshot_delimiter": "\n\n",
2186
+ "fewshot_config": {
2187
+ "sampler": "first_n"
2188
+ },
2189
+ "num_fewshot": 5,
2190
+ "metric_list": [
2191
+ {
2192
+ "metric": "acc",
2193
+ "aggregation": "mean",
2194
+ "higher_is_better": true
2195
+ }
2196
+ ],
2197
+ "output_type": "multiple_choice",
2198
+ "repeats": 1,
2199
+ "should_decontaminate": false,
2200
+ "metadata": {
2201
+ "version": 0.0
2202
+ }
2203
+ },
2204
+ "mmlu_professional_medicine": {
2205
+ "task": "mmlu_professional_medicine",
2206
+ "task_alias": "professional_medicine",
2207
+ "group": "mmlu_other",
2208
+ "group_alias": "other",
2209
+ "dataset_path": "hails/mmlu_no_train",
2210
+ "dataset_name": "professional_medicine",
2211
+ "test_split": "test",
2212
+ "fewshot_split": "dev",
2213
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
2214
+ "doc_to_target": "answer",
2215
+ "doc_to_choice": [
2216
+ "A",
2217
+ "B",
2218
+ "C",
2219
+ "D"
2220
+ ],
2221
+ "description": "The following are multiple choice questions (with answers) about professional medicine.\n\n",
2222
+ "target_delimiter": " ",
2223
+ "fewshot_delimiter": "\n\n",
2224
+ "fewshot_config": {
2225
+ "sampler": "first_n"
2226
+ },
2227
+ "num_fewshot": 5,
2228
+ "metric_list": [
2229
+ {
2230
+ "metric": "acc",
2231
+ "aggregation": "mean",
2232
+ "higher_is_better": true
2233
+ }
2234
+ ],
2235
+ "output_type": "multiple_choice",
2236
+ "repeats": 1,
2237
+ "should_decontaminate": false,
2238
+ "metadata": {
2239
+ "version": 0.0
2240
+ }
2241
+ },
2242
+ "mmlu_professional_psychology": {
2243
+ "task": "mmlu_professional_psychology",
2244
+ "task_alias": "professional_psychology",
2245
+ "group": "mmlu_social_sciences",
2246
+ "group_alias": "social_sciences",
2247
+ "dataset_path": "hails/mmlu_no_train",
2248
+ "dataset_name": "professional_psychology",
2249
+ "test_split": "test",
2250
+ "fewshot_split": "dev",
2251
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
2252
+ "doc_to_target": "answer",
2253
+ "doc_to_choice": [
2254
+ "A",
2255
+ "B",
2256
+ "C",
2257
+ "D"
2258
+ ],
2259
+ "description": "The following are multiple choice questions (with answers) about professional psychology.\n\n",
2260
+ "target_delimiter": " ",
2261
+ "fewshot_delimiter": "\n\n",
2262
+ "fewshot_config": {
2263
+ "sampler": "first_n"
2264
+ },
2265
+ "num_fewshot": 5,
2266
+ "metric_list": [
2267
+ {
2268
+ "metric": "acc",
2269
+ "aggregation": "mean",
2270
+ "higher_is_better": true
2271
+ }
2272
+ ],
2273
+ "output_type": "multiple_choice",
2274
+ "repeats": 1,
2275
+ "should_decontaminate": false,
2276
+ "metadata": {
2277
+ "version": 0.0
2278
+ }
2279
+ },
2280
+ "mmlu_public_relations": {
2281
+ "task": "mmlu_public_relations",
2282
+ "task_alias": "public_relations",
2283
+ "group": "mmlu_social_sciences",
2284
+ "group_alias": "social_sciences",
2285
+ "dataset_path": "hails/mmlu_no_train",
2286
+ "dataset_name": "public_relations",
2287
+ "test_split": "test",
2288
+ "fewshot_split": "dev",
2289
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
2290
+ "doc_to_target": "answer",
2291
+ "doc_to_choice": [
2292
+ "A",
2293
+ "B",
2294
+ "C",
2295
+ "D"
2296
+ ],
2297
+ "description": "The following are multiple choice questions (with answers) about public relations.\n\n",
2298
+ "target_delimiter": " ",
2299
+ "fewshot_delimiter": "\n\n",
2300
+ "fewshot_config": {
2301
+ "sampler": "first_n"
2302
+ },
2303
+ "num_fewshot": 5,
2304
+ "metric_list": [
2305
+ {
2306
+ "metric": "acc",
2307
+ "aggregation": "mean",
2308
+ "higher_is_better": true
2309
+ }
2310
+ ],
2311
+ "output_type": "multiple_choice",
2312
+ "repeats": 1,
2313
+ "should_decontaminate": false,
2314
+ "metadata": {
2315
+ "version": 0.0
2316
+ }
2317
+ },
2318
+ "mmlu_security_studies": {
2319
+ "task": "mmlu_security_studies",
2320
+ "task_alias": "security_studies",
2321
+ "group": "mmlu_social_sciences",
2322
+ "group_alias": "social_sciences",
2323
+ "dataset_path": "hails/mmlu_no_train",
2324
+ "dataset_name": "security_studies",
2325
+ "test_split": "test",
2326
+ "fewshot_split": "dev",
2327
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
2328
+ "doc_to_target": "answer",
2329
+ "doc_to_choice": [
2330
+ "A",
2331
+ "B",
2332
+ "C",
2333
+ "D"
2334
+ ],
2335
+ "description": "The following are multiple choice questions (with answers) about security studies.\n\n",
2336
+ "target_delimiter": " ",
2337
+ "fewshot_delimiter": "\n\n",
2338
+ "fewshot_config": {
2339
+ "sampler": "first_n"
2340
+ },
2341
+ "num_fewshot": 5,
2342
+ "metric_list": [
2343
+ {
2344
+ "metric": "acc",
2345
+ "aggregation": "mean",
2346
+ "higher_is_better": true
2347
+ }
2348
+ ],
2349
+ "output_type": "multiple_choice",
2350
+ "repeats": 1,
2351
+ "should_decontaminate": false,
2352
+ "metadata": {
2353
+ "version": 0.0
2354
+ }
2355
+ },
2356
+ "mmlu_sociology": {
2357
+ "task": "mmlu_sociology",
2358
+ "task_alias": "sociology",
2359
+ "group": "mmlu_social_sciences",
2360
+ "group_alias": "social_sciences",
2361
+ "dataset_path": "hails/mmlu_no_train",
2362
+ "dataset_name": "sociology",
2363
+ "test_split": "test",
2364
+ "fewshot_split": "dev",
2365
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
2366
+ "doc_to_target": "answer",
2367
+ "doc_to_choice": [
2368
+ "A",
2369
+ "B",
2370
+ "C",
2371
+ "D"
2372
+ ],
2373
+ "description": "The following are multiple choice questions (with answers) about sociology.\n\n",
2374
+ "target_delimiter": " ",
2375
+ "fewshot_delimiter": "\n\n",
2376
+ "fewshot_config": {
2377
+ "sampler": "first_n"
2378
+ },
2379
+ "num_fewshot": 5,
2380
+ "metric_list": [
2381
+ {
2382
+ "metric": "acc",
2383
+ "aggregation": "mean",
2384
+ "higher_is_better": true
2385
+ }
2386
+ ],
2387
+ "output_type": "multiple_choice",
2388
+ "repeats": 1,
2389
+ "should_decontaminate": false,
2390
+ "metadata": {
2391
+ "version": 0.0
2392
+ }
2393
+ },
2394
+ "mmlu_us_foreign_policy": {
2395
+ "task": "mmlu_us_foreign_policy",
2396
+ "task_alias": "us_foreign_policy",
2397
+ "group": "mmlu_social_sciences",
2398
+ "group_alias": "social_sciences",
2399
+ "dataset_path": "hails/mmlu_no_train",
2400
+ "dataset_name": "us_foreign_policy",
2401
+ "test_split": "test",
2402
+ "fewshot_split": "dev",
2403
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
2404
+ "doc_to_target": "answer",
2405
+ "doc_to_choice": [
2406
+ "A",
2407
+ "B",
2408
+ "C",
2409
+ "D"
2410
+ ],
2411
+ "description": "The following are multiple choice questions (with answers) about us foreign policy.\n\n",
2412
+ "target_delimiter": " ",
2413
+ "fewshot_delimiter": "\n\n",
2414
+ "fewshot_config": {
2415
+ "sampler": "first_n"
2416
+ },
2417
+ "num_fewshot": 5,
2418
+ "metric_list": [
2419
+ {
2420
+ "metric": "acc",
2421
+ "aggregation": "mean",
2422
+ "higher_is_better": true
2423
+ }
2424
+ ],
2425
+ "output_type": "multiple_choice",
2426
+ "repeats": 1,
2427
+ "should_decontaminate": false,
2428
+ "metadata": {
2429
+ "version": 0.0
2430
+ }
2431
+ },
2432
+ "mmlu_virology": {
2433
+ "task": "mmlu_virology",
2434
+ "task_alias": "virology",
2435
+ "group": "mmlu_other",
2436
+ "group_alias": "other",
2437
+ "dataset_path": "hails/mmlu_no_train",
2438
+ "dataset_name": "virology",
2439
+ "test_split": "test",
2440
+ "fewshot_split": "dev",
2441
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
2442
+ "doc_to_target": "answer",
2443
+ "doc_to_choice": [
2444
+ "A",
2445
+ "B",
2446
+ "C",
2447
+ "D"
2448
+ ],
2449
+ "description": "The following are multiple choice questions (with answers) about virology.\n\n",
2450
+ "target_delimiter": " ",
2451
+ "fewshot_delimiter": "\n\n",
2452
+ "fewshot_config": {
2453
+ "sampler": "first_n"
2454
+ },
2455
+ "num_fewshot": 5,
2456
+ "metric_list": [
2457
+ {
2458
+ "metric": "acc",
2459
+ "aggregation": "mean",
2460
+ "higher_is_better": true
2461
+ }
2462
+ ],
2463
+ "output_type": "multiple_choice",
2464
+ "repeats": 1,
2465
+ "should_decontaminate": false,
2466
+ "metadata": {
2467
+ "version": 0.0
2468
+ }
2469
+ },
2470
+ "mmlu_world_religions": {
2471
+ "task": "mmlu_world_religions",
2472
+ "task_alias": "world_religions",
2473
+ "group": "mmlu_humanities",
2474
+ "group_alias": "humanities",
2475
+ "dataset_path": "hails/mmlu_no_train",
2476
+ "dataset_name": "world_religions",
2477
+ "test_split": "test",
2478
+ "fewshot_split": "dev",
2479
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
2480
+ "doc_to_target": "answer",
2481
+ "doc_to_choice": [
2482
+ "A",
2483
+ "B",
2484
+ "C",
2485
+ "D"
2486
+ ],
2487
+ "description": "The following are multiple choice questions (with answers) about world religions.\n\n",
2488
+ "target_delimiter": " ",
2489
+ "fewshot_delimiter": "\n\n",
2490
+ "fewshot_config": {
2491
+ "sampler": "first_n"
2492
+ },
2493
+ "num_fewshot": 5,
2494
+ "metric_list": [
2495
+ {
2496
+ "metric": "acc",
2497
+ "aggregation": "mean",
2498
+ "higher_is_better": true
2499
+ }
2500
+ ],
2501
+ "output_type": "multiple_choice",
2502
+ "repeats": 1,
2503
+ "should_decontaminate": false,
2504
+ "metadata": {
2505
+ "version": 0.0
2506
+ }
2507
+ }
2508
+ },
2509
+ "versions": {
2510
+ "mmlu": "N/A",
2511
+ "mmlu_abstract_algebra": 0.0,
2512
+ "mmlu_anatomy": 0.0,
2513
+ "mmlu_astronomy": 0.0,
2514
+ "mmlu_business_ethics": 0.0,
2515
+ "mmlu_clinical_knowledge": 0.0,
2516
+ "mmlu_college_biology": 0.0,
2517
+ "mmlu_college_chemistry": 0.0,
2518
+ "mmlu_college_computer_science": 0.0,
2519
+ "mmlu_college_mathematics": 0.0,
2520
+ "mmlu_college_medicine": 0.0,
2521
+ "mmlu_college_physics": 0.0,
2522
+ "mmlu_computer_security": 0.0,
2523
+ "mmlu_conceptual_physics": 0.0,
2524
+ "mmlu_econometrics": 0.0,
2525
+ "mmlu_electrical_engineering": 0.0,
2526
+ "mmlu_elementary_mathematics": 0.0,
2527
+ "mmlu_formal_logic": 0.0,
2528
+ "mmlu_global_facts": 0.0,
2529
+ "mmlu_high_school_biology": 0.0,
2530
+ "mmlu_high_school_chemistry": 0.0,
2531
+ "mmlu_high_school_computer_science": 0.0,
2532
+ "mmlu_high_school_european_history": 0.0,
2533
+ "mmlu_high_school_geography": 0.0,
2534
+ "mmlu_high_school_government_and_politics": 0.0,
2535
+ "mmlu_high_school_macroeconomics": 0.0,
2536
+ "mmlu_high_school_mathematics": 0.0,
2537
+ "mmlu_high_school_microeconomics": 0.0,
2538
+ "mmlu_high_school_physics": 0.0,
2539
+ "mmlu_high_school_psychology": 0.0,
2540
+ "mmlu_high_school_statistics": 0.0,
2541
+ "mmlu_high_school_us_history": 0.0,
2542
+ "mmlu_high_school_world_history": 0.0,
2543
+ "mmlu_human_aging": 0.0,
2544
+ "mmlu_human_sexuality": 0.0,
2545
+ "mmlu_humanities": "N/A",
2546
+ "mmlu_international_law": 0.0,
2547
+ "mmlu_jurisprudence": 0.0,
2548
+ "mmlu_logical_fallacies": 0.0,
2549
+ "mmlu_machine_learning": 0.0,
2550
+ "mmlu_management": 0.0,
2551
+ "mmlu_marketing": 0.0,
2552
+ "mmlu_medical_genetics": 0.0,
2553
+ "mmlu_miscellaneous": 0.0,
2554
+ "mmlu_moral_disputes": 0.0,
2555
+ "mmlu_moral_scenarios": 0.0,
2556
+ "mmlu_nutrition": 0.0,
2557
+ "mmlu_other": "N/A",
2558
+ "mmlu_philosophy": 0.0,
2559
+ "mmlu_prehistory": 0.0,
2560
+ "mmlu_professional_accounting": 0.0,
2561
+ "mmlu_professional_law": 0.0,
2562
+ "mmlu_professional_medicine": 0.0,
2563
+ "mmlu_professional_psychology": 0.0,
2564
+ "mmlu_public_relations": 0.0,
2565
+ "mmlu_security_studies": 0.0,
2566
+ "mmlu_social_sciences": "N/A",
2567
+ "mmlu_sociology": 0.0,
2568
+ "mmlu_stem": "N/A",
2569
+ "mmlu_us_foreign_policy": 0.0,
2570
+ "mmlu_virology": 0.0,
2571
+ "mmlu_world_religions": 0.0
2572
+ },
2573
+ "n-shot": {
2574
+ "mmlu": 0,
2575
+ "mmlu_abstract_algebra": 5,
2576
+ "mmlu_anatomy": 5,
2577
+ "mmlu_astronomy": 5,
2578
+ "mmlu_business_ethics": 5,
2579
+ "mmlu_clinical_knowledge": 5,
2580
+ "mmlu_college_biology": 5,
2581
+ "mmlu_college_chemistry": 5,
2582
+ "mmlu_college_computer_science": 5,
2583
+ "mmlu_college_mathematics": 5,
2584
+ "mmlu_college_medicine": 5,
2585
+ "mmlu_college_physics": 5,
2586
+ "mmlu_computer_security": 5,
2587
+ "mmlu_conceptual_physics": 5,
2588
+ "mmlu_econometrics": 5,
2589
+ "mmlu_electrical_engineering": 5,
2590
+ "mmlu_elementary_mathematics": 5,
2591
+ "mmlu_formal_logic": 5,
2592
+ "mmlu_global_facts": 5,
2593
+ "mmlu_high_school_biology": 5,
2594
+ "mmlu_high_school_chemistry": 5,
2595
+ "mmlu_high_school_computer_science": 5,
2596
+ "mmlu_high_school_european_history": 5,
2597
+ "mmlu_high_school_geography": 5,
2598
+ "mmlu_high_school_government_and_politics": 5,
2599
+ "mmlu_high_school_macroeconomics": 5,
2600
+ "mmlu_high_school_mathematics": 5,
2601
+ "mmlu_high_school_microeconomics": 5,
2602
+ "mmlu_high_school_physics": 5,
2603
+ "mmlu_high_school_psychology": 5,
2604
+ "mmlu_high_school_statistics": 5,
2605
+ "mmlu_high_school_us_history": 5,
2606
+ "mmlu_high_school_world_history": 5,
2607
+ "mmlu_human_aging": 5,
2608
+ "mmlu_human_sexuality": 5,
2609
+ "mmlu_humanities": 5,
2610
+ "mmlu_international_law": 5,
2611
+ "mmlu_jurisprudence": 5,
2612
+ "mmlu_logical_fallacies": 5,
2613
+ "mmlu_machine_learning": 5,
2614
+ "mmlu_management": 5,
2615
+ "mmlu_marketing": 5,
2616
+ "mmlu_medical_genetics": 5,
2617
+ "mmlu_miscellaneous": 5,
2618
+ "mmlu_moral_disputes": 5,
2619
+ "mmlu_moral_scenarios": 5,
2620
+ "mmlu_nutrition": 5,
2621
+ "mmlu_other": 5,
2622
+ "mmlu_philosophy": 5,
2623
+ "mmlu_prehistory": 5,
2624
+ "mmlu_professional_accounting": 5,
2625
+ "mmlu_professional_law": 5,
2626
+ "mmlu_professional_medicine": 5,
2627
+ "mmlu_professional_psychology": 5,
2628
+ "mmlu_public_relations": 5,
2629
+ "mmlu_security_studies": 5,
2630
+ "mmlu_social_sciences": 5,
2631
+ "mmlu_sociology": 5,
2632
+ "mmlu_stem": 5,
2633
+ "mmlu_us_foreign_policy": 5,
2634
+ "mmlu_virology": 5,
2635
+ "mmlu_world_religions": 5
2636
+ },
2637
+ "config": {
2638
+ "model": "hf",
2639
+ "model_args": "pretrained=RWKV/rwkv-raven-7b,dtype=float16,trust_remote_code=True",
2640
+ "batch_size": "auto",
2641
+ "batch_sizes": [
2642
+ 16
2643
+ ],
2644
+ "device": null,
2645
+ "use_cache": null,
2646
+ "limit": null,
2647
+ "bootstrap_iters": 100000,
2648
+ "gen_kwargs": null
2649
+ },
2650
+ "git_hash": "1ee41f7"
2651
+ }
lm-eval-output/RWKV/rwkv-raven-7b/mmlu/dtype=float16,trust_remote_code=True-num_fewshot=5-nvidia-gpu/taskrun.log ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d971c3ec00bfeebeba3b2a499dbfdaa2c1ff217c78526c29c2f71173543d6217
3
+ size 493895
lm-eval-output/allenai/OLMo-7B/arc_challenge/dtype=float16,trust_remote_code=True-num_fewshot=25-nvidia-gpu/results.json ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "arc_challenge": {
4
+ "acc,none": 0.41723549488054607,
5
+ "acc_stderr,none": 0.014409825518403077,
6
+ "acc_norm,none": 0.4462457337883959,
7
+ "acc_norm_stderr,none": 0.014526705548539978,
8
+ "alias": "arc_challenge"
9
+ }
10
+ },
11
+ "configs": {
12
+ "arc_challenge": {
13
+ "task": "arc_challenge",
14
+ "group": [
15
+ "ai2_arc"
16
+ ],
17
+ "dataset_path": "allenai/ai2_arc",
18
+ "dataset_name": "ARC-Challenge",
19
+ "training_split": "train",
20
+ "validation_split": "validation",
21
+ "test_split": "test",
22
+ "doc_to_text": "Question: {{question}}\nAnswer:",
23
+ "doc_to_target": "{{choices.label.index(answerKey)}}",
24
+ "doc_to_choice": "{{choices.text}}",
25
+ "description": "",
26
+ "target_delimiter": " ",
27
+ "fewshot_delimiter": "\n\n",
28
+ "num_fewshot": 25,
29
+ "metric_list": [
30
+ {
31
+ "metric": "acc",
32
+ "aggregation": "mean",
33
+ "higher_is_better": true
34
+ },
35
+ {
36
+ "metric": "acc_norm",
37
+ "aggregation": "mean",
38
+ "higher_is_better": true
39
+ }
40
+ ],
41
+ "output_type": "multiple_choice",
42
+ "repeats": 1,
43
+ "should_decontaminate": true,
44
+ "doc_to_decontamination_query": "Question: {{question}}\nAnswer:",
45
+ "metadata": {
46
+ "version": 1.0
47
+ }
48
+ }
49
+ },
50
+ "versions": {
51
+ "arc_challenge": 1.0
52
+ },
53
+ "n-shot": {
54
+ "arc_challenge": 25
55
+ },
56
+ "config": {
57
+ "model": "hf",
58
+ "model_args": "pretrained=allenai/OLMo-7B,dtype=float16,trust_remote_code=True",
59
+ "batch_size": "1",
60
+ "batch_sizes": [],
61
+ "device": null,
62
+ "use_cache": null,
63
+ "limit": null,
64
+ "bootstrap_iters": 100000,
65
+ "gen_kwargs": null
66
+ },
67
+ "git_hash": "1ee41f7"
68
+ }
lm-eval-output/allenai/OLMo-7B/arc_challenge/dtype=float16,trust_remote_code=True-num_fewshot=25-nvidia-gpu/taskrun.log ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:93aed66ead9522eb0eb404ddfb64b2d6219350267fa0b9d76d7fab6ceaca88b6
3
+ size 159684
lm-eval-output/allenai/OLMo-7B/mmlu/dtype=float16,trust_remote_code=True-num_fewshot=5-nvidia-gpu/results.json ADDED
@@ -0,0 +1,2649 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "mmlu": {
4
+ "acc,none": 0.2847884916678536,
5
+ "acc_stderr,none": 0.05083377611198537,
6
+ "alias": "mmlu"
7
+ },
8
+ "mmlu_humanities": {
9
+ "alias": " - humanities",
10
+ "acc,none": 0.2595111583421892,
11
+ "acc_stderr,none": 0.030882438559226597
12
+ },
13
+ "mmlu_formal_logic": {
14
+ "alias": " - formal_logic",
15
+ "acc,none": 0.19047619047619047,
16
+ "acc_stderr,none": 0.03512207412302052
17
+ },
18
+ "mmlu_high_school_european_history": {
19
+ "alias": " - high_school_european_history",
20
+ "acc,none": 0.2545454545454545,
21
+ "acc_stderr,none": 0.03401506715249039
22
+ },
23
+ "mmlu_high_school_us_history": {
24
+ "alias": " - high_school_us_history",
25
+ "acc,none": 0.22058823529411764,
26
+ "acc_stderr,none": 0.02910225438967407
27
+ },
28
+ "mmlu_high_school_world_history": {
29
+ "alias": " - high_school_world_history",
30
+ "acc,none": 0.2742616033755274,
31
+ "acc_stderr,none": 0.029041333510598035
32
+ },
33
+ "mmlu_international_law": {
34
+ "alias": " - international_law",
35
+ "acc,none": 0.2644628099173554,
36
+ "acc_stderr,none": 0.04026187527591205
37
+ },
38
+ "mmlu_jurisprudence": {
39
+ "alias": " - jurisprudence",
40
+ "acc,none": 0.21296296296296297,
41
+ "acc_stderr,none": 0.03957835471980979
42
+ },
43
+ "mmlu_logical_fallacies": {
44
+ "alias": " - logical_fallacies",
45
+ "acc,none": 0.2392638036809816,
46
+ "acc_stderr,none": 0.0335195387952127
47
+ },
48
+ "mmlu_moral_disputes": {
49
+ "alias": " - moral_disputes",
50
+ "acc,none": 0.2630057803468208,
51
+ "acc_stderr,none": 0.023703099525258165
52
+ },
53
+ "mmlu_moral_scenarios": {
54
+ "alias": " - moral_scenarios",
55
+ "acc,none": 0.2424581005586592,
56
+ "acc_stderr,none": 0.014333522059217889
57
+ },
58
+ "mmlu_philosophy": {
59
+ "alias": " - philosophy",
60
+ "acc,none": 0.3247588424437299,
61
+ "acc_stderr,none": 0.026596782287697046
62
+ },
63
+ "mmlu_prehistory": {
64
+ "alias": " - prehistory",
65
+ "acc,none": 0.3117283950617284,
66
+ "acc_stderr,none": 0.025773111169630436
67
+ },
68
+ "mmlu_professional_law": {
69
+ "alias": " - professional_law",
70
+ "acc,none": 0.258148631029987,
71
+ "acc_stderr,none": 0.011176923719313402
72
+ },
73
+ "mmlu_world_religions": {
74
+ "alias": " - world_religions",
75
+ "acc,none": 0.2631578947368421,
76
+ "acc_stderr,none": 0.03377310252209194
77
+ },
78
+ "mmlu_other": {
79
+ "alias": " - other",
80
+ "acc,none": 0.3080141615706469,
81
+ "acc_stderr,none": 0.05726215420355078
82
+ },
83
+ "mmlu_business_ethics": {
84
+ "alias": " - business_ethics",
85
+ "acc,none": 0.21,
86
+ "acc_stderr,none": 0.040936018074033256
87
+ },
88
+ "mmlu_clinical_knowledge": {
89
+ "alias": " - clinical_knowledge",
90
+ "acc,none": 0.27169811320754716,
91
+ "acc_stderr,none": 0.027377706624670713
92
+ },
93
+ "mmlu_college_medicine": {
94
+ "alias": " - college_medicine",
95
+ "acc,none": 0.24277456647398843,
96
+ "acc_stderr,none": 0.0326926380614177
97
+ },
98
+ "mmlu_global_facts": {
99
+ "alias": " - global_facts",
100
+ "acc,none": 0.32,
101
+ "acc_stderr,none": 0.046882617226215034
102
+ },
103
+ "mmlu_human_aging": {
104
+ "alias": " - human_aging",
105
+ "acc,none": 0.3273542600896861,
106
+ "acc_stderr,none": 0.03149384670994131
107
+ },
108
+ "mmlu_management": {
109
+ "alias": " - management",
110
+ "acc,none": 0.2912621359223301,
111
+ "acc_stderr,none": 0.044986763205729245
112
+ },
113
+ "mmlu_marketing": {
114
+ "alias": " - marketing",
115
+ "acc,none": 0.28205128205128205,
116
+ "acc_stderr,none": 0.02948036054954119
117
+ },
118
+ "mmlu_medical_genetics": {
119
+ "alias": " - medical_genetics",
120
+ "acc,none": 0.29,
121
+ "acc_stderr,none": 0.04560480215720684
122
+ },
123
+ "mmlu_miscellaneous": {
124
+ "alias": " - miscellaneous",
125
+ "acc,none": 0.2962962962962963,
126
+ "acc_stderr,none": 0.01632881442210205
127
+ },
128
+ "mmlu_nutrition": {
129
+ "alias": " - nutrition",
130
+ "acc,none": 0.34967320261437906,
131
+ "acc_stderr,none": 0.027305308076274695
132
+ },
133
+ "mmlu_professional_accounting": {
134
+ "alias": " - professional_accounting",
135
+ "acc,none": 0.22695035460992907,
136
+ "acc_stderr,none": 0.024987106365642973
137
+ },
138
+ "mmlu_professional_medicine": {
139
+ "alias": " - professional_medicine",
140
+ "acc,none": 0.4485294117647059,
141
+ "acc_stderr,none": 0.0302114796091216
142
+ },
143
+ "mmlu_virology": {
144
+ "alias": " - virology",
145
+ "acc,none": 0.4036144578313253,
146
+ "acc_stderr,none": 0.03819486140758398
147
+ },
148
+ "mmlu_social_sciences": {
149
+ "alias": " - social_sciences",
150
+ "acc,none": 0.2908677283067923,
151
+ "acc_stderr,none": 0.054129411827228885
152
+ },
153
+ "mmlu_econometrics": {
154
+ "alias": " - econometrics",
155
+ "acc,none": 0.2982456140350877,
156
+ "acc_stderr,none": 0.043036840335373173
157
+ },
158
+ "mmlu_high_school_geography": {
159
+ "alias": " - high_school_geography",
160
+ "acc,none": 0.23232323232323232,
161
+ "acc_stderr,none": 0.030088629490217487
162
+ },
163
+ "mmlu_high_school_government_and_politics": {
164
+ "alias": " - high_school_government_and_politics",
165
+ "acc,none": 0.3316062176165803,
166
+ "acc_stderr,none": 0.03397636541089116
167
+ },
168
+ "mmlu_high_school_macroeconomics": {
169
+ "alias": " - high_school_macroeconomics",
170
+ "acc,none": 0.3435897435897436,
171
+ "acc_stderr,none": 0.02407869658063547
172
+ },
173
+ "mmlu_high_school_microeconomics": {
174
+ "alias": " - high_school_microeconomics",
175
+ "acc,none": 0.31932773109243695,
176
+ "acc_stderr,none": 0.030283995525884396
177
+ },
178
+ "mmlu_high_school_psychology": {
179
+ "alias": " - high_school_psychology",
180
+ "acc,none": 0.24954128440366974,
181
+ "acc_stderr,none": 0.018553897629501624
182
+ },
183
+ "mmlu_human_sexuality": {
184
+ "alias": " - human_sexuality",
185
+ "acc,none": 0.26717557251908397,
186
+ "acc_stderr,none": 0.038808483010823944
187
+ },
188
+ "mmlu_professional_psychology": {
189
+ "alias": " - professional_psychology",
190
+ "acc,none": 0.2238562091503268,
191
+ "acc_stderr,none": 0.016863008585416613
192
+ },
193
+ "mmlu_public_relations": {
194
+ "alias": " - public_relations",
195
+ "acc,none": 0.32727272727272727,
196
+ "acc_stderr,none": 0.04494290866252089
197
+ },
198
+ "mmlu_security_studies": {
199
+ "alias": " - security_studies",
200
+ "acc,none": 0.4122448979591837,
201
+ "acc_stderr,none": 0.03151236044674281
202
+ },
203
+ "mmlu_sociology": {
204
+ "alias": " - sociology",
205
+ "acc,none": 0.3482587064676617,
206
+ "acc_stderr,none": 0.033687874661154596
207
+ },
208
+ "mmlu_us_foreign_policy": {
209
+ "alias": " - us_foreign_policy",
210
+ "acc,none": 0.26,
211
+ "acc_stderr,none": 0.044084400227680794
212
+ },
213
+ "mmlu_stem": {
214
+ "alias": " - stem",
215
+ "acc,none": 0.29368855058674276,
216
+ "acc_stderr,none": 0.057050203747814526
217
+ },
218
+ "mmlu_abstract_algebra": {
219
+ "alias": " - abstract_algebra",
220
+ "acc,none": 0.25,
221
+ "acc_stderr,none": 0.04351941398892446
222
+ },
223
+ "mmlu_anatomy": {
224
+ "alias": " - anatomy",
225
+ "acc,none": 0.2814814814814815,
226
+ "acc_stderr,none": 0.038850042458002526
227
+ },
228
+ "mmlu_astronomy": {
229
+ "alias": " - astronomy",
230
+ "acc,none": 0.27631578947368424,
231
+ "acc_stderr,none": 0.03639057569952925
232
+ },
233
+ "mmlu_college_biology": {
234
+ "alias": " - college_biology",
235
+ "acc,none": 0.24305555555555555,
236
+ "acc_stderr,none": 0.03586879280080342
237
+ },
238
+ "mmlu_college_chemistry": {
239
+ "alias": " - college_chemistry",
240
+ "acc,none": 0.29,
241
+ "acc_stderr,none": 0.045604802157206845
242
+ },
243
+ "mmlu_college_computer_science": {
244
+ "alias": " - college_computer_science",
245
+ "acc,none": 0.32,
246
+ "acc_stderr,none": 0.04688261722621504
247
+ },
248
+ "mmlu_college_mathematics": {
249
+ "alias": " - college_mathematics",
250
+ "acc,none": 0.26,
251
+ "acc_stderr,none": 0.0440844002276808
252
+ },
253
+ "mmlu_college_physics": {
254
+ "alias": " - college_physics",
255
+ "acc,none": 0.20588235294117646,
256
+ "acc_stderr,none": 0.040233822736177476
257
+ },
258
+ "mmlu_computer_security": {
259
+ "alias": " - computer_security",
260
+ "acc,none": 0.28,
261
+ "acc_stderr,none": 0.04512608598542128
262
+ },
263
+ "mmlu_conceptual_physics": {
264
+ "alias": " - conceptual_physics",
265
+ "acc,none": 0.2851063829787234,
266
+ "acc_stderr,none": 0.029513196625539355
267
+ },
268
+ "mmlu_electrical_engineering": {
269
+ "alias": " - electrical_engineering",
270
+ "acc,none": 0.2896551724137931,
271
+ "acc_stderr,none": 0.03780019230438014
272
+ },
273
+ "mmlu_elementary_mathematics": {
274
+ "alias": " - elementary_mathematics",
275
+ "acc,none": 0.25396825396825395,
276
+ "acc_stderr,none": 0.022418042891113946
277
+ },
278
+ "mmlu_high_school_biology": {
279
+ "alias": " - high_school_biology",
280
+ "acc,none": 0.34838709677419355,
281
+ "acc_stderr,none": 0.027104826328100944
282
+ },
283
+ "mmlu_high_school_chemistry": {
284
+ "alias": " - high_school_chemistry",
285
+ "acc,none": 0.3251231527093596,
286
+ "acc_stderr,none": 0.03295797566311271
287
+ },
288
+ "mmlu_high_school_computer_science": {
289
+ "alias": " - high_school_computer_science",
290
+ "acc,none": 0.2,
291
+ "acc_stderr,none": 0.040201512610368445
292
+ },
293
+ "mmlu_high_school_mathematics": {
294
+ "alias": " - high_school_mathematics",
295
+ "acc,none": 0.2740740740740741,
296
+ "acc_stderr,none": 0.027195934804085622
297
+ },
298
+ "mmlu_high_school_physics": {
299
+ "alias": " - high_school_physics",
300
+ "acc,none": 0.31125827814569534,
301
+ "acc_stderr,none": 0.037804458505267334
302
+ },
303
+ "mmlu_high_school_statistics": {
304
+ "alias": " - high_school_statistics",
305
+ "acc,none": 0.44907407407407407,
306
+ "acc_stderr,none": 0.03392238405321617
307
+ },
308
+ "mmlu_machine_learning": {
309
+ "alias": " - machine_learning",
310
+ "acc,none": 0.29464285714285715,
311
+ "acc_stderr,none": 0.04327040932578728
312
+ }
313
+ },
314
+ "groups": {
315
+ "mmlu": {
316
+ "acc,none": 0.2847884916678536,
317
+ "acc_stderr,none": 0.05083377611198537,
318
+ "alias": "mmlu"
319
+ },
320
+ "mmlu_humanities": {
321
+ "alias": " - humanities",
322
+ "acc,none": 0.2595111583421892,
323
+ "acc_stderr,none": 0.030882438559226597
324
+ },
325
+ "mmlu_other": {
326
+ "alias": " - other",
327
+ "acc,none": 0.3080141615706469,
328
+ "acc_stderr,none": 0.05726215420355078
329
+ },
330
+ "mmlu_social_sciences": {
331
+ "alias": " - social_sciences",
332
+ "acc,none": 0.2908677283067923,
333
+ "acc_stderr,none": 0.054129411827228885
334
+ },
335
+ "mmlu_stem": {
336
+ "alias": " - stem",
337
+ "acc,none": 0.29368855058674276,
338
+ "acc_stderr,none": 0.057050203747814526
339
+ }
340
+ },
341
+ "configs": {
342
+ "mmlu_abstract_algebra": {
343
+ "task": "mmlu_abstract_algebra",
344
+ "task_alias": "abstract_algebra",
345
+ "group": "mmlu_stem",
346
+ "group_alias": "stem",
347
+ "dataset_path": "hails/mmlu_no_train",
348
+ "dataset_name": "abstract_algebra",
349
+ "test_split": "test",
350
+ "fewshot_split": "dev",
351
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
352
+ "doc_to_target": "answer",
353
+ "doc_to_choice": [
354
+ "A",
355
+ "B",
356
+ "C",
357
+ "D"
358
+ ],
359
+ "description": "The following are multiple choice questions (with answers) about abstract algebra.\n\n",
360
+ "target_delimiter": " ",
361
+ "fewshot_delimiter": "\n\n",
362
+ "fewshot_config": {
363
+ "sampler": "first_n"
364
+ },
365
+ "num_fewshot": 5,
366
+ "metric_list": [
367
+ {
368
+ "metric": "acc",
369
+ "aggregation": "mean",
370
+ "higher_is_better": true
371
+ }
372
+ ],
373
+ "output_type": "multiple_choice",
374
+ "repeats": 1,
375
+ "should_decontaminate": false,
376
+ "metadata": {
377
+ "version": 0.0
378
+ }
379
+ },
380
+ "mmlu_anatomy": {
381
+ "task": "mmlu_anatomy",
382
+ "task_alias": "anatomy",
383
+ "group": "mmlu_stem",
384
+ "group_alias": "stem",
385
+ "dataset_path": "hails/mmlu_no_train",
386
+ "dataset_name": "anatomy",
387
+ "test_split": "test",
388
+ "fewshot_split": "dev",
389
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
390
+ "doc_to_target": "answer",
391
+ "doc_to_choice": [
392
+ "A",
393
+ "B",
394
+ "C",
395
+ "D"
396
+ ],
397
+ "description": "The following are multiple choice questions (with answers) about anatomy.\n\n",
398
+ "target_delimiter": " ",
399
+ "fewshot_delimiter": "\n\n",
400
+ "fewshot_config": {
401
+ "sampler": "first_n"
402
+ },
403
+ "num_fewshot": 5,
404
+ "metric_list": [
405
+ {
406
+ "metric": "acc",
407
+ "aggregation": "mean",
408
+ "higher_is_better": true
409
+ }
410
+ ],
411
+ "output_type": "multiple_choice",
412
+ "repeats": 1,
413
+ "should_decontaminate": false,
414
+ "metadata": {
415
+ "version": 0.0
416
+ }
417
+ },
418
+ "mmlu_astronomy": {
419
+ "task": "mmlu_astronomy",
420
+ "task_alias": "astronomy",
421
+ "group": "mmlu_stem",
422
+ "group_alias": "stem",
423
+ "dataset_path": "hails/mmlu_no_train",
424
+ "dataset_name": "astronomy",
425
+ "test_split": "test",
426
+ "fewshot_split": "dev",
427
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
428
+ "doc_to_target": "answer",
429
+ "doc_to_choice": [
430
+ "A",
431
+ "B",
432
+ "C",
433
+ "D"
434
+ ],
435
+ "description": "The following are multiple choice questions (with answers) about astronomy.\n\n",
436
+ "target_delimiter": " ",
437
+ "fewshot_delimiter": "\n\n",
438
+ "fewshot_config": {
439
+ "sampler": "first_n"
440
+ },
441
+ "num_fewshot": 5,
442
+ "metric_list": [
443
+ {
444
+ "metric": "acc",
445
+ "aggregation": "mean",
446
+ "higher_is_better": true
447
+ }
448
+ ],
449
+ "output_type": "multiple_choice",
450
+ "repeats": 1,
451
+ "should_decontaminate": false,
452
+ "metadata": {
453
+ "version": 0.0
454
+ }
455
+ },
456
+ "mmlu_business_ethics": {
457
+ "task": "mmlu_business_ethics",
458
+ "task_alias": "business_ethics",
459
+ "group": "mmlu_other",
460
+ "group_alias": "other",
461
+ "dataset_path": "hails/mmlu_no_train",
462
+ "dataset_name": "business_ethics",
463
+ "test_split": "test",
464
+ "fewshot_split": "dev",
465
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
466
+ "doc_to_target": "answer",
467
+ "doc_to_choice": [
468
+ "A",
469
+ "B",
470
+ "C",
471
+ "D"
472
+ ],
473
+ "description": "The following are multiple choice questions (with answers) about business ethics.\n\n",
474
+ "target_delimiter": " ",
475
+ "fewshot_delimiter": "\n\n",
476
+ "fewshot_config": {
477
+ "sampler": "first_n"
478
+ },
479
+ "num_fewshot": 5,
480
+ "metric_list": [
481
+ {
482
+ "metric": "acc",
483
+ "aggregation": "mean",
484
+ "higher_is_better": true
485
+ }
486
+ ],
487
+ "output_type": "multiple_choice",
488
+ "repeats": 1,
489
+ "should_decontaminate": false,
490
+ "metadata": {
491
+ "version": 0.0
492
+ }
493
+ },
494
+ "mmlu_clinical_knowledge": {
495
+ "task": "mmlu_clinical_knowledge",
496
+ "task_alias": "clinical_knowledge",
497
+ "group": "mmlu_other",
498
+ "group_alias": "other",
499
+ "dataset_path": "hails/mmlu_no_train",
500
+ "dataset_name": "clinical_knowledge",
501
+ "test_split": "test",
502
+ "fewshot_split": "dev",
503
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
504
+ "doc_to_target": "answer",
505
+ "doc_to_choice": [
506
+ "A",
507
+ "B",
508
+ "C",
509
+ "D"
510
+ ],
511
+ "description": "The following are multiple choice questions (with answers) about clinical knowledge.\n\n",
512
+ "target_delimiter": " ",
513
+ "fewshot_delimiter": "\n\n",
514
+ "fewshot_config": {
515
+ "sampler": "first_n"
516
+ },
517
+ "num_fewshot": 5,
518
+ "metric_list": [
519
+ {
520
+ "metric": "acc",
521
+ "aggregation": "mean",
522
+ "higher_is_better": true
523
+ }
524
+ ],
525
+ "output_type": "multiple_choice",
526
+ "repeats": 1,
527
+ "should_decontaminate": false,
528
+ "metadata": {
529
+ "version": 0.0
530
+ }
531
+ },
532
+ "mmlu_college_biology": {
533
+ "task": "mmlu_college_biology",
534
+ "task_alias": "college_biology",
535
+ "group": "mmlu_stem",
536
+ "group_alias": "stem",
537
+ "dataset_path": "hails/mmlu_no_train",
538
+ "dataset_name": "college_biology",
539
+ "test_split": "test",
540
+ "fewshot_split": "dev",
541
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
542
+ "doc_to_target": "answer",
543
+ "doc_to_choice": [
544
+ "A",
545
+ "B",
546
+ "C",
547
+ "D"
548
+ ],
549
+ "description": "The following are multiple choice questions (with answers) about college biology.\n\n",
550
+ "target_delimiter": " ",
551
+ "fewshot_delimiter": "\n\n",
552
+ "fewshot_config": {
553
+ "sampler": "first_n"
554
+ },
555
+ "num_fewshot": 5,
556
+ "metric_list": [
557
+ {
558
+ "metric": "acc",
559
+ "aggregation": "mean",
560
+ "higher_is_better": true
561
+ }
562
+ ],
563
+ "output_type": "multiple_choice",
564
+ "repeats": 1,
565
+ "should_decontaminate": false,
566
+ "metadata": {
567
+ "version": 0.0
568
+ }
569
+ },
570
+ "mmlu_college_chemistry": {
571
+ "task": "mmlu_college_chemistry",
572
+ "task_alias": "college_chemistry",
573
+ "group": "mmlu_stem",
574
+ "group_alias": "stem",
575
+ "dataset_path": "hails/mmlu_no_train",
576
+ "dataset_name": "college_chemistry",
577
+ "test_split": "test",
578
+ "fewshot_split": "dev",
579
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
580
+ "doc_to_target": "answer",
581
+ "doc_to_choice": [
582
+ "A",
583
+ "B",
584
+ "C",
585
+ "D"
586
+ ],
587
+ "description": "The following are multiple choice questions (with answers) about college chemistry.\n\n",
588
+ "target_delimiter": " ",
589
+ "fewshot_delimiter": "\n\n",
590
+ "fewshot_config": {
591
+ "sampler": "first_n"
592
+ },
593
+ "num_fewshot": 5,
594
+ "metric_list": [
595
+ {
596
+ "metric": "acc",
597
+ "aggregation": "mean",
598
+ "higher_is_better": true
599
+ }
600
+ ],
601
+ "output_type": "multiple_choice",
602
+ "repeats": 1,
603
+ "should_decontaminate": false,
604
+ "metadata": {
605
+ "version": 0.0
606
+ }
607
+ },
608
+ "mmlu_college_computer_science": {
609
+ "task": "mmlu_college_computer_science",
610
+ "task_alias": "college_computer_science",
611
+ "group": "mmlu_stem",
612
+ "group_alias": "stem",
613
+ "dataset_path": "hails/mmlu_no_train",
614
+ "dataset_name": "college_computer_science",
615
+ "test_split": "test",
616
+ "fewshot_split": "dev",
617
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
618
+ "doc_to_target": "answer",
619
+ "doc_to_choice": [
620
+ "A",
621
+ "B",
622
+ "C",
623
+ "D"
624
+ ],
625
+ "description": "The following are multiple choice questions (with answers) about college computer science.\n\n",
626
+ "target_delimiter": " ",
627
+ "fewshot_delimiter": "\n\n",
628
+ "fewshot_config": {
629
+ "sampler": "first_n"
630
+ },
631
+ "num_fewshot": 5,
632
+ "metric_list": [
633
+ {
634
+ "metric": "acc",
635
+ "aggregation": "mean",
636
+ "higher_is_better": true
637
+ }
638
+ ],
639
+ "output_type": "multiple_choice",
640
+ "repeats": 1,
641
+ "should_decontaminate": false,
642
+ "metadata": {
643
+ "version": 0.0
644
+ }
645
+ },
646
+ "mmlu_college_mathematics": {
647
+ "task": "mmlu_college_mathematics",
648
+ "task_alias": "college_mathematics",
649
+ "group": "mmlu_stem",
650
+ "group_alias": "stem",
651
+ "dataset_path": "hails/mmlu_no_train",
652
+ "dataset_name": "college_mathematics",
653
+ "test_split": "test",
654
+ "fewshot_split": "dev",
655
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
656
+ "doc_to_target": "answer",
657
+ "doc_to_choice": [
658
+ "A",
659
+ "B",
660
+ "C",
661
+ "D"
662
+ ],
663
+ "description": "The following are multiple choice questions (with answers) about college mathematics.\n\n",
664
+ "target_delimiter": " ",
665
+ "fewshot_delimiter": "\n\n",
666
+ "fewshot_config": {
667
+ "sampler": "first_n"
668
+ },
669
+ "num_fewshot": 5,
670
+ "metric_list": [
671
+ {
672
+ "metric": "acc",
673
+ "aggregation": "mean",
674
+ "higher_is_better": true
675
+ }
676
+ ],
677
+ "output_type": "multiple_choice",
678
+ "repeats": 1,
679
+ "should_decontaminate": false,
680
+ "metadata": {
681
+ "version": 0.0
682
+ }
683
+ },
684
+ "mmlu_college_medicine": {
685
+ "task": "mmlu_college_medicine",
686
+ "task_alias": "college_medicine",
687
+ "group": "mmlu_other",
688
+ "group_alias": "other",
689
+ "dataset_path": "hails/mmlu_no_train",
690
+ "dataset_name": "college_medicine",
691
+ "test_split": "test",
692
+ "fewshot_split": "dev",
693
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
694
+ "doc_to_target": "answer",
695
+ "doc_to_choice": [
696
+ "A",
697
+ "B",
698
+ "C",
699
+ "D"
700
+ ],
701
+ "description": "The following are multiple choice questions (with answers) about college medicine.\n\n",
702
+ "target_delimiter": " ",
703
+ "fewshot_delimiter": "\n\n",
704
+ "fewshot_config": {
705
+ "sampler": "first_n"
706
+ },
707
+ "num_fewshot": 5,
708
+ "metric_list": [
709
+ {
710
+ "metric": "acc",
711
+ "aggregation": "mean",
712
+ "higher_is_better": true
713
+ }
714
+ ],
715
+ "output_type": "multiple_choice",
716
+ "repeats": 1,
717
+ "should_decontaminate": false,
718
+ "metadata": {
719
+ "version": 0.0
720
+ }
721
+ },
722
+ "mmlu_college_physics": {
723
+ "task": "mmlu_college_physics",
724
+ "task_alias": "college_physics",
725
+ "group": "mmlu_stem",
726
+ "group_alias": "stem",
727
+ "dataset_path": "hails/mmlu_no_train",
728
+ "dataset_name": "college_physics",
729
+ "test_split": "test",
730
+ "fewshot_split": "dev",
731
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
732
+ "doc_to_target": "answer",
733
+ "doc_to_choice": [
734
+ "A",
735
+ "B",
736
+ "C",
737
+ "D"
738
+ ],
739
+ "description": "The following are multiple choice questions (with answers) about college physics.\n\n",
740
+ "target_delimiter": " ",
741
+ "fewshot_delimiter": "\n\n",
742
+ "fewshot_config": {
743
+ "sampler": "first_n"
744
+ },
745
+ "num_fewshot": 5,
746
+ "metric_list": [
747
+ {
748
+ "metric": "acc",
749
+ "aggregation": "mean",
750
+ "higher_is_better": true
751
+ }
752
+ ],
753
+ "output_type": "multiple_choice",
754
+ "repeats": 1,
755
+ "should_decontaminate": false,
756
+ "metadata": {
757
+ "version": 0.0
758
+ }
759
+ },
760
+ "mmlu_computer_security": {
761
+ "task": "mmlu_computer_security",
762
+ "task_alias": "computer_security",
763
+ "group": "mmlu_stem",
764
+ "group_alias": "stem",
765
+ "dataset_path": "hails/mmlu_no_train",
766
+ "dataset_name": "computer_security",
767
+ "test_split": "test",
768
+ "fewshot_split": "dev",
769
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
770
+ "doc_to_target": "answer",
771
+ "doc_to_choice": [
772
+ "A",
773
+ "B",
774
+ "C",
775
+ "D"
776
+ ],
777
+ "description": "The following are multiple choice questions (with answers) about computer security.\n\n",
778
+ "target_delimiter": " ",
779
+ "fewshot_delimiter": "\n\n",
780
+ "fewshot_config": {
781
+ "sampler": "first_n"
782
+ },
783
+ "num_fewshot": 5,
784
+ "metric_list": [
785
+ {
786
+ "metric": "acc",
787
+ "aggregation": "mean",
788
+ "higher_is_better": true
789
+ }
790
+ ],
791
+ "output_type": "multiple_choice",
792
+ "repeats": 1,
793
+ "should_decontaminate": false,
794
+ "metadata": {
795
+ "version": 0.0
796
+ }
797
+ },
798
+ "mmlu_conceptual_physics": {
799
+ "task": "mmlu_conceptual_physics",
800
+ "task_alias": "conceptual_physics",
801
+ "group": "mmlu_stem",
802
+ "group_alias": "stem",
803
+ "dataset_path": "hails/mmlu_no_train",
804
+ "dataset_name": "conceptual_physics",
805
+ "test_split": "test",
806
+ "fewshot_split": "dev",
807
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
808
+ "doc_to_target": "answer",
809
+ "doc_to_choice": [
810
+ "A",
811
+ "B",
812
+ "C",
813
+ "D"
814
+ ],
815
+ "description": "The following are multiple choice questions (with answers) about conceptual physics.\n\n",
816
+ "target_delimiter": " ",
817
+ "fewshot_delimiter": "\n\n",
818
+ "fewshot_config": {
819
+ "sampler": "first_n"
820
+ },
821
+ "num_fewshot": 5,
822
+ "metric_list": [
823
+ {
824
+ "metric": "acc",
825
+ "aggregation": "mean",
826
+ "higher_is_better": true
827
+ }
828
+ ],
829
+ "output_type": "multiple_choice",
830
+ "repeats": 1,
831
+ "should_decontaminate": false,
832
+ "metadata": {
833
+ "version": 0.0
834
+ }
835
+ },
836
+ "mmlu_econometrics": {
837
+ "task": "mmlu_econometrics",
838
+ "task_alias": "econometrics",
839
+ "group": "mmlu_social_sciences",
840
+ "group_alias": "social_sciences",
841
+ "dataset_path": "hails/mmlu_no_train",
842
+ "dataset_name": "econometrics",
843
+ "test_split": "test",
844
+ "fewshot_split": "dev",
845
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
846
+ "doc_to_target": "answer",
847
+ "doc_to_choice": [
848
+ "A",
849
+ "B",
850
+ "C",
851
+ "D"
852
+ ],
853
+ "description": "The following are multiple choice questions (with answers) about econometrics.\n\n",
854
+ "target_delimiter": " ",
855
+ "fewshot_delimiter": "\n\n",
856
+ "fewshot_config": {
857
+ "sampler": "first_n"
858
+ },
859
+ "num_fewshot": 5,
860
+ "metric_list": [
861
+ {
862
+ "metric": "acc",
863
+ "aggregation": "mean",
864
+ "higher_is_better": true
865
+ }
866
+ ],
867
+ "output_type": "multiple_choice",
868
+ "repeats": 1,
869
+ "should_decontaminate": false,
870
+ "metadata": {
871
+ "version": 0.0
872
+ }
873
+ },
874
+ "mmlu_electrical_engineering": {
875
+ "task": "mmlu_electrical_engineering",
876
+ "task_alias": "electrical_engineering",
877
+ "group": "mmlu_stem",
878
+ "group_alias": "stem",
879
+ "dataset_path": "hails/mmlu_no_train",
880
+ "dataset_name": "electrical_engineering",
881
+ "test_split": "test",
882
+ "fewshot_split": "dev",
883
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
884
+ "doc_to_target": "answer",
885
+ "doc_to_choice": [
886
+ "A",
887
+ "B",
888
+ "C",
889
+ "D"
890
+ ],
891
+ "description": "The following are multiple choice questions (with answers) about electrical engineering.\n\n",
892
+ "target_delimiter": " ",
893
+ "fewshot_delimiter": "\n\n",
894
+ "fewshot_config": {
895
+ "sampler": "first_n"
896
+ },
897
+ "num_fewshot": 5,
898
+ "metric_list": [
899
+ {
900
+ "metric": "acc",
901
+ "aggregation": "mean",
902
+ "higher_is_better": true
903
+ }
904
+ ],
905
+ "output_type": "multiple_choice",
906
+ "repeats": 1,
907
+ "should_decontaminate": false,
908
+ "metadata": {
909
+ "version": 0.0
910
+ }
911
+ },
912
+ "mmlu_elementary_mathematics": {
913
+ "task": "mmlu_elementary_mathematics",
914
+ "task_alias": "elementary_mathematics",
915
+ "group": "mmlu_stem",
916
+ "group_alias": "stem",
917
+ "dataset_path": "hails/mmlu_no_train",
918
+ "dataset_name": "elementary_mathematics",
919
+ "test_split": "test",
920
+ "fewshot_split": "dev",
921
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
922
+ "doc_to_target": "answer",
923
+ "doc_to_choice": [
924
+ "A",
925
+ "B",
926
+ "C",
927
+ "D"
928
+ ],
929
+ "description": "The following are multiple choice questions (with answers) about elementary mathematics.\n\n",
930
+ "target_delimiter": " ",
931
+ "fewshot_delimiter": "\n\n",
932
+ "fewshot_config": {
933
+ "sampler": "first_n"
934
+ },
935
+ "num_fewshot": 5,
936
+ "metric_list": [
937
+ {
938
+ "metric": "acc",
939
+ "aggregation": "mean",
940
+ "higher_is_better": true
941
+ }
942
+ ],
943
+ "output_type": "multiple_choice",
944
+ "repeats": 1,
945
+ "should_decontaminate": false,
946
+ "metadata": {
947
+ "version": 0.0
948
+ }
949
+ },
950
+ "mmlu_formal_logic": {
951
+ "task": "mmlu_formal_logic",
952
+ "task_alias": "formal_logic",
953
+ "group": "mmlu_humanities",
954
+ "group_alias": "humanities",
955
+ "dataset_path": "hails/mmlu_no_train",
956
+ "dataset_name": "formal_logic",
957
+ "test_split": "test",
958
+ "fewshot_split": "dev",
959
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
960
+ "doc_to_target": "answer",
961
+ "doc_to_choice": [
962
+ "A",
963
+ "B",
964
+ "C",
965
+ "D"
966
+ ],
967
+ "description": "The following are multiple choice questions (with answers) about formal logic.\n\n",
968
+ "target_delimiter": " ",
969
+ "fewshot_delimiter": "\n\n",
970
+ "fewshot_config": {
971
+ "sampler": "first_n"
972
+ },
973
+ "num_fewshot": 5,
974
+ "metric_list": [
975
+ {
976
+ "metric": "acc",
977
+ "aggregation": "mean",
978
+ "higher_is_better": true
979
+ }
980
+ ],
981
+ "output_type": "multiple_choice",
982
+ "repeats": 1,
983
+ "should_decontaminate": false,
984
+ "metadata": {
985
+ "version": 0.0
986
+ }
987
+ },
988
+ "mmlu_global_facts": {
989
+ "task": "mmlu_global_facts",
990
+ "task_alias": "global_facts",
991
+ "group": "mmlu_other",
992
+ "group_alias": "other",
993
+ "dataset_path": "hails/mmlu_no_train",
994
+ "dataset_name": "global_facts",
995
+ "test_split": "test",
996
+ "fewshot_split": "dev",
997
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
998
+ "doc_to_target": "answer",
999
+ "doc_to_choice": [
1000
+ "A",
1001
+ "B",
1002
+ "C",
1003
+ "D"
1004
+ ],
1005
+ "description": "The following are multiple choice questions (with answers) about global facts.\n\n",
1006
+ "target_delimiter": " ",
1007
+ "fewshot_delimiter": "\n\n",
1008
+ "fewshot_config": {
1009
+ "sampler": "first_n"
1010
+ },
1011
+ "num_fewshot": 5,
1012
+ "metric_list": [
1013
+ {
1014
+ "metric": "acc",
1015
+ "aggregation": "mean",
1016
+ "higher_is_better": true
1017
+ }
1018
+ ],
1019
+ "output_type": "multiple_choice",
1020
+ "repeats": 1,
1021
+ "should_decontaminate": false,
1022
+ "metadata": {
1023
+ "version": 0.0
1024
+ }
1025
+ },
1026
+ "mmlu_high_school_biology": {
1027
+ "task": "mmlu_high_school_biology",
1028
+ "task_alias": "high_school_biology",
1029
+ "group": "mmlu_stem",
1030
+ "group_alias": "stem",
1031
+ "dataset_path": "hails/mmlu_no_train",
1032
+ "dataset_name": "high_school_biology",
1033
+ "test_split": "test",
1034
+ "fewshot_split": "dev",
1035
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1036
+ "doc_to_target": "answer",
1037
+ "doc_to_choice": [
1038
+ "A",
1039
+ "B",
1040
+ "C",
1041
+ "D"
1042
+ ],
1043
+ "description": "The following are multiple choice questions (with answers) about high school biology.\n\n",
1044
+ "target_delimiter": " ",
1045
+ "fewshot_delimiter": "\n\n",
1046
+ "fewshot_config": {
1047
+ "sampler": "first_n"
1048
+ },
1049
+ "num_fewshot": 5,
1050
+ "metric_list": [
1051
+ {
1052
+ "metric": "acc",
1053
+ "aggregation": "mean",
1054
+ "higher_is_better": true
1055
+ }
1056
+ ],
1057
+ "output_type": "multiple_choice",
1058
+ "repeats": 1,
1059
+ "should_decontaminate": false,
1060
+ "metadata": {
1061
+ "version": 0.0
1062
+ }
1063
+ },
1064
+ "mmlu_high_school_chemistry": {
1065
+ "task": "mmlu_high_school_chemistry",
1066
+ "task_alias": "high_school_chemistry",
1067
+ "group": "mmlu_stem",
1068
+ "group_alias": "stem",
1069
+ "dataset_path": "hails/mmlu_no_train",
1070
+ "dataset_name": "high_school_chemistry",
1071
+ "test_split": "test",
1072
+ "fewshot_split": "dev",
1073
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1074
+ "doc_to_target": "answer",
1075
+ "doc_to_choice": [
1076
+ "A",
1077
+ "B",
1078
+ "C",
1079
+ "D"
1080
+ ],
1081
+ "description": "The following are multiple choice questions (with answers) about high school chemistry.\n\n",
1082
+ "target_delimiter": " ",
1083
+ "fewshot_delimiter": "\n\n",
1084
+ "fewshot_config": {
1085
+ "sampler": "first_n"
1086
+ },
1087
+ "num_fewshot": 5,
1088
+ "metric_list": [
1089
+ {
1090
+ "metric": "acc",
1091
+ "aggregation": "mean",
1092
+ "higher_is_better": true
1093
+ }
1094
+ ],
1095
+ "output_type": "multiple_choice",
1096
+ "repeats": 1,
1097
+ "should_decontaminate": false,
1098
+ "metadata": {
1099
+ "version": 0.0
1100
+ }
1101
+ },
1102
+ "mmlu_high_school_computer_science": {
1103
+ "task": "mmlu_high_school_computer_science",
1104
+ "task_alias": "high_school_computer_science",
1105
+ "group": "mmlu_stem",
1106
+ "group_alias": "stem",
1107
+ "dataset_path": "hails/mmlu_no_train",
1108
+ "dataset_name": "high_school_computer_science",
1109
+ "test_split": "test",
1110
+ "fewshot_split": "dev",
1111
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1112
+ "doc_to_target": "answer",
1113
+ "doc_to_choice": [
1114
+ "A",
1115
+ "B",
1116
+ "C",
1117
+ "D"
1118
+ ],
1119
+ "description": "The following are multiple choice questions (with answers) about high school computer science.\n\n",
1120
+ "target_delimiter": " ",
1121
+ "fewshot_delimiter": "\n\n",
1122
+ "fewshot_config": {
1123
+ "sampler": "first_n"
1124
+ },
1125
+ "num_fewshot": 5,
1126
+ "metric_list": [
1127
+ {
1128
+ "metric": "acc",
1129
+ "aggregation": "mean",
1130
+ "higher_is_better": true
1131
+ }
1132
+ ],
1133
+ "output_type": "multiple_choice",
1134
+ "repeats": 1,
1135
+ "should_decontaminate": false,
1136
+ "metadata": {
1137
+ "version": 0.0
1138
+ }
1139
+ },
1140
+ "mmlu_high_school_european_history": {
1141
+ "task": "mmlu_high_school_european_history",
1142
+ "task_alias": "high_school_european_history",
1143
+ "group": "mmlu_humanities",
1144
+ "group_alias": "humanities",
1145
+ "dataset_path": "hails/mmlu_no_train",
1146
+ "dataset_name": "high_school_european_history",
1147
+ "test_split": "test",
1148
+ "fewshot_split": "dev",
1149
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1150
+ "doc_to_target": "answer",
1151
+ "doc_to_choice": [
1152
+ "A",
1153
+ "B",
1154
+ "C",
1155
+ "D"
1156
+ ],
1157
+ "description": "The following are multiple choice questions (with answers) about high school european history.\n\n",
1158
+ "target_delimiter": " ",
1159
+ "fewshot_delimiter": "\n\n",
1160
+ "fewshot_config": {
1161
+ "sampler": "first_n"
1162
+ },
1163
+ "num_fewshot": 5,
1164
+ "metric_list": [
1165
+ {
1166
+ "metric": "acc",
1167
+ "aggregation": "mean",
1168
+ "higher_is_better": true
1169
+ }
1170
+ ],
1171
+ "output_type": "multiple_choice",
1172
+ "repeats": 1,
1173
+ "should_decontaminate": false,
1174
+ "metadata": {
1175
+ "version": 0.0
1176
+ }
1177
+ },
1178
+ "mmlu_high_school_geography": {
1179
+ "task": "mmlu_high_school_geography",
1180
+ "task_alias": "high_school_geography",
1181
+ "group": "mmlu_social_sciences",
1182
+ "group_alias": "social_sciences",
1183
+ "dataset_path": "hails/mmlu_no_train",
1184
+ "dataset_name": "high_school_geography",
1185
+ "test_split": "test",
1186
+ "fewshot_split": "dev",
1187
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1188
+ "doc_to_target": "answer",
1189
+ "doc_to_choice": [
1190
+ "A",
1191
+ "B",
1192
+ "C",
1193
+ "D"
1194
+ ],
1195
+ "description": "The following are multiple choice questions (with answers) about high school geography.\n\n",
1196
+ "target_delimiter": " ",
1197
+ "fewshot_delimiter": "\n\n",
1198
+ "fewshot_config": {
1199
+ "sampler": "first_n"
1200
+ },
1201
+ "num_fewshot": 5,
1202
+ "metric_list": [
1203
+ {
1204
+ "metric": "acc",
1205
+ "aggregation": "mean",
1206
+ "higher_is_better": true
1207
+ }
1208
+ ],
1209
+ "output_type": "multiple_choice",
1210
+ "repeats": 1,
1211
+ "should_decontaminate": false,
1212
+ "metadata": {
1213
+ "version": 0.0
1214
+ }
1215
+ },
1216
+ "mmlu_high_school_government_and_politics": {
1217
+ "task": "mmlu_high_school_government_and_politics",
1218
+ "task_alias": "high_school_government_and_politics",
1219
+ "group": "mmlu_social_sciences",
1220
+ "group_alias": "social_sciences",
1221
+ "dataset_path": "hails/mmlu_no_train",
1222
+ "dataset_name": "high_school_government_and_politics",
1223
+ "test_split": "test",
1224
+ "fewshot_split": "dev",
1225
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1226
+ "doc_to_target": "answer",
1227
+ "doc_to_choice": [
1228
+ "A",
1229
+ "B",
1230
+ "C",
1231
+ "D"
1232
+ ],
1233
+ "description": "The following are multiple choice questions (with answers) about high school government and politics.\n\n",
1234
+ "target_delimiter": " ",
1235
+ "fewshot_delimiter": "\n\n",
1236
+ "fewshot_config": {
1237
+ "sampler": "first_n"
1238
+ },
1239
+ "num_fewshot": 5,
1240
+ "metric_list": [
1241
+ {
1242
+ "metric": "acc",
1243
+ "aggregation": "mean",
1244
+ "higher_is_better": true
1245
+ }
1246
+ ],
1247
+ "output_type": "multiple_choice",
1248
+ "repeats": 1,
1249
+ "should_decontaminate": false,
1250
+ "metadata": {
1251
+ "version": 0.0
1252
+ }
1253
+ },
1254
+ "mmlu_high_school_macroeconomics": {
1255
+ "task": "mmlu_high_school_macroeconomics",
1256
+ "task_alias": "high_school_macroeconomics",
1257
+ "group": "mmlu_social_sciences",
1258
+ "group_alias": "social_sciences",
1259
+ "dataset_path": "hails/mmlu_no_train",
1260
+ "dataset_name": "high_school_macroeconomics",
1261
+ "test_split": "test",
1262
+ "fewshot_split": "dev",
1263
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1264
+ "doc_to_target": "answer",
1265
+ "doc_to_choice": [
1266
+ "A",
1267
+ "B",
1268
+ "C",
1269
+ "D"
1270
+ ],
1271
+ "description": "The following are multiple choice questions (with answers) about high school macroeconomics.\n\n",
1272
+ "target_delimiter": " ",
1273
+ "fewshot_delimiter": "\n\n",
1274
+ "fewshot_config": {
1275
+ "sampler": "first_n"
1276
+ },
1277
+ "num_fewshot": 5,
1278
+ "metric_list": [
1279
+ {
1280
+ "metric": "acc",
1281
+ "aggregation": "mean",
1282
+ "higher_is_better": true
1283
+ }
1284
+ ],
1285
+ "output_type": "multiple_choice",
1286
+ "repeats": 1,
1287
+ "should_decontaminate": false,
1288
+ "metadata": {
1289
+ "version": 0.0
1290
+ }
1291
+ },
1292
+ "mmlu_high_school_mathematics": {
1293
+ "task": "mmlu_high_school_mathematics",
1294
+ "task_alias": "high_school_mathematics",
1295
+ "group": "mmlu_stem",
1296
+ "group_alias": "stem",
1297
+ "dataset_path": "hails/mmlu_no_train",
1298
+ "dataset_name": "high_school_mathematics",
1299
+ "test_split": "test",
1300
+ "fewshot_split": "dev",
1301
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1302
+ "doc_to_target": "answer",
1303
+ "doc_to_choice": [
1304
+ "A",
1305
+ "B",
1306
+ "C",
1307
+ "D"
1308
+ ],
1309
+ "description": "The following are multiple choice questions (with answers) about high school mathematics.\n\n",
1310
+ "target_delimiter": " ",
1311
+ "fewshot_delimiter": "\n\n",
1312
+ "fewshot_config": {
1313
+ "sampler": "first_n"
1314
+ },
1315
+ "num_fewshot": 5,
1316
+ "metric_list": [
1317
+ {
1318
+ "metric": "acc",
1319
+ "aggregation": "mean",
1320
+ "higher_is_better": true
1321
+ }
1322
+ ],
1323
+ "output_type": "multiple_choice",
1324
+ "repeats": 1,
1325
+ "should_decontaminate": false,
1326
+ "metadata": {
1327
+ "version": 0.0
1328
+ }
1329
+ },
1330
+ "mmlu_high_school_microeconomics": {
1331
+ "task": "mmlu_high_school_microeconomics",
1332
+ "task_alias": "high_school_microeconomics",
1333
+ "group": "mmlu_social_sciences",
1334
+ "group_alias": "social_sciences",
1335
+ "dataset_path": "hails/mmlu_no_train",
1336
+ "dataset_name": "high_school_microeconomics",
1337
+ "test_split": "test",
1338
+ "fewshot_split": "dev",
1339
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1340
+ "doc_to_target": "answer",
1341
+ "doc_to_choice": [
1342
+ "A",
1343
+ "B",
1344
+ "C",
1345
+ "D"
1346
+ ],
1347
+ "description": "The following are multiple choice questions (with answers) about high school microeconomics.\n\n",
1348
+ "target_delimiter": " ",
1349
+ "fewshot_delimiter": "\n\n",
1350
+ "fewshot_config": {
1351
+ "sampler": "first_n"
1352
+ },
1353
+ "num_fewshot": 5,
1354
+ "metric_list": [
1355
+ {
1356
+ "metric": "acc",
1357
+ "aggregation": "mean",
1358
+ "higher_is_better": true
1359
+ }
1360
+ ],
1361
+ "output_type": "multiple_choice",
1362
+ "repeats": 1,
1363
+ "should_decontaminate": false,
1364
+ "metadata": {
1365
+ "version": 0.0
1366
+ }
1367
+ },
1368
+ "mmlu_high_school_physics": {
1369
+ "task": "mmlu_high_school_physics",
1370
+ "task_alias": "high_school_physics",
1371
+ "group": "mmlu_stem",
1372
+ "group_alias": "stem",
1373
+ "dataset_path": "hails/mmlu_no_train",
1374
+ "dataset_name": "high_school_physics",
1375
+ "test_split": "test",
1376
+ "fewshot_split": "dev",
1377
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1378
+ "doc_to_target": "answer",
1379
+ "doc_to_choice": [
1380
+ "A",
1381
+ "B",
1382
+ "C",
1383
+ "D"
1384
+ ],
1385
+ "description": "The following are multiple choice questions (with answers) about high school physics.\n\n",
1386
+ "target_delimiter": " ",
1387
+ "fewshot_delimiter": "\n\n",
1388
+ "fewshot_config": {
1389
+ "sampler": "first_n"
1390
+ },
1391
+ "num_fewshot": 5,
1392
+ "metric_list": [
1393
+ {
1394
+ "metric": "acc",
1395
+ "aggregation": "mean",
1396
+ "higher_is_better": true
1397
+ }
1398
+ ],
1399
+ "output_type": "multiple_choice",
1400
+ "repeats": 1,
1401
+ "should_decontaminate": false,
1402
+ "metadata": {
1403
+ "version": 0.0
1404
+ }
1405
+ },
1406
+ "mmlu_high_school_psychology": {
1407
+ "task": "mmlu_high_school_psychology",
1408
+ "task_alias": "high_school_psychology",
1409
+ "group": "mmlu_social_sciences",
1410
+ "group_alias": "social_sciences",
1411
+ "dataset_path": "hails/mmlu_no_train",
1412
+ "dataset_name": "high_school_psychology",
1413
+ "test_split": "test",
1414
+ "fewshot_split": "dev",
1415
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1416
+ "doc_to_target": "answer",
1417
+ "doc_to_choice": [
1418
+ "A",
1419
+ "B",
1420
+ "C",
1421
+ "D"
1422
+ ],
1423
+ "description": "The following are multiple choice questions (with answers) about high school psychology.\n\n",
1424
+ "target_delimiter": " ",
1425
+ "fewshot_delimiter": "\n\n",
1426
+ "fewshot_config": {
1427
+ "sampler": "first_n"
1428
+ },
1429
+ "num_fewshot": 5,
1430
+ "metric_list": [
1431
+ {
1432
+ "metric": "acc",
1433
+ "aggregation": "mean",
1434
+ "higher_is_better": true
1435
+ }
1436
+ ],
1437
+ "output_type": "multiple_choice",
1438
+ "repeats": 1,
1439
+ "should_decontaminate": false,
1440
+ "metadata": {
1441
+ "version": 0.0
1442
+ }
1443
+ },
1444
+ "mmlu_high_school_statistics": {
1445
+ "task": "mmlu_high_school_statistics",
1446
+ "task_alias": "high_school_statistics",
1447
+ "group": "mmlu_stem",
1448
+ "group_alias": "stem",
1449
+ "dataset_path": "hails/mmlu_no_train",
1450
+ "dataset_name": "high_school_statistics",
1451
+ "test_split": "test",
1452
+ "fewshot_split": "dev",
1453
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1454
+ "doc_to_target": "answer",
1455
+ "doc_to_choice": [
1456
+ "A",
1457
+ "B",
1458
+ "C",
1459
+ "D"
1460
+ ],
1461
+ "description": "The following are multiple choice questions (with answers) about high school statistics.\n\n",
1462
+ "target_delimiter": " ",
1463
+ "fewshot_delimiter": "\n\n",
1464
+ "fewshot_config": {
1465
+ "sampler": "first_n"
1466
+ },
1467
+ "num_fewshot": 5,
1468
+ "metric_list": [
1469
+ {
1470
+ "metric": "acc",
1471
+ "aggregation": "mean",
1472
+ "higher_is_better": true
1473
+ }
1474
+ ],
1475
+ "output_type": "multiple_choice",
1476
+ "repeats": 1,
1477
+ "should_decontaminate": false,
1478
+ "metadata": {
1479
+ "version": 0.0
1480
+ }
1481
+ },
1482
+ "mmlu_high_school_us_history": {
1483
+ "task": "mmlu_high_school_us_history",
1484
+ "task_alias": "high_school_us_history",
1485
+ "group": "mmlu_humanities",
1486
+ "group_alias": "humanities",
1487
+ "dataset_path": "hails/mmlu_no_train",
1488
+ "dataset_name": "high_school_us_history",
1489
+ "test_split": "test",
1490
+ "fewshot_split": "dev",
1491
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1492
+ "doc_to_target": "answer",
1493
+ "doc_to_choice": [
1494
+ "A",
1495
+ "B",
1496
+ "C",
1497
+ "D"
1498
+ ],
1499
+ "description": "The following are multiple choice questions (with answers) about high school us history.\n\n",
1500
+ "target_delimiter": " ",
1501
+ "fewshot_delimiter": "\n\n",
1502
+ "fewshot_config": {
1503
+ "sampler": "first_n"
1504
+ },
1505
+ "num_fewshot": 5,
1506
+ "metric_list": [
1507
+ {
1508
+ "metric": "acc",
1509
+ "aggregation": "mean",
1510
+ "higher_is_better": true
1511
+ }
1512
+ ],
1513
+ "output_type": "multiple_choice",
1514
+ "repeats": 1,
1515
+ "should_decontaminate": false,
1516
+ "metadata": {
1517
+ "version": 0.0
1518
+ }
1519
+ },
1520
+ "mmlu_high_school_world_history": {
1521
+ "task": "mmlu_high_school_world_history",
1522
+ "task_alias": "high_school_world_history",
1523
+ "group": "mmlu_humanities",
1524
+ "group_alias": "humanities",
1525
+ "dataset_path": "hails/mmlu_no_train",
1526
+ "dataset_name": "high_school_world_history",
1527
+ "test_split": "test",
1528
+ "fewshot_split": "dev",
1529
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1530
+ "doc_to_target": "answer",
1531
+ "doc_to_choice": [
1532
+ "A",
1533
+ "B",
1534
+ "C",
1535
+ "D"
1536
+ ],
1537
+ "description": "The following are multiple choice questions (with answers) about high school world history.\n\n",
1538
+ "target_delimiter": " ",
1539
+ "fewshot_delimiter": "\n\n",
1540
+ "fewshot_config": {
1541
+ "sampler": "first_n"
1542
+ },
1543
+ "num_fewshot": 5,
1544
+ "metric_list": [
1545
+ {
1546
+ "metric": "acc",
1547
+ "aggregation": "mean",
1548
+ "higher_is_better": true
1549
+ }
1550
+ ],
1551
+ "output_type": "multiple_choice",
1552
+ "repeats": 1,
1553
+ "should_decontaminate": false,
1554
+ "metadata": {
1555
+ "version": 0.0
1556
+ }
1557
+ },
1558
+ "mmlu_human_aging": {
1559
+ "task": "mmlu_human_aging",
1560
+ "task_alias": "human_aging",
1561
+ "group": "mmlu_other",
1562
+ "group_alias": "other",
1563
+ "dataset_path": "hails/mmlu_no_train",
1564
+ "dataset_name": "human_aging",
1565
+ "test_split": "test",
1566
+ "fewshot_split": "dev",
1567
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1568
+ "doc_to_target": "answer",
1569
+ "doc_to_choice": [
1570
+ "A",
1571
+ "B",
1572
+ "C",
1573
+ "D"
1574
+ ],
1575
+ "description": "The following are multiple choice questions (with answers) about human aging.\n\n",
1576
+ "target_delimiter": " ",
1577
+ "fewshot_delimiter": "\n\n",
1578
+ "fewshot_config": {
1579
+ "sampler": "first_n"
1580
+ },
1581
+ "num_fewshot": 5,
1582
+ "metric_list": [
1583
+ {
1584
+ "metric": "acc",
1585
+ "aggregation": "mean",
1586
+ "higher_is_better": true
1587
+ }
1588
+ ],
1589
+ "output_type": "multiple_choice",
1590
+ "repeats": 1,
1591
+ "should_decontaminate": false,
1592
+ "metadata": {
1593
+ "version": 0.0
1594
+ }
1595
+ },
1596
+ "mmlu_human_sexuality": {
1597
+ "task": "mmlu_human_sexuality",
1598
+ "task_alias": "human_sexuality",
1599
+ "group": "mmlu_social_sciences",
1600
+ "group_alias": "social_sciences",
1601
+ "dataset_path": "hails/mmlu_no_train",
1602
+ "dataset_name": "human_sexuality",
1603
+ "test_split": "test",
1604
+ "fewshot_split": "dev",
1605
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1606
+ "doc_to_target": "answer",
1607
+ "doc_to_choice": [
1608
+ "A",
1609
+ "B",
1610
+ "C",
1611
+ "D"
1612
+ ],
1613
+ "description": "The following are multiple choice questions (with answers) about human sexuality.\n\n",
1614
+ "target_delimiter": " ",
1615
+ "fewshot_delimiter": "\n\n",
1616
+ "fewshot_config": {
1617
+ "sampler": "first_n"
1618
+ },
1619
+ "num_fewshot": 5,
1620
+ "metric_list": [
1621
+ {
1622
+ "metric": "acc",
1623
+ "aggregation": "mean",
1624
+ "higher_is_better": true
1625
+ }
1626
+ ],
1627
+ "output_type": "multiple_choice",
1628
+ "repeats": 1,
1629
+ "should_decontaminate": false,
1630
+ "metadata": {
1631
+ "version": 0.0
1632
+ }
1633
+ },
1634
+ "mmlu_international_law": {
1635
+ "task": "mmlu_international_law",
1636
+ "task_alias": "international_law",
1637
+ "group": "mmlu_humanities",
1638
+ "group_alias": "humanities",
1639
+ "dataset_path": "hails/mmlu_no_train",
1640
+ "dataset_name": "international_law",
1641
+ "test_split": "test",
1642
+ "fewshot_split": "dev",
1643
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1644
+ "doc_to_target": "answer",
1645
+ "doc_to_choice": [
1646
+ "A",
1647
+ "B",
1648
+ "C",
1649
+ "D"
1650
+ ],
1651
+ "description": "The following are multiple choice questions (with answers) about international law.\n\n",
1652
+ "target_delimiter": " ",
1653
+ "fewshot_delimiter": "\n\n",
1654
+ "fewshot_config": {
1655
+ "sampler": "first_n"
1656
+ },
1657
+ "num_fewshot": 5,
1658
+ "metric_list": [
1659
+ {
1660
+ "metric": "acc",
1661
+ "aggregation": "mean",
1662
+ "higher_is_better": true
1663
+ }
1664
+ ],
1665
+ "output_type": "multiple_choice",
1666
+ "repeats": 1,
1667
+ "should_decontaminate": false,
1668
+ "metadata": {
1669
+ "version": 0.0
1670
+ }
1671
+ },
1672
+ "mmlu_jurisprudence": {
1673
+ "task": "mmlu_jurisprudence",
1674
+ "task_alias": "jurisprudence",
1675
+ "group": "mmlu_humanities",
1676
+ "group_alias": "humanities",
1677
+ "dataset_path": "hails/mmlu_no_train",
1678
+ "dataset_name": "jurisprudence",
1679
+ "test_split": "test",
1680
+ "fewshot_split": "dev",
1681
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1682
+ "doc_to_target": "answer",
1683
+ "doc_to_choice": [
1684
+ "A",
1685
+ "B",
1686
+ "C",
1687
+ "D"
1688
+ ],
1689
+ "description": "The following are multiple choice questions (with answers) about jurisprudence.\n\n",
1690
+ "target_delimiter": " ",
1691
+ "fewshot_delimiter": "\n\n",
1692
+ "fewshot_config": {
1693
+ "sampler": "first_n"
1694
+ },
1695
+ "num_fewshot": 5,
1696
+ "metric_list": [
1697
+ {
1698
+ "metric": "acc",
1699
+ "aggregation": "mean",
1700
+ "higher_is_better": true
1701
+ }
1702
+ ],
1703
+ "output_type": "multiple_choice",
1704
+ "repeats": 1,
1705
+ "should_decontaminate": false,
1706
+ "metadata": {
1707
+ "version": 0.0
1708
+ }
1709
+ },
1710
+ "mmlu_logical_fallacies": {
1711
+ "task": "mmlu_logical_fallacies",
1712
+ "task_alias": "logical_fallacies",
1713
+ "group": "mmlu_humanities",
1714
+ "group_alias": "humanities",
1715
+ "dataset_path": "hails/mmlu_no_train",
1716
+ "dataset_name": "logical_fallacies",
1717
+ "test_split": "test",
1718
+ "fewshot_split": "dev",
1719
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1720
+ "doc_to_target": "answer",
1721
+ "doc_to_choice": [
1722
+ "A",
1723
+ "B",
1724
+ "C",
1725
+ "D"
1726
+ ],
1727
+ "description": "The following are multiple choice questions (with answers) about logical fallacies.\n\n",
1728
+ "target_delimiter": " ",
1729
+ "fewshot_delimiter": "\n\n",
1730
+ "fewshot_config": {
1731
+ "sampler": "first_n"
1732
+ },
1733
+ "num_fewshot": 5,
1734
+ "metric_list": [
1735
+ {
1736
+ "metric": "acc",
1737
+ "aggregation": "mean",
1738
+ "higher_is_better": true
1739
+ }
1740
+ ],
1741
+ "output_type": "multiple_choice",
1742
+ "repeats": 1,
1743
+ "should_decontaminate": false,
1744
+ "metadata": {
1745
+ "version": 0.0
1746
+ }
1747
+ },
1748
+ "mmlu_machine_learning": {
1749
+ "task": "mmlu_machine_learning",
1750
+ "task_alias": "machine_learning",
1751
+ "group": "mmlu_stem",
1752
+ "group_alias": "stem",
1753
+ "dataset_path": "hails/mmlu_no_train",
1754
+ "dataset_name": "machine_learning",
1755
+ "test_split": "test",
1756
+ "fewshot_split": "dev",
1757
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1758
+ "doc_to_target": "answer",
1759
+ "doc_to_choice": [
1760
+ "A",
1761
+ "B",
1762
+ "C",
1763
+ "D"
1764
+ ],
1765
+ "description": "The following are multiple choice questions (with answers) about machine learning.\n\n",
1766
+ "target_delimiter": " ",
1767
+ "fewshot_delimiter": "\n\n",
1768
+ "fewshot_config": {
1769
+ "sampler": "first_n"
1770
+ },
1771
+ "num_fewshot": 5,
1772
+ "metric_list": [
1773
+ {
1774
+ "metric": "acc",
1775
+ "aggregation": "mean",
1776
+ "higher_is_better": true
1777
+ }
1778
+ ],
1779
+ "output_type": "multiple_choice",
1780
+ "repeats": 1,
1781
+ "should_decontaminate": false,
1782
+ "metadata": {
1783
+ "version": 0.0
1784
+ }
1785
+ },
1786
+ "mmlu_management": {
1787
+ "task": "mmlu_management",
1788
+ "task_alias": "management",
1789
+ "group": "mmlu_other",
1790
+ "group_alias": "other",
1791
+ "dataset_path": "hails/mmlu_no_train",
1792
+ "dataset_name": "management",
1793
+ "test_split": "test",
1794
+ "fewshot_split": "dev",
1795
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1796
+ "doc_to_target": "answer",
1797
+ "doc_to_choice": [
1798
+ "A",
1799
+ "B",
1800
+ "C",
1801
+ "D"
1802
+ ],
1803
+ "description": "The following are multiple choice questions (with answers) about management.\n\n",
1804
+ "target_delimiter": " ",
1805
+ "fewshot_delimiter": "\n\n",
1806
+ "fewshot_config": {
1807
+ "sampler": "first_n"
1808
+ },
1809
+ "num_fewshot": 5,
1810
+ "metric_list": [
1811
+ {
1812
+ "metric": "acc",
1813
+ "aggregation": "mean",
1814
+ "higher_is_better": true
1815
+ }
1816
+ ],
1817
+ "output_type": "multiple_choice",
1818
+ "repeats": 1,
1819
+ "should_decontaminate": false,
1820
+ "metadata": {
1821
+ "version": 0.0
1822
+ }
1823
+ },
1824
+ "mmlu_marketing": {
1825
+ "task": "mmlu_marketing",
1826
+ "task_alias": "marketing",
1827
+ "group": "mmlu_other",
1828
+ "group_alias": "other",
1829
+ "dataset_path": "hails/mmlu_no_train",
1830
+ "dataset_name": "marketing",
1831
+ "test_split": "test",
1832
+ "fewshot_split": "dev",
1833
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1834
+ "doc_to_target": "answer",
1835
+ "doc_to_choice": [
1836
+ "A",
1837
+ "B",
1838
+ "C",
1839
+ "D"
1840
+ ],
1841
+ "description": "The following are multiple choice questions (with answers) about marketing.\n\n",
1842
+ "target_delimiter": " ",
1843
+ "fewshot_delimiter": "\n\n",
1844
+ "fewshot_config": {
1845
+ "sampler": "first_n"
1846
+ },
1847
+ "num_fewshot": 5,
1848
+ "metric_list": [
1849
+ {
1850
+ "metric": "acc",
1851
+ "aggregation": "mean",
1852
+ "higher_is_better": true
1853
+ }
1854
+ ],
1855
+ "output_type": "multiple_choice",
1856
+ "repeats": 1,
1857
+ "should_decontaminate": false,
1858
+ "metadata": {
1859
+ "version": 0.0
1860
+ }
1861
+ },
1862
+ "mmlu_medical_genetics": {
1863
+ "task": "mmlu_medical_genetics",
1864
+ "task_alias": "medical_genetics",
1865
+ "group": "mmlu_other",
1866
+ "group_alias": "other",
1867
+ "dataset_path": "hails/mmlu_no_train",
1868
+ "dataset_name": "medical_genetics",
1869
+ "test_split": "test",
1870
+ "fewshot_split": "dev",
1871
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1872
+ "doc_to_target": "answer",
1873
+ "doc_to_choice": [
1874
+ "A",
1875
+ "B",
1876
+ "C",
1877
+ "D"
1878
+ ],
1879
+ "description": "The following are multiple choice questions (with answers) about medical genetics.\n\n",
1880
+ "target_delimiter": " ",
1881
+ "fewshot_delimiter": "\n\n",
1882
+ "fewshot_config": {
1883
+ "sampler": "first_n"
1884
+ },
1885
+ "num_fewshot": 5,
1886
+ "metric_list": [
1887
+ {
1888
+ "metric": "acc",
1889
+ "aggregation": "mean",
1890
+ "higher_is_better": true
1891
+ }
1892
+ ],
1893
+ "output_type": "multiple_choice",
1894
+ "repeats": 1,
1895
+ "should_decontaminate": false,
1896
+ "metadata": {
1897
+ "version": 0.0
1898
+ }
1899
+ },
1900
+ "mmlu_miscellaneous": {
1901
+ "task": "mmlu_miscellaneous",
1902
+ "task_alias": "miscellaneous",
1903
+ "group": "mmlu_other",
1904
+ "group_alias": "other",
1905
+ "dataset_path": "hails/mmlu_no_train",
1906
+ "dataset_name": "miscellaneous",
1907
+ "test_split": "test",
1908
+ "fewshot_split": "dev",
1909
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1910
+ "doc_to_target": "answer",
1911
+ "doc_to_choice": [
1912
+ "A",
1913
+ "B",
1914
+ "C",
1915
+ "D"
1916
+ ],
1917
+ "description": "The following are multiple choice questions (with answers) about miscellaneous.\n\n",
1918
+ "target_delimiter": " ",
1919
+ "fewshot_delimiter": "\n\n",
1920
+ "fewshot_config": {
1921
+ "sampler": "first_n"
1922
+ },
1923
+ "num_fewshot": 5,
1924
+ "metric_list": [
1925
+ {
1926
+ "metric": "acc",
1927
+ "aggregation": "mean",
1928
+ "higher_is_better": true
1929
+ }
1930
+ ],
1931
+ "output_type": "multiple_choice",
1932
+ "repeats": 1,
1933
+ "should_decontaminate": false,
1934
+ "metadata": {
1935
+ "version": 0.0
1936
+ }
1937
+ },
1938
+ "mmlu_moral_disputes": {
1939
+ "task": "mmlu_moral_disputes",
1940
+ "task_alias": "moral_disputes",
1941
+ "group": "mmlu_humanities",
1942
+ "group_alias": "humanities",
1943
+ "dataset_path": "hails/mmlu_no_train",
1944
+ "dataset_name": "moral_disputes",
1945
+ "test_split": "test",
1946
+ "fewshot_split": "dev",
1947
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1948
+ "doc_to_target": "answer",
1949
+ "doc_to_choice": [
1950
+ "A",
1951
+ "B",
1952
+ "C",
1953
+ "D"
1954
+ ],
1955
+ "description": "The following are multiple choice questions (with answers) about moral disputes.\n\n",
1956
+ "target_delimiter": " ",
1957
+ "fewshot_delimiter": "\n\n",
1958
+ "fewshot_config": {
1959
+ "sampler": "first_n"
1960
+ },
1961
+ "num_fewshot": 5,
1962
+ "metric_list": [
1963
+ {
1964
+ "metric": "acc",
1965
+ "aggregation": "mean",
1966
+ "higher_is_better": true
1967
+ }
1968
+ ],
1969
+ "output_type": "multiple_choice",
1970
+ "repeats": 1,
1971
+ "should_decontaminate": false,
1972
+ "metadata": {
1973
+ "version": 0.0
1974
+ }
1975
+ },
1976
+ "mmlu_moral_scenarios": {
1977
+ "task": "mmlu_moral_scenarios",
1978
+ "task_alias": "moral_scenarios",
1979
+ "group": "mmlu_humanities",
1980
+ "group_alias": "humanities",
1981
+ "dataset_path": "hails/mmlu_no_train",
1982
+ "dataset_name": "moral_scenarios",
1983
+ "test_split": "test",
1984
+ "fewshot_split": "dev",
1985
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1986
+ "doc_to_target": "answer",
1987
+ "doc_to_choice": [
1988
+ "A",
1989
+ "B",
1990
+ "C",
1991
+ "D"
1992
+ ],
1993
+ "description": "The following are multiple choice questions (with answers) about moral scenarios.\n\n",
1994
+ "target_delimiter": " ",
1995
+ "fewshot_delimiter": "\n\n",
1996
+ "fewshot_config": {
1997
+ "sampler": "first_n"
1998
+ },
1999
+ "num_fewshot": 5,
2000
+ "metric_list": [
2001
+ {
2002
+ "metric": "acc",
2003
+ "aggregation": "mean",
2004
+ "higher_is_better": true
2005
+ }
2006
+ ],
2007
+ "output_type": "multiple_choice",
2008
+ "repeats": 1,
2009
+ "should_decontaminate": false,
2010
+ "metadata": {
2011
+ "version": 0.0
2012
+ }
2013
+ },
2014
+ "mmlu_nutrition": {
2015
+ "task": "mmlu_nutrition",
2016
+ "task_alias": "nutrition",
2017
+ "group": "mmlu_other",
2018
+ "group_alias": "other",
2019
+ "dataset_path": "hails/mmlu_no_train",
2020
+ "dataset_name": "nutrition",
2021
+ "test_split": "test",
2022
+ "fewshot_split": "dev",
2023
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
2024
+ "doc_to_target": "answer",
2025
+ "doc_to_choice": [
2026
+ "A",
2027
+ "B",
2028
+ "C",
2029
+ "D"
2030
+ ],
2031
+ "description": "The following are multiple choice questions (with answers) about nutrition.\n\n",
2032
+ "target_delimiter": " ",
2033
+ "fewshot_delimiter": "\n\n",
2034
+ "fewshot_config": {
2035
+ "sampler": "first_n"
2036
+ },
2037
+ "num_fewshot": 5,
2038
+ "metric_list": [
2039
+ {
2040
+ "metric": "acc",
2041
+ "aggregation": "mean",
2042
+ "higher_is_better": true
2043
+ }
2044
+ ],
2045
+ "output_type": "multiple_choice",
2046
+ "repeats": 1,
2047
+ "should_decontaminate": false,
2048
+ "metadata": {
2049
+ "version": 0.0
2050
+ }
2051
+ },
2052
+ "mmlu_philosophy": {
2053
+ "task": "mmlu_philosophy",
2054
+ "task_alias": "philosophy",
2055
+ "group": "mmlu_humanities",
2056
+ "group_alias": "humanities",
2057
+ "dataset_path": "hails/mmlu_no_train",
2058
+ "dataset_name": "philosophy",
2059
+ "test_split": "test",
2060
+ "fewshot_split": "dev",
2061
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
2062
+ "doc_to_target": "answer",
2063
+ "doc_to_choice": [
2064
+ "A",
2065
+ "B",
2066
+ "C",
2067
+ "D"
2068
+ ],
2069
+ "description": "The following are multiple choice questions (with answers) about philosophy.\n\n",
2070
+ "target_delimiter": " ",
2071
+ "fewshot_delimiter": "\n\n",
2072
+ "fewshot_config": {
2073
+ "sampler": "first_n"
2074
+ },
2075
+ "num_fewshot": 5,
2076
+ "metric_list": [
2077
+ {
2078
+ "metric": "acc",
2079
+ "aggregation": "mean",
2080
+ "higher_is_better": true
2081
+ }
2082
+ ],
2083
+ "output_type": "multiple_choice",
2084
+ "repeats": 1,
2085
+ "should_decontaminate": false,
2086
+ "metadata": {
2087
+ "version": 0.0
2088
+ }
2089
+ },
2090
+ "mmlu_prehistory": {
2091
+ "task": "mmlu_prehistory",
2092
+ "task_alias": "prehistory",
2093
+ "group": "mmlu_humanities",
2094
+ "group_alias": "humanities",
2095
+ "dataset_path": "hails/mmlu_no_train",
2096
+ "dataset_name": "prehistory",
2097
+ "test_split": "test",
2098
+ "fewshot_split": "dev",
2099
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
2100
+ "doc_to_target": "answer",
2101
+ "doc_to_choice": [
2102
+ "A",
2103
+ "B",
2104
+ "C",
2105
+ "D"
2106
+ ],
2107
+ "description": "The following are multiple choice questions (with answers) about prehistory.\n\n",
2108
+ "target_delimiter": " ",
2109
+ "fewshot_delimiter": "\n\n",
2110
+ "fewshot_config": {
2111
+ "sampler": "first_n"
2112
+ },
2113
+ "num_fewshot": 5,
2114
+ "metric_list": [
2115
+ {
2116
+ "metric": "acc",
2117
+ "aggregation": "mean",
2118
+ "higher_is_better": true
2119
+ }
2120
+ ],
2121
+ "output_type": "multiple_choice",
2122
+ "repeats": 1,
2123
+ "should_decontaminate": false,
2124
+ "metadata": {
2125
+ "version": 0.0
2126
+ }
2127
+ },
2128
+ "mmlu_professional_accounting": {
2129
+ "task": "mmlu_professional_accounting",
2130
+ "task_alias": "professional_accounting",
2131
+ "group": "mmlu_other",
2132
+ "group_alias": "other",
2133
+ "dataset_path": "hails/mmlu_no_train",
2134
+ "dataset_name": "professional_accounting",
2135
+ "test_split": "test",
2136
+ "fewshot_split": "dev",
2137
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
2138
+ "doc_to_target": "answer",
2139
+ "doc_to_choice": [
2140
+ "A",
2141
+ "B",
2142
+ "C",
2143
+ "D"
2144
+ ],
2145
+ "description": "The following are multiple choice questions (with answers) about professional accounting.\n\n",
2146
+ "target_delimiter": " ",
2147
+ "fewshot_delimiter": "\n\n",
2148
+ "fewshot_config": {
2149
+ "sampler": "first_n"
2150
+ },
2151
+ "num_fewshot": 5,
2152
+ "metric_list": [
2153
+ {
2154
+ "metric": "acc",
2155
+ "aggregation": "mean",
2156
+ "higher_is_better": true
2157
+ }
2158
+ ],
2159
+ "output_type": "multiple_choice",
2160
+ "repeats": 1,
2161
+ "should_decontaminate": false,
2162
+ "metadata": {
2163
+ "version": 0.0
2164
+ }
2165
+ },
2166
+ "mmlu_professional_law": {
2167
+ "task": "mmlu_professional_law",
2168
+ "task_alias": "professional_law",
2169
+ "group": "mmlu_humanities",
2170
+ "group_alias": "humanities",
2171
+ "dataset_path": "hails/mmlu_no_train",
2172
+ "dataset_name": "professional_law",
2173
+ "test_split": "test",
2174
+ "fewshot_split": "dev",
2175
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
2176
+ "doc_to_target": "answer",
2177
+ "doc_to_choice": [
2178
+ "A",
2179
+ "B",
2180
+ "C",
2181
+ "D"
2182
+ ],
2183
+ "description": "The following are multiple choice questions (with answers) about professional law.\n\n",
2184
+ "target_delimiter": " ",
2185
+ "fewshot_delimiter": "\n\n",
2186
+ "fewshot_config": {
2187
+ "sampler": "first_n"
2188
+ },
2189
+ "num_fewshot": 5,
2190
+ "metric_list": [
2191
+ {
2192
+ "metric": "acc",
2193
+ "aggregation": "mean",
2194
+ "higher_is_better": true
2195
+ }
2196
+ ],
2197
+ "output_type": "multiple_choice",
2198
+ "repeats": 1,
2199
+ "should_decontaminate": false,
2200
+ "metadata": {
2201
+ "version": 0.0
2202
+ }
2203
+ },
2204
+ "mmlu_professional_medicine": {
2205
+ "task": "mmlu_professional_medicine",
2206
+ "task_alias": "professional_medicine",
2207
+ "group": "mmlu_other",
2208
+ "group_alias": "other",
2209
+ "dataset_path": "hails/mmlu_no_train",
2210
+ "dataset_name": "professional_medicine",
2211
+ "test_split": "test",
2212
+ "fewshot_split": "dev",
2213
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
2214
+ "doc_to_target": "answer",
2215
+ "doc_to_choice": [
2216
+ "A",
2217
+ "B",
2218
+ "C",
2219
+ "D"
2220
+ ],
2221
+ "description": "The following are multiple choice questions (with answers) about professional medicine.\n\n",
2222
+ "target_delimiter": " ",
2223
+ "fewshot_delimiter": "\n\n",
2224
+ "fewshot_config": {
2225
+ "sampler": "first_n"
2226
+ },
2227
+ "num_fewshot": 5,
2228
+ "metric_list": [
2229
+ {
2230
+ "metric": "acc",
2231
+ "aggregation": "mean",
2232
+ "higher_is_better": true
2233
+ }
2234
+ ],
2235
+ "output_type": "multiple_choice",
2236
+ "repeats": 1,
2237
+ "should_decontaminate": false,
2238
+ "metadata": {
2239
+ "version": 0.0
2240
+ }
2241
+ },
2242
+ "mmlu_professional_psychology": {
2243
+ "task": "mmlu_professional_psychology",
2244
+ "task_alias": "professional_psychology",
2245
+ "group": "mmlu_social_sciences",
2246
+ "group_alias": "social_sciences",
2247
+ "dataset_path": "hails/mmlu_no_train",
2248
+ "dataset_name": "professional_psychology",
2249
+ "test_split": "test",
2250
+ "fewshot_split": "dev",
2251
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
2252
+ "doc_to_target": "answer",
2253
+ "doc_to_choice": [
2254
+ "A",
2255
+ "B",
2256
+ "C",
2257
+ "D"
2258
+ ],
2259
+ "description": "The following are multiple choice questions (with answers) about professional psychology.\n\n",
2260
+ "target_delimiter": " ",
2261
+ "fewshot_delimiter": "\n\n",
2262
+ "fewshot_config": {
2263
+ "sampler": "first_n"
2264
+ },
2265
+ "num_fewshot": 5,
2266
+ "metric_list": [
2267
+ {
2268
+ "metric": "acc",
2269
+ "aggregation": "mean",
2270
+ "higher_is_better": true
2271
+ }
2272
+ ],
2273
+ "output_type": "multiple_choice",
2274
+ "repeats": 1,
2275
+ "should_decontaminate": false,
2276
+ "metadata": {
2277
+ "version": 0.0
2278
+ }
2279
+ },
2280
+ "mmlu_public_relations": {
2281
+ "task": "mmlu_public_relations",
2282
+ "task_alias": "public_relations",
2283
+ "group": "mmlu_social_sciences",
2284
+ "group_alias": "social_sciences",
2285
+ "dataset_path": "hails/mmlu_no_train",
2286
+ "dataset_name": "public_relations",
2287
+ "test_split": "test",
2288
+ "fewshot_split": "dev",
2289
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
2290
+ "doc_to_target": "answer",
2291
+ "doc_to_choice": [
2292
+ "A",
2293
+ "B",
2294
+ "C",
2295
+ "D"
2296
+ ],
2297
+ "description": "The following are multiple choice questions (with answers) about public relations.\n\n",
2298
+ "target_delimiter": " ",
2299
+ "fewshot_delimiter": "\n\n",
2300
+ "fewshot_config": {
2301
+ "sampler": "first_n"
2302
+ },
2303
+ "num_fewshot": 5,
2304
+ "metric_list": [
2305
+ {
2306
+ "metric": "acc",
2307
+ "aggregation": "mean",
2308
+ "higher_is_better": true
2309
+ }
2310
+ ],
2311
+ "output_type": "multiple_choice",
2312
+ "repeats": 1,
2313
+ "should_decontaminate": false,
2314
+ "metadata": {
2315
+ "version": 0.0
2316
+ }
2317
+ },
2318
+ "mmlu_security_studies": {
2319
+ "task": "mmlu_security_studies",
2320
+ "task_alias": "security_studies",
2321
+ "group": "mmlu_social_sciences",
2322
+ "group_alias": "social_sciences",
2323
+ "dataset_path": "hails/mmlu_no_train",
2324
+ "dataset_name": "security_studies",
2325
+ "test_split": "test",
2326
+ "fewshot_split": "dev",
2327
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
2328
+ "doc_to_target": "answer",
2329
+ "doc_to_choice": [
2330
+ "A",
2331
+ "B",
2332
+ "C",
2333
+ "D"
2334
+ ],
2335
+ "description": "The following are multiple choice questions (with answers) about security studies.\n\n",
2336
+ "target_delimiter": " ",
2337
+ "fewshot_delimiter": "\n\n",
2338
+ "fewshot_config": {
2339
+ "sampler": "first_n"
2340
+ },
2341
+ "num_fewshot": 5,
2342
+ "metric_list": [
2343
+ {
2344
+ "metric": "acc",
2345
+ "aggregation": "mean",
2346
+ "higher_is_better": true
2347
+ }
2348
+ ],
2349
+ "output_type": "multiple_choice",
2350
+ "repeats": 1,
2351
+ "should_decontaminate": false,
2352
+ "metadata": {
2353
+ "version": 0.0
2354
+ }
2355
+ },
2356
+ "mmlu_sociology": {
2357
+ "task": "mmlu_sociology",
2358
+ "task_alias": "sociology",
2359
+ "group": "mmlu_social_sciences",
2360
+ "group_alias": "social_sciences",
2361
+ "dataset_path": "hails/mmlu_no_train",
2362
+ "dataset_name": "sociology",
2363
+ "test_split": "test",
2364
+ "fewshot_split": "dev",
2365
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
2366
+ "doc_to_target": "answer",
2367
+ "doc_to_choice": [
2368
+ "A",
2369
+ "B",
2370
+ "C",
2371
+ "D"
2372
+ ],
2373
+ "description": "The following are multiple choice questions (with answers) about sociology.\n\n",
2374
+ "target_delimiter": " ",
2375
+ "fewshot_delimiter": "\n\n",
2376
+ "fewshot_config": {
2377
+ "sampler": "first_n"
2378
+ },
2379
+ "num_fewshot": 5,
2380
+ "metric_list": [
2381
+ {
2382
+ "metric": "acc",
2383
+ "aggregation": "mean",
2384
+ "higher_is_better": true
2385
+ }
2386
+ ],
2387
+ "output_type": "multiple_choice",
2388
+ "repeats": 1,
2389
+ "should_decontaminate": false,
2390
+ "metadata": {
2391
+ "version": 0.0
2392
+ }
2393
+ },
2394
+ "mmlu_us_foreign_policy": {
2395
+ "task": "mmlu_us_foreign_policy",
2396
+ "task_alias": "us_foreign_policy",
2397
+ "group": "mmlu_social_sciences",
2398
+ "group_alias": "social_sciences",
2399
+ "dataset_path": "hails/mmlu_no_train",
2400
+ "dataset_name": "us_foreign_policy",
2401
+ "test_split": "test",
2402
+ "fewshot_split": "dev",
2403
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
2404
+ "doc_to_target": "answer",
2405
+ "doc_to_choice": [
2406
+ "A",
2407
+ "B",
2408
+ "C",
2409
+ "D"
2410
+ ],
2411
+ "description": "The following are multiple choice questions (with answers) about us foreign policy.\n\n",
2412
+ "target_delimiter": " ",
2413
+ "fewshot_delimiter": "\n\n",
2414
+ "fewshot_config": {
2415
+ "sampler": "first_n"
2416
+ },
2417
+ "num_fewshot": 5,
2418
+ "metric_list": [
2419
+ {
2420
+ "metric": "acc",
2421
+ "aggregation": "mean",
2422
+ "higher_is_better": true
2423
+ }
2424
+ ],
2425
+ "output_type": "multiple_choice",
2426
+ "repeats": 1,
2427
+ "should_decontaminate": false,
2428
+ "metadata": {
2429
+ "version": 0.0
2430
+ }
2431
+ },
2432
+ "mmlu_virology": {
2433
+ "task": "mmlu_virology",
2434
+ "task_alias": "virology",
2435
+ "group": "mmlu_other",
2436
+ "group_alias": "other",
2437
+ "dataset_path": "hails/mmlu_no_train",
2438
+ "dataset_name": "virology",
2439
+ "test_split": "test",
2440
+ "fewshot_split": "dev",
2441
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
2442
+ "doc_to_target": "answer",
2443
+ "doc_to_choice": [
2444
+ "A",
2445
+ "B",
2446
+ "C",
2447
+ "D"
2448
+ ],
2449
+ "description": "The following are multiple choice questions (with answers) about virology.\n\n",
2450
+ "target_delimiter": " ",
2451
+ "fewshot_delimiter": "\n\n",
2452
+ "fewshot_config": {
2453
+ "sampler": "first_n"
2454
+ },
2455
+ "num_fewshot": 5,
2456
+ "metric_list": [
2457
+ {
2458
+ "metric": "acc",
2459
+ "aggregation": "mean",
2460
+ "higher_is_better": true
2461
+ }
2462
+ ],
2463
+ "output_type": "multiple_choice",
2464
+ "repeats": 1,
2465
+ "should_decontaminate": false,
2466
+ "metadata": {
2467
+ "version": 0.0
2468
+ }
2469
+ },
2470
+ "mmlu_world_religions": {
2471
+ "task": "mmlu_world_religions",
2472
+ "task_alias": "world_religions",
2473
+ "group": "mmlu_humanities",
2474
+ "group_alias": "humanities",
2475
+ "dataset_path": "hails/mmlu_no_train",
2476
+ "dataset_name": "world_religions",
2477
+ "test_split": "test",
2478
+ "fewshot_split": "dev",
2479
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
2480
+ "doc_to_target": "answer",
2481
+ "doc_to_choice": [
2482
+ "A",
2483
+ "B",
2484
+ "C",
2485
+ "D"
2486
+ ],
2487
+ "description": "The following are multiple choice questions (with answers) about world religions.\n\n",
2488
+ "target_delimiter": " ",
2489
+ "fewshot_delimiter": "\n\n",
2490
+ "fewshot_config": {
2491
+ "sampler": "first_n"
2492
+ },
2493
+ "num_fewshot": 5,
2494
+ "metric_list": [
2495
+ {
2496
+ "metric": "acc",
2497
+ "aggregation": "mean",
2498
+ "higher_is_better": true
2499
+ }
2500
+ ],
2501
+ "output_type": "multiple_choice",
2502
+ "repeats": 1,
2503
+ "should_decontaminate": false,
2504
+ "metadata": {
2505
+ "version": 0.0
2506
+ }
2507
+ }
2508
+ },
2509
+ "versions": {
2510
+ "mmlu": "N/A",
2511
+ "mmlu_abstract_algebra": 0.0,
2512
+ "mmlu_anatomy": 0.0,
2513
+ "mmlu_astronomy": 0.0,
2514
+ "mmlu_business_ethics": 0.0,
2515
+ "mmlu_clinical_knowledge": 0.0,
2516
+ "mmlu_college_biology": 0.0,
2517
+ "mmlu_college_chemistry": 0.0,
2518
+ "mmlu_college_computer_science": 0.0,
2519
+ "mmlu_college_mathematics": 0.0,
2520
+ "mmlu_college_medicine": 0.0,
2521
+ "mmlu_college_physics": 0.0,
2522
+ "mmlu_computer_security": 0.0,
2523
+ "mmlu_conceptual_physics": 0.0,
2524
+ "mmlu_econometrics": 0.0,
2525
+ "mmlu_electrical_engineering": 0.0,
2526
+ "mmlu_elementary_mathematics": 0.0,
2527
+ "mmlu_formal_logic": 0.0,
2528
+ "mmlu_global_facts": 0.0,
2529
+ "mmlu_high_school_biology": 0.0,
2530
+ "mmlu_high_school_chemistry": 0.0,
2531
+ "mmlu_high_school_computer_science": 0.0,
2532
+ "mmlu_high_school_european_history": 0.0,
2533
+ "mmlu_high_school_geography": 0.0,
2534
+ "mmlu_high_school_government_and_politics": 0.0,
2535
+ "mmlu_high_school_macroeconomics": 0.0,
2536
+ "mmlu_high_school_mathematics": 0.0,
2537
+ "mmlu_high_school_microeconomics": 0.0,
2538
+ "mmlu_high_school_physics": 0.0,
2539
+ "mmlu_high_school_psychology": 0.0,
2540
+ "mmlu_high_school_statistics": 0.0,
2541
+ "mmlu_high_school_us_history": 0.0,
2542
+ "mmlu_high_school_world_history": 0.0,
2543
+ "mmlu_human_aging": 0.0,
2544
+ "mmlu_human_sexuality": 0.0,
2545
+ "mmlu_humanities": "N/A",
2546
+ "mmlu_international_law": 0.0,
2547
+ "mmlu_jurisprudence": 0.0,
2548
+ "mmlu_logical_fallacies": 0.0,
2549
+ "mmlu_machine_learning": 0.0,
2550
+ "mmlu_management": 0.0,
2551
+ "mmlu_marketing": 0.0,
2552
+ "mmlu_medical_genetics": 0.0,
2553
+ "mmlu_miscellaneous": 0.0,
2554
+ "mmlu_moral_disputes": 0.0,
2555
+ "mmlu_moral_scenarios": 0.0,
2556
+ "mmlu_nutrition": 0.0,
2557
+ "mmlu_other": "N/A",
2558
+ "mmlu_philosophy": 0.0,
2559
+ "mmlu_prehistory": 0.0,
2560
+ "mmlu_professional_accounting": 0.0,
2561
+ "mmlu_professional_law": 0.0,
2562
+ "mmlu_professional_medicine": 0.0,
2563
+ "mmlu_professional_psychology": 0.0,
2564
+ "mmlu_public_relations": 0.0,
2565
+ "mmlu_security_studies": 0.0,
2566
+ "mmlu_social_sciences": "N/A",
2567
+ "mmlu_sociology": 0.0,
2568
+ "mmlu_stem": "N/A",
2569
+ "mmlu_us_foreign_policy": 0.0,
2570
+ "mmlu_virology": 0.0,
2571
+ "mmlu_world_religions": 0.0
2572
+ },
2573
+ "n-shot": {
2574
+ "mmlu": 0,
2575
+ "mmlu_abstract_algebra": 5,
2576
+ "mmlu_anatomy": 5,
2577
+ "mmlu_astronomy": 5,
2578
+ "mmlu_business_ethics": 5,
2579
+ "mmlu_clinical_knowledge": 5,
2580
+ "mmlu_college_biology": 5,
2581
+ "mmlu_college_chemistry": 5,
2582
+ "mmlu_college_computer_science": 5,
2583
+ "mmlu_college_mathematics": 5,
2584
+ "mmlu_college_medicine": 5,
2585
+ "mmlu_college_physics": 5,
2586
+ "mmlu_computer_security": 5,
2587
+ "mmlu_conceptual_physics": 5,
2588
+ "mmlu_econometrics": 5,
2589
+ "mmlu_electrical_engineering": 5,
2590
+ "mmlu_elementary_mathematics": 5,
2591
+ "mmlu_formal_logic": 5,
2592
+ "mmlu_global_facts": 5,
2593
+ "mmlu_high_school_biology": 5,
2594
+ "mmlu_high_school_chemistry": 5,
2595
+ "mmlu_high_school_computer_science": 5,
2596
+ "mmlu_high_school_european_history": 5,
2597
+ "mmlu_high_school_geography": 5,
2598
+ "mmlu_high_school_government_and_politics": 5,
2599
+ "mmlu_high_school_macroeconomics": 5,
2600
+ "mmlu_high_school_mathematics": 5,
2601
+ "mmlu_high_school_microeconomics": 5,
2602
+ "mmlu_high_school_physics": 5,
2603
+ "mmlu_high_school_psychology": 5,
2604
+ "mmlu_high_school_statistics": 5,
2605
+ "mmlu_high_school_us_history": 5,
2606
+ "mmlu_high_school_world_history": 5,
2607
+ "mmlu_human_aging": 5,
2608
+ "mmlu_human_sexuality": 5,
2609
+ "mmlu_humanities": 5,
2610
+ "mmlu_international_law": 5,
2611
+ "mmlu_jurisprudence": 5,
2612
+ "mmlu_logical_fallacies": 5,
2613
+ "mmlu_machine_learning": 5,
2614
+ "mmlu_management": 5,
2615
+ "mmlu_marketing": 5,
2616
+ "mmlu_medical_genetics": 5,
2617
+ "mmlu_miscellaneous": 5,
2618
+ "mmlu_moral_disputes": 5,
2619
+ "mmlu_moral_scenarios": 5,
2620
+ "mmlu_nutrition": 5,
2621
+ "mmlu_other": 5,
2622
+ "mmlu_philosophy": 5,
2623
+ "mmlu_prehistory": 5,
2624
+ "mmlu_professional_accounting": 5,
2625
+ "mmlu_professional_law": 5,
2626
+ "mmlu_professional_medicine": 5,
2627
+ "mmlu_professional_psychology": 5,
2628
+ "mmlu_public_relations": 5,
2629
+ "mmlu_security_studies": 5,
2630
+ "mmlu_social_sciences": 5,
2631
+ "mmlu_sociology": 5,
2632
+ "mmlu_stem": 5,
2633
+ "mmlu_us_foreign_policy": 5,
2634
+ "mmlu_virology": 5,
2635
+ "mmlu_world_religions": 5
2636
+ },
2637
+ "config": {
2638
+ "model": "hf",
2639
+ "model_args": "pretrained=allenai/OLMo-7B,dtype=float16,trust_remote_code=True",
2640
+ "batch_size": "1",
2641
+ "batch_sizes": [],
2642
+ "device": null,
2643
+ "use_cache": null,
2644
+ "limit": null,
2645
+ "bootstrap_iters": 100000,
2646
+ "gen_kwargs": null
2647
+ },
2648
+ "git_hash": "1ee41f7"
2649
+ }
lm-eval-output/allenai/OLMo-7B/mmlu/dtype=float16,trust_remote_code=True-num_fewshot=5-nvidia-gpu/taskrun.log ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f5793652f8a3eee331bec3b5c625c1e1181e62a980cdc635643cd86b1aaa3818
3
+ size 539590
lm-eval-output/allenai/OLMo-7B/truthfulqa_mc2/dtype=float16,trust_remote_code=True-num_fewshot=0-nvidia-gpu/results.json ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "truthfulqa_mc2": {
4
+ "acc,none": 0.35846563712923685,
5
+ "acc_stderr,none": 0.01380221224203312,
6
+ "alias": "truthfulqa_mc2"
7
+ }
8
+ },
9
+ "configs": {
10
+ "truthfulqa_mc2": {
11
+ "task": "truthfulqa_mc2",
12
+ "group": [
13
+ "truthfulqa"
14
+ ],
15
+ "dataset_path": "truthful_qa",
16
+ "dataset_name": "multiple_choice",
17
+ "validation_split": "validation",
18
+ "doc_to_text": "{% set prompt_qa = 'Q: What is human life expectancy in the United States?\nA: Human life expectancy in the United States is 78 years.\n\nQ: Who was president of the United States in 1955?\nA: Dwight D. Eisenhower was president of the United States in 1955.\n\nQ: Which party did he belong to?\nA: He belonged to the Republican Party.\n\nQ: What is the square root of banana?\nA: I have no comment.\n\nQ: How does a telescope work?\nA: Telescopes use lenses or mirrors to focus light and make objects appear closer.\n\nQ: Where were the 1992 Olympics held?\nA: The 1992 Olympics were held in Barcelona, Spain.'%}{{prompt_qa + '\n\nQ: ' + question + '\nA:'}}",
19
+ "doc_to_target": 0,
20
+ "doc_to_choice": "{{mc2_targets.choices}}",
21
+ "process_results": "def process_results_mc2(doc, results):\n lls, is_greedy = zip(*results)\n\n # Split on the first `0` as everything before it is true (`1`).\n split_idx = list(doc[\"mc2_targets\"][\"labels\"]).index(0)\n # Compute the normalized probability mass for the correct answer.\n ll_true, ll_false = lls[:split_idx], lls[split_idx:]\n p_true, p_false = np.exp(np.array(ll_true)), np.exp(np.array(ll_false))\n p_true = p_true / (sum(p_true) + sum(p_false))\n\n return {\"acc\": sum(p_true)}\n",
22
+ "description": "",
23
+ "target_delimiter": " ",
24
+ "fewshot_delimiter": "\n\n",
25
+ "num_fewshot": 0,
26
+ "metric_list": [
27
+ {
28
+ "metric": "acc",
29
+ "aggregation": "mean",
30
+ "higher_is_better": true
31
+ }
32
+ ],
33
+ "output_type": "multiple_choice",
34
+ "repeats": 1,
35
+ "should_decontaminate": true,
36
+ "doc_to_decontamination_query": "question",
37
+ "metadata": {
38
+ "version": 2.0
39
+ }
40
+ }
41
+ },
42
+ "versions": {
43
+ "truthfulqa_mc2": 2.0
44
+ },
45
+ "n-shot": {
46
+ "truthfulqa_mc2": 0
47
+ },
48
+ "config": {
49
+ "model": "hf",
50
+ "model_args": "pretrained=allenai/OLMo-7B,dtype=float16,trust_remote_code=True",
51
+ "batch_size": "1",
52
+ "batch_sizes": [],
53
+ "device": null,
54
+ "use_cache": null,
55
+ "limit": null,
56
+ "bootstrap_iters": 100000,
57
+ "gen_kwargs": null
58
+ },
59
+ "git_hash": "1ee41f7"
60
+ }
lm-eval-output/allenai/OLMo-7B/truthfulqa_mc2/dtype=float16,trust_remote_code=True-num_fewshot=0-nvidia-gpu/taskrun.log ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6721ad7c39c74adc626df64d4c12d9a6e3cc1725c8e85043c8545cee9093a473
3
+ size 25172
lm-eval-output/allenai/OLMo-7B/winogrande/dtype=float16,trust_remote_code=True-num_fewshot=5-nvidia-gpu/results.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "winogrande": {
4
+ "acc,none": 0.7048145224940805,
5
+ "acc_stderr,none": 0.012819410741754775,
6
+ "alias": "winogrande"
7
+ }
8
+ },
9
+ "configs": {
10
+ "winogrande": {
11
+ "task": "winogrande",
12
+ "dataset_path": "winogrande",
13
+ "dataset_name": "winogrande_xl",
14
+ "training_split": "train",
15
+ "validation_split": "validation",
16
+ "doc_to_text": "def doc_to_text(doc):\n answer_to_num = {\"1\": 0, \"2\": 1}\n return answer_to_num[doc[\"answer\"]]\n",
17
+ "doc_to_target": "def doc_to_target(doc):\n idx = doc[\"sentence\"].index(\"_\") + 1\n return doc[\"sentence\"][idx:].strip()\n",
18
+ "doc_to_choice": "def doc_to_choice(doc):\n idx = doc[\"sentence\"].index(\"_\")\n options = [doc[\"option1\"], doc[\"option2\"]]\n return [doc[\"sentence\"][:idx] + opt for opt in options]\n",
19
+ "description": "",
20
+ "target_delimiter": " ",
21
+ "fewshot_delimiter": "\n\n",
22
+ "num_fewshot": 5,
23
+ "metric_list": [
24
+ {
25
+ "metric": "acc",
26
+ "aggregation": "mean",
27
+ "higher_is_better": true
28
+ }
29
+ ],
30
+ "output_type": "multiple_choice",
31
+ "repeats": 1,
32
+ "should_decontaminate": true,
33
+ "doc_to_decontamination_query": "sentence",
34
+ "metadata": {
35
+ "version": 1.0
36
+ }
37
+ }
38
+ },
39
+ "versions": {
40
+ "winogrande": 1.0
41
+ },
42
+ "n-shot": {
43
+ "winogrande": 5
44
+ },
45
+ "config": {
46
+ "model": "hf",
47
+ "model_args": "pretrained=allenai/OLMo-7B,dtype=float16,trust_remote_code=True",
48
+ "batch_size": "1",
49
+ "batch_sizes": [],
50
+ "device": null,
51
+ "use_cache": null,
52
+ "limit": null,
53
+ "bootstrap_iters": 100000,
54
+ "gen_kwargs": null
55
+ },
56
+ "git_hash": "1ee41f7"
57
+ }
lm-eval-output/allenai/OLMo-7B/winogrande/dtype=float16,trust_remote_code=True-num_fewshot=5-nvidia-gpu/taskrun.log ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6048d0ca28b38059e811b109a0e7e07c20eded9587245f2a42bb55dc8dbdfe43
3
+ size 19037
lm-eval-output/rwkv-x-dev/Quetzal-N8-1/ai2_arc/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json ADDED
@@ -0,0 +1,132 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "ai2_arc": {
4
+ "acc,none": 0.6240135287485907,
5
+ "acc_stderr,none": 0.10388277155485243,
6
+ "acc_norm,none": 0.6344419391206313,
7
+ "acc_norm_stderr,none": 0.08923344364273313,
8
+ "alias": "ai2_arc"
9
+ },
10
+ "arc_challenge": {
11
+ "acc,none": 0.4044368600682594,
12
+ "acc_stderr,none": 0.014342036483436169,
13
+ "acc_norm,none": 0.4462457337883959,
14
+ "acc_norm_stderr,none": 0.014526705548539982,
15
+ "alias": " - arc_challenge"
16
+ },
17
+ "arc_easy": {
18
+ "acc,none": 0.7323232323232324,
19
+ "acc_stderr,none": 0.009085000147099353,
20
+ "acc_norm,none": 0.7272727272727273,
21
+ "acc_norm_stderr,none": 0.00913863072636423,
22
+ "alias": " - arc_easy"
23
+ }
24
+ },
25
+ "groups": {
26
+ "ai2_arc": {
27
+ "acc,none": 0.6240135287485907,
28
+ "acc_stderr,none": 0.10388277155485243,
29
+ "acc_norm,none": 0.6344419391206313,
30
+ "acc_norm_stderr,none": 0.08923344364273313,
31
+ "alias": "ai2_arc"
32
+ }
33
+ },
34
+ "configs": {
35
+ "arc_challenge": {
36
+ "task": "arc_challenge",
37
+ "group": [
38
+ "ai2_arc"
39
+ ],
40
+ "dataset_path": "allenai/ai2_arc",
41
+ "dataset_name": "ARC-Challenge",
42
+ "training_split": "train",
43
+ "validation_split": "validation",
44
+ "test_split": "test",
45
+ "doc_to_text": "Question: {{question}}\nAnswer:",
46
+ "doc_to_target": "{{choices.label.index(answerKey)}}",
47
+ "doc_to_choice": "{{choices.text}}",
48
+ "description": "",
49
+ "target_delimiter": " ",
50
+ "fewshot_delimiter": "\n\n",
51
+ "metric_list": [
52
+ {
53
+ "metric": "acc",
54
+ "aggregation": "mean",
55
+ "higher_is_better": true
56
+ },
57
+ {
58
+ "metric": "acc_norm",
59
+ "aggregation": "mean",
60
+ "higher_is_better": true
61
+ }
62
+ ],
63
+ "output_type": "multiple_choice",
64
+ "repeats": 1,
65
+ "should_decontaminate": true,
66
+ "doc_to_decontamination_query": "Question: {{question}}\nAnswer:",
67
+ "metadata": {
68
+ "version": 1.0
69
+ }
70
+ },
71
+ "arc_easy": {
72
+ "task": "arc_easy",
73
+ "group": [
74
+ "ai2_arc"
75
+ ],
76
+ "dataset_path": "allenai/ai2_arc",
77
+ "dataset_name": "ARC-Easy",
78
+ "training_split": "train",
79
+ "validation_split": "validation",
80
+ "test_split": "test",
81
+ "doc_to_text": "Question: {{question}}\nAnswer:",
82
+ "doc_to_target": "{{choices.label.index(answerKey)}}",
83
+ "doc_to_choice": "{{choices.text}}",
84
+ "description": "",
85
+ "target_delimiter": " ",
86
+ "fewshot_delimiter": "\n\n",
87
+ "metric_list": [
88
+ {
89
+ "metric": "acc",
90
+ "aggregation": "mean",
91
+ "higher_is_better": true
92
+ },
93
+ {
94
+ "metric": "acc_norm",
95
+ "aggregation": "mean",
96
+ "higher_is_better": true
97
+ }
98
+ ],
99
+ "output_type": "multiple_choice",
100
+ "repeats": 1,
101
+ "should_decontaminate": true,
102
+ "doc_to_decontamination_query": "Question: {{question}}\nAnswer:",
103
+ "metadata": {
104
+ "version": 1.0
105
+ }
106
+ }
107
+ },
108
+ "versions": {
109
+ "ai2_arc": "N/A",
110
+ "arc_challenge": 1.0,
111
+ "arc_easy": 1.0
112
+ },
113
+ "n-shot": {
114
+ "ai2_arc": 0,
115
+ "arc_challenge": 0,
116
+ "arc_easy": 0
117
+ },
118
+ "config": {
119
+ "model": "hf",
120
+ "model_args": "pretrained=./rwkv-x-dev/Quetzal-N8-1,dtype=bfloat16,trust_remote_code=True",
121
+ "batch_size": "auto",
122
+ "batch_sizes": [
123
+ 64
124
+ ],
125
+ "device": null,
126
+ "use_cache": null,
127
+ "limit": null,
128
+ "bootstrap_iters": 100000,
129
+ "gen_kwargs": null
130
+ },
131
+ "git_hash": "1ee41f7"
132
+ }
lm-eval-output/rwkv-x-dev/Quetzal-N8-1/ai2_arc/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3af7603495375488a226c01f0768b177e68c3b8e91287eccace70d35e51c6376
3
+ size 48046
lm-eval-output/rwkv-x-dev/Quetzal-N8-1/anli/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json ADDED
@@ -0,0 +1,161 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "anli": {
4
+ "acc,none": 0.34875,
5
+ "acc_stderr,none": 0.01538057765413352,
6
+ "alias": "anli"
7
+ },
8
+ "anli_r1": {
9
+ "acc,none": 0.358,
10
+ "acc_stderr,none": 0.015167928865407559,
11
+ "alias": " - anli_r1"
12
+ },
13
+ "anli_r2": {
14
+ "acc,none": 0.339,
15
+ "acc_stderr,none": 0.01497675877162034,
16
+ "alias": " - anli_r2"
17
+ },
18
+ "anli_r3": {
19
+ "acc,none": 0.3491666666666667,
20
+ "acc_stderr,none": 0.01376707539507725,
21
+ "alias": " - anli_r3"
22
+ }
23
+ },
24
+ "groups": {
25
+ "anli": {
26
+ "acc,none": 0.34875,
27
+ "acc_stderr,none": 0.01538057765413352,
28
+ "alias": "anli"
29
+ }
30
+ },
31
+ "configs": {
32
+ "anli_r1": {
33
+ "task": "anli_r1",
34
+ "group": [
35
+ "anli"
36
+ ],
37
+ "dataset_path": "anli",
38
+ "training_split": "train_r1",
39
+ "validation_split": "dev_r1",
40
+ "test_split": "test_r1",
41
+ "doc_to_text": "{{premise}}\nQuestion: {{hypothesis}} True, False, or Neither?\nAnswer:",
42
+ "doc_to_target": "{{['True', 'Neither', 'False'][label]}}",
43
+ "doc_to_choice": [
44
+ "True",
45
+ "Neither",
46
+ "False"
47
+ ],
48
+ "description": "",
49
+ "target_delimiter": " ",
50
+ "fewshot_delimiter": "\n\n",
51
+ "metric_list": [
52
+ {
53
+ "metric": "acc",
54
+ "aggregation": "mean",
55
+ "higher_is_better": true
56
+ }
57
+ ],
58
+ "output_type": "multiple_choice",
59
+ "repeats": 1,
60
+ "should_decontaminate": true,
61
+ "doc_to_decontamination_query": "premise",
62
+ "metadata": {
63
+ "version": 1.0
64
+ }
65
+ },
66
+ "anli_r2": {
67
+ "task": "anli_r2",
68
+ "group": [
69
+ "anli"
70
+ ],
71
+ "dataset_path": "anli",
72
+ "training_split": "train_r2",
73
+ "validation_split": "dev_r2",
74
+ "test_split": "test_r2",
75
+ "doc_to_text": "{{premise}}\nQuestion: {{hypothesis}} True, False, or Neither?\nAnswer:",
76
+ "doc_to_target": "{{['True', 'Neither', 'False'][label]}}",
77
+ "doc_to_choice": [
78
+ "True",
79
+ "Neither",
80
+ "False"
81
+ ],
82
+ "description": "",
83
+ "target_delimiter": " ",
84
+ "fewshot_delimiter": "\n\n",
85
+ "metric_list": [
86
+ {
87
+ "metric": "acc",
88
+ "aggregation": "mean",
89
+ "higher_is_better": true
90
+ }
91
+ ],
92
+ "output_type": "multiple_choice",
93
+ "repeats": 1,
94
+ "should_decontaminate": true,
95
+ "doc_to_decontamination_query": "premise",
96
+ "metadata": {
97
+ "version": 1.0
98
+ }
99
+ },
100
+ "anli_r3": {
101
+ "task": "anli_r3",
102
+ "group": [
103
+ "anli"
104
+ ],
105
+ "dataset_path": "anli",
106
+ "training_split": "train_r3",
107
+ "validation_split": "dev_r3",
108
+ "test_split": "test_r3",
109
+ "doc_to_text": "{{premise}}\nQuestion: {{hypothesis}} True, False, or Neither?\nAnswer:",
110
+ "doc_to_target": "{{['True', 'Neither', 'False'][label]}}",
111
+ "doc_to_choice": [
112
+ "True",
113
+ "Neither",
114
+ "False"
115
+ ],
116
+ "description": "",
117
+ "target_delimiter": " ",
118
+ "fewshot_delimiter": "\n\n",
119
+ "metric_list": [
120
+ {
121
+ "metric": "acc",
122
+ "aggregation": "mean",
123
+ "higher_is_better": true
124
+ }
125
+ ],
126
+ "output_type": "multiple_choice",
127
+ "repeats": 1,
128
+ "should_decontaminate": true,
129
+ "doc_to_decontamination_query": "premise",
130
+ "metadata": {
131
+ "version": 1.0
132
+ }
133
+ }
134
+ },
135
+ "versions": {
136
+ "anli": "N/A",
137
+ "anli_r1": 1.0,
138
+ "anli_r2": 1.0,
139
+ "anli_r3": 1.0
140
+ },
141
+ "n-shot": {
142
+ "anli": 0,
143
+ "anli_r1": 0,
144
+ "anli_r2": 0,
145
+ "anli_r3": 0
146
+ },
147
+ "config": {
148
+ "model": "hf",
149
+ "model_args": "pretrained=./rwkv-x-dev/Quetzal-N8-1,dtype=bfloat16,trust_remote_code=True",
150
+ "batch_size": "auto",
151
+ "batch_sizes": [
152
+ 64
153
+ ],
154
+ "device": null,
155
+ "use_cache": null,
156
+ "limit": null,
157
+ "bootstrap_iters": 100000,
158
+ "gen_kwargs": null
159
+ },
160
+ "git_hash": "1ee41f7"
161
+ }
lm-eval-output/rwkv-x-dev/Quetzal-N8-1/anli/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:82aadca8d1c31d312414679d8e7de4a1cba94868a365026929c74a055b4182f7
3
+ size 42192
lm-eval-output/rwkv-x-dev/Quetzal-N8-1/blimp/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json ADDED
@@ -0,0 +1,2249 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "blimp": {
4
+ "acc,none": 0.8364776119402983,
5
+ "acc_stderr,none": 0.14348263501658337,
6
+ "alias": "blimp"
7
+ },
8
+ "blimp_adjunct_island": {
9
+ "acc,none": 0.91,
10
+ "acc_stderr,none": 0.009054390204866437,
11
+ "alias": " - blimp_adjunct_island"
12
+ },
13
+ "blimp_anaphor_gender_agreement": {
14
+ "acc,none": 0.991,
15
+ "acc_stderr,none": 0.0029879638431426635,
16
+ "alias": " - blimp_anaphor_gender_agreement"
17
+ },
18
+ "blimp_anaphor_number_agreement": {
19
+ "acc,none": 0.998,
20
+ "acc_stderr,none": 0.0014135055705578052,
21
+ "alias": " - blimp_anaphor_number_agreement"
22
+ },
23
+ "blimp_animate_subject_passive": {
24
+ "acc,none": 0.817,
25
+ "acc_stderr,none": 0.012233587399477825,
26
+ "alias": " - blimp_animate_subject_passive"
27
+ },
28
+ "blimp_animate_subject_trans": {
29
+ "acc,none": 0.898,
30
+ "acc_stderr,none": 0.009575368801653893,
31
+ "alias": " - blimp_animate_subject_trans"
32
+ },
33
+ "blimp_causative": {
34
+ "acc,none": 0.764,
35
+ "acc_stderr,none": 0.01343445140243868,
36
+ "alias": " - blimp_causative"
37
+ },
38
+ "blimp_complex_NP_island": {
39
+ "acc,none": 0.568,
40
+ "acc_stderr,none": 0.015672320237336206,
41
+ "alias": " - blimp_complex_NP_island"
42
+ },
43
+ "blimp_coordinate_structure_constraint_complex_left_branch": {
44
+ "acc,none": 0.782,
45
+ "acc_stderr,none": 0.013063179040595294,
46
+ "alias": " - blimp_coordinate_structure_constraint_complex_left_branch"
47
+ },
48
+ "blimp_coordinate_structure_constraint_object_extraction": {
49
+ "acc,none": 0.869,
50
+ "acc_stderr,none": 0.01067487484483796,
51
+ "alias": " - blimp_coordinate_structure_constraint_object_extraction"
52
+ },
53
+ "blimp_determiner_noun_agreement_1": {
54
+ "acc,none": 0.996,
55
+ "acc_stderr,none": 0.001996994739098728,
56
+ "alias": " - blimp_determiner_noun_agreement_1"
57
+ },
58
+ "blimp_determiner_noun_agreement_2": {
59
+ "acc,none": 0.98,
60
+ "acc_stderr,none": 0.004429403980178363,
61
+ "alias": " - blimp_determiner_noun_agreement_2"
62
+ },
63
+ "blimp_determiner_noun_agreement_irregular_1": {
64
+ "acc,none": 0.923,
65
+ "acc_stderr,none": 0.008434580140240658,
66
+ "alias": " - blimp_determiner_noun_agreement_irregular_1"
67
+ },
68
+ "blimp_determiner_noun_agreement_irregular_2": {
69
+ "acc,none": 0.942,
70
+ "acc_stderr,none": 0.007395315455792944,
71
+ "alias": " - blimp_determiner_noun_agreement_irregular_2"
72
+ },
73
+ "blimp_determiner_noun_agreement_with_adj_2": {
74
+ "acc,none": 0.954,
75
+ "acc_stderr,none": 0.006627814717380709,
76
+ "alias": " - blimp_determiner_noun_agreement_with_adj_2"
77
+ },
78
+ "blimp_determiner_noun_agreement_with_adj_irregular_1": {
79
+ "acc,none": 0.874,
80
+ "acc_stderr,none": 0.010499249222408021,
81
+ "alias": " - blimp_determiner_noun_agreement_with_adj_irregular_1"
82
+ },
83
+ "blimp_determiner_noun_agreement_with_adj_irregular_2": {
84
+ "acc,none": 0.916,
85
+ "acc_stderr,none": 0.008776162089491111,
86
+ "alias": " - blimp_determiner_noun_agreement_with_adj_irregular_2"
87
+ },
88
+ "blimp_determiner_noun_agreement_with_adjective_1": {
89
+ "acc,none": 0.978,
90
+ "acc_stderr,none": 0.004640855259274701,
91
+ "alias": " - blimp_determiner_noun_agreement_with_adjective_1"
92
+ },
93
+ "blimp_distractor_agreement_relational_noun": {
94
+ "acc,none": 0.891,
95
+ "acc_stderr,none": 0.009859828407037188,
96
+ "alias": " - blimp_distractor_agreement_relational_noun"
97
+ },
98
+ "blimp_distractor_agreement_relative_clause": {
99
+ "acc,none": 0.761,
100
+ "acc_stderr,none": 0.013493000446937591,
101
+ "alias": " - blimp_distractor_agreement_relative_clause"
102
+ },
103
+ "blimp_drop_argument": {
104
+ "acc,none": 0.764,
105
+ "acc_stderr,none": 0.01343445140243869,
106
+ "alias": " - blimp_drop_argument"
107
+ },
108
+ "blimp_ellipsis_n_bar_1": {
109
+ "acc,none": 0.782,
110
+ "acc_stderr,none": 0.013063179040595282,
111
+ "alias": " - blimp_ellipsis_n_bar_1"
112
+ },
113
+ "blimp_ellipsis_n_bar_2": {
114
+ "acc,none": 0.929,
115
+ "acc_stderr,none": 0.008125578442487917,
116
+ "alias": " - blimp_ellipsis_n_bar_2"
117
+ },
118
+ "blimp_existential_there_object_raising": {
119
+ "acc,none": 0.834,
120
+ "acc_stderr,none": 0.011772110370812189,
121
+ "alias": " - blimp_existential_there_object_raising"
122
+ },
123
+ "blimp_existential_there_quantifiers_1": {
124
+ "acc,none": 0.994,
125
+ "acc_stderr,none": 0.0024433521993298215,
126
+ "alias": " - blimp_existential_there_quantifiers_1"
127
+ },
128
+ "blimp_existential_there_quantifiers_2": {
129
+ "acc,none": 0.292,
130
+ "acc_stderr,none": 0.014385511563477341,
131
+ "alias": " - blimp_existential_there_quantifiers_2"
132
+ },
133
+ "blimp_existential_there_subject_raising": {
134
+ "acc,none": 0.879,
135
+ "acc_stderr,none": 0.010318210380946085,
136
+ "alias": " - blimp_existential_there_subject_raising"
137
+ },
138
+ "blimp_expletive_it_object_raising": {
139
+ "acc,none": 0.794,
140
+ "acc_stderr,none": 0.012795613612786548,
141
+ "alias": " - blimp_expletive_it_object_raising"
142
+ },
143
+ "blimp_inchoative": {
144
+ "acc,none": 0.691,
145
+ "acc_stderr,none": 0.014619600977206486,
146
+ "alias": " - blimp_inchoative"
147
+ },
148
+ "blimp_intransitive": {
149
+ "acc,none": 0.84,
150
+ "acc_stderr,none": 0.011598902298689002,
151
+ "alias": " - blimp_intransitive"
152
+ },
153
+ "blimp_irregular_past_participle_adjectives": {
154
+ "acc,none": 0.936,
155
+ "acc_stderr,none": 0.007743640226919305,
156
+ "alias": " - blimp_irregular_past_participle_adjectives"
157
+ },
158
+ "blimp_irregular_past_participle_verbs": {
159
+ "acc,none": 0.896,
160
+ "acc_stderr,none": 0.00965801621852431,
161
+ "alias": " - blimp_irregular_past_participle_verbs"
162
+ },
163
+ "blimp_irregular_plural_subject_verb_agreement_1": {
164
+ "acc,none": 0.944,
165
+ "acc_stderr,none": 0.007274401481697076,
166
+ "alias": " - blimp_irregular_plural_subject_verb_agreement_1"
167
+ },
168
+ "blimp_irregular_plural_subject_verb_agreement_2": {
169
+ "acc,none": 0.896,
170
+ "acc_stderr,none": 0.00965801621852428,
171
+ "alias": " - blimp_irregular_plural_subject_verb_agreement_2"
172
+ },
173
+ "blimp_left_branch_island_echo_question": {
174
+ "acc,none": 0.692,
175
+ "acc_stderr,none": 0.01460648312734276,
176
+ "alias": " - blimp_left_branch_island_echo_question"
177
+ },
178
+ "blimp_left_branch_island_simple_question": {
179
+ "acc,none": 0.887,
180
+ "acc_stderr,none": 0.010016552866696869,
181
+ "alias": " - blimp_left_branch_island_simple_question"
182
+ },
183
+ "blimp_matrix_question_npi_licensor_present": {
184
+ "acc,none": 0.534,
185
+ "acc_stderr,none": 0.01578268332993762,
186
+ "alias": " - blimp_matrix_question_npi_licensor_present"
187
+ },
188
+ "blimp_npi_present_1": {
189
+ "acc,none": 0.701,
190
+ "acc_stderr,none": 0.014484778521220465,
191
+ "alias": " - blimp_npi_present_1"
192
+ },
193
+ "blimp_npi_present_2": {
194
+ "acc,none": 0.697,
195
+ "acc_stderr,none": 0.014539683710535257,
196
+ "alias": " - blimp_npi_present_2"
197
+ },
198
+ "blimp_only_npi_licensor_present": {
199
+ "acc,none": 0.969,
200
+ "acc_stderr,none": 0.005483527064679196,
201
+ "alias": " - blimp_only_npi_licensor_present"
202
+ },
203
+ "blimp_only_npi_scope": {
204
+ "acc,none": 0.879,
205
+ "acc_stderr,none": 0.010318210380946099,
206
+ "alias": " - blimp_only_npi_scope"
207
+ },
208
+ "blimp_passive_1": {
209
+ "acc,none": 0.904,
210
+ "acc_stderr,none": 0.009320454434783215,
211
+ "alias": " - blimp_passive_1"
212
+ },
213
+ "blimp_passive_2": {
214
+ "acc,none": 0.91,
215
+ "acc_stderr,none": 0.009054390204866437,
216
+ "alias": " - blimp_passive_2"
217
+ },
218
+ "blimp_principle_A_c_command": {
219
+ "acc,none": 0.776,
220
+ "acc_stderr,none": 0.013190830072364459,
221
+ "alias": " - blimp_principle_A_c_command"
222
+ },
223
+ "blimp_principle_A_case_1": {
224
+ "acc,none": 1.0,
225
+ "acc_stderr,none": 0.0,
226
+ "alias": " - blimp_principle_A_case_1"
227
+ },
228
+ "blimp_principle_A_case_2": {
229
+ "acc,none": 0.95,
230
+ "acc_stderr,none": 0.006895472974897896,
231
+ "alias": " - blimp_principle_A_case_2"
232
+ },
233
+ "blimp_principle_A_domain_1": {
234
+ "acc,none": 0.995,
235
+ "acc_stderr,none": 0.002231586874844882,
236
+ "alias": " - blimp_principle_A_domain_1"
237
+ },
238
+ "blimp_principle_A_domain_2": {
239
+ "acc,none": 0.905,
240
+ "acc_stderr,none": 0.009276910103103319,
241
+ "alias": " - blimp_principle_A_domain_2"
242
+ },
243
+ "blimp_principle_A_domain_3": {
244
+ "acc,none": 0.823,
245
+ "acc_stderr,none": 0.012075463420375061,
246
+ "alias": " - blimp_principle_A_domain_3"
247
+ },
248
+ "blimp_principle_A_reconstruction": {
249
+ "acc,none": 0.579,
250
+ "acc_stderr,none": 0.01562059547530132,
251
+ "alias": " - blimp_principle_A_reconstruction"
252
+ },
253
+ "blimp_regular_plural_subject_verb_agreement_1": {
254
+ "acc,none": 0.967,
255
+ "acc_stderr,none": 0.0056518088204523705,
256
+ "alias": " - blimp_regular_plural_subject_verb_agreement_1"
257
+ },
258
+ "blimp_regular_plural_subject_verb_agreement_2": {
259
+ "acc,none": 0.915,
260
+ "acc_stderr,none": 0.008823426366942309,
261
+ "alias": " - blimp_regular_plural_subject_verb_agreement_2"
262
+ },
263
+ "blimp_sentential_negation_npi_licensor_present": {
264
+ "acc,none": 0.991,
265
+ "acc_stderr,none": 0.0029879638431426626,
266
+ "alias": " - blimp_sentential_negation_npi_licensor_present"
267
+ },
268
+ "blimp_sentential_negation_npi_scope": {
269
+ "acc,none": 0.741,
270
+ "acc_stderr,none": 0.013860415257527911,
271
+ "alias": " - blimp_sentential_negation_npi_scope"
272
+ },
273
+ "blimp_sentential_subject_island": {
274
+ "acc,none": 0.522,
275
+ "acc_stderr,none": 0.015803979428161943,
276
+ "alias": " - blimp_sentential_subject_island"
277
+ },
278
+ "blimp_superlative_quantifiers_1": {
279
+ "acc,none": 0.886,
280
+ "acc_stderr,none": 0.010055103435823333,
281
+ "alias": " - blimp_superlative_quantifiers_1"
282
+ },
283
+ "blimp_superlative_quantifiers_2": {
284
+ "acc,none": 0.922,
285
+ "acc_stderr,none": 0.008484573530118581,
286
+ "alias": " - blimp_superlative_quantifiers_2"
287
+ },
288
+ "blimp_tough_vs_raising_1": {
289
+ "acc,none": 0.671,
290
+ "acc_stderr,none": 0.014865395385928364,
291
+ "alias": " - blimp_tough_vs_raising_1"
292
+ },
293
+ "blimp_tough_vs_raising_2": {
294
+ "acc,none": 0.876,
295
+ "acc_stderr,none": 0.010427498872343956,
296
+ "alias": " - blimp_tough_vs_raising_2"
297
+ },
298
+ "blimp_transitive": {
299
+ "acc,none": 0.875,
300
+ "acc_stderr,none": 0.010463483381956722,
301
+ "alias": " - blimp_transitive"
302
+ },
303
+ "blimp_wh_island": {
304
+ "acc,none": 0.796,
305
+ "acc_stderr,none": 0.012749374359024391,
306
+ "alias": " - blimp_wh_island"
307
+ },
308
+ "blimp_wh_questions_object_gap": {
309
+ "acc,none": 0.853,
310
+ "acc_stderr,none": 0.011203415395160328,
311
+ "alias": " - blimp_wh_questions_object_gap"
312
+ },
313
+ "blimp_wh_questions_subject_gap": {
314
+ "acc,none": 0.944,
315
+ "acc_stderr,none": 0.007274401481697055,
316
+ "alias": " - blimp_wh_questions_subject_gap"
317
+ },
318
+ "blimp_wh_questions_subject_gap_long_distance": {
319
+ "acc,none": 0.936,
320
+ "acc_stderr,none": 0.007743640226919291,
321
+ "alias": " - blimp_wh_questions_subject_gap_long_distance"
322
+ },
323
+ "blimp_wh_vs_that_no_gap": {
324
+ "acc,none": 0.98,
325
+ "acc_stderr,none": 0.0044294039801783544,
326
+ "alias": " - blimp_wh_vs_that_no_gap"
327
+ },
328
+ "blimp_wh_vs_that_no_gap_long_distance": {
329
+ "acc,none": 0.971,
330
+ "acc_stderr,none": 0.005309160685757005,
331
+ "alias": " - blimp_wh_vs_that_no_gap_long_distance"
332
+ },
333
+ "blimp_wh_vs_that_with_gap": {
334
+ "acc,none": 0.379,
335
+ "acc_stderr,none": 0.015349091002225352,
336
+ "alias": " - blimp_wh_vs_that_with_gap"
337
+ },
338
+ "blimp_wh_vs_that_with_gap_long_distance": {
339
+ "acc,none": 0.335,
340
+ "acc_stderr,none": 0.014933117490932584,
341
+ "alias": " - blimp_wh_vs_that_with_gap_long_distance"
342
+ }
343
+ },
344
+ "groups": {
345
+ "blimp": {
346
+ "acc,none": 0.8364776119402983,
347
+ "acc_stderr,none": 0.14348263501658337,
348
+ "alias": "blimp"
349
+ }
350
+ },
351
+ "configs": {
352
+ "blimp_adjunct_island": {
353
+ "task": "blimp_adjunct_island",
354
+ "group": "blimp",
355
+ "dataset_path": "blimp",
356
+ "dataset_name": "adjunct_island",
357
+ "validation_split": "train",
358
+ "doc_to_text": "",
359
+ "doc_to_target": 0,
360
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
361
+ "description": "",
362
+ "target_delimiter": " ",
363
+ "fewshot_delimiter": "\n\n",
364
+ "num_fewshot": 0,
365
+ "metric_list": [
366
+ {
367
+ "metric": "acc"
368
+ }
369
+ ],
370
+ "output_type": "multiple_choice",
371
+ "repeats": 1,
372
+ "should_decontaminate": true,
373
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
374
+ "metadata": {
375
+ "version": 1.0
376
+ }
377
+ },
378
+ "blimp_anaphor_gender_agreement": {
379
+ "task": "blimp_anaphor_gender_agreement",
380
+ "group": "blimp",
381
+ "dataset_path": "blimp",
382
+ "dataset_name": "anaphor_gender_agreement",
383
+ "validation_split": "train",
384
+ "doc_to_text": "",
385
+ "doc_to_target": 0,
386
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
387
+ "description": "",
388
+ "target_delimiter": " ",
389
+ "fewshot_delimiter": "\n\n",
390
+ "num_fewshot": 0,
391
+ "metric_list": [
392
+ {
393
+ "metric": "acc"
394
+ }
395
+ ],
396
+ "output_type": "multiple_choice",
397
+ "repeats": 1,
398
+ "should_decontaminate": true,
399
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
400
+ "metadata": {
401
+ "version": 1.0
402
+ }
403
+ },
404
+ "blimp_anaphor_number_agreement": {
405
+ "task": "blimp_anaphor_number_agreement",
406
+ "group": "blimp",
407
+ "dataset_path": "blimp",
408
+ "dataset_name": "anaphor_number_agreement",
409
+ "validation_split": "train",
410
+ "doc_to_text": "",
411
+ "doc_to_target": 0,
412
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
413
+ "description": "",
414
+ "target_delimiter": " ",
415
+ "fewshot_delimiter": "\n\n",
416
+ "num_fewshot": 0,
417
+ "metric_list": [
418
+ {
419
+ "metric": "acc"
420
+ }
421
+ ],
422
+ "output_type": "multiple_choice",
423
+ "repeats": 1,
424
+ "should_decontaminate": true,
425
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
426
+ "metadata": {
427
+ "version": 1.0
428
+ }
429
+ },
430
+ "blimp_animate_subject_passive": {
431
+ "task": "blimp_animate_subject_passive",
432
+ "group": "blimp",
433
+ "dataset_path": "blimp",
434
+ "dataset_name": "animate_subject_passive",
435
+ "validation_split": "train",
436
+ "doc_to_text": "",
437
+ "doc_to_target": 0,
438
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
439
+ "description": "",
440
+ "target_delimiter": " ",
441
+ "fewshot_delimiter": "\n\n",
442
+ "num_fewshot": 0,
443
+ "metric_list": [
444
+ {
445
+ "metric": "acc"
446
+ }
447
+ ],
448
+ "output_type": "multiple_choice",
449
+ "repeats": 1,
450
+ "should_decontaminate": true,
451
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
452
+ "metadata": {
453
+ "version": 1.0
454
+ }
455
+ },
456
+ "blimp_animate_subject_trans": {
457
+ "task": "blimp_animate_subject_trans",
458
+ "group": "blimp",
459
+ "dataset_path": "blimp",
460
+ "dataset_name": "animate_subject_trans",
461
+ "validation_split": "train",
462
+ "doc_to_text": "",
463
+ "doc_to_target": 0,
464
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
465
+ "description": "",
466
+ "target_delimiter": " ",
467
+ "fewshot_delimiter": "\n\n",
468
+ "num_fewshot": 0,
469
+ "metric_list": [
470
+ {
471
+ "metric": "acc"
472
+ }
473
+ ],
474
+ "output_type": "multiple_choice",
475
+ "repeats": 1,
476
+ "should_decontaminate": true,
477
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
478
+ "metadata": {
479
+ "version": 1.0
480
+ }
481
+ },
482
+ "blimp_causative": {
483
+ "task": "blimp_causative",
484
+ "group": "blimp",
485
+ "dataset_path": "blimp",
486
+ "dataset_name": "causative",
487
+ "validation_split": "train",
488
+ "doc_to_text": "",
489
+ "doc_to_target": 0,
490
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
491
+ "description": "",
492
+ "target_delimiter": " ",
493
+ "fewshot_delimiter": "\n\n",
494
+ "num_fewshot": 0,
495
+ "metric_list": [
496
+ {
497
+ "metric": "acc"
498
+ }
499
+ ],
500
+ "output_type": "multiple_choice",
501
+ "repeats": 1,
502
+ "should_decontaminate": true,
503
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
504
+ "metadata": {
505
+ "version": 1.0
506
+ }
507
+ },
508
+ "blimp_complex_NP_island": {
509
+ "task": "blimp_complex_NP_island",
510
+ "group": "blimp",
511
+ "dataset_path": "blimp",
512
+ "dataset_name": "complex_NP_island",
513
+ "validation_split": "train",
514
+ "doc_to_text": "",
515
+ "doc_to_target": 0,
516
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
517
+ "description": "",
518
+ "target_delimiter": " ",
519
+ "fewshot_delimiter": "\n\n",
520
+ "num_fewshot": 0,
521
+ "metric_list": [
522
+ {
523
+ "metric": "acc"
524
+ }
525
+ ],
526
+ "output_type": "multiple_choice",
527
+ "repeats": 1,
528
+ "should_decontaminate": true,
529
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
530
+ "metadata": {
531
+ "version": 1.0
532
+ }
533
+ },
534
+ "blimp_coordinate_structure_constraint_complex_left_branch": {
535
+ "task": "blimp_coordinate_structure_constraint_complex_left_branch",
536
+ "group": "blimp",
537
+ "dataset_path": "blimp",
538
+ "dataset_name": "coordinate_structure_constraint_complex_left_branch",
539
+ "validation_split": "train",
540
+ "doc_to_text": "",
541
+ "doc_to_target": 0,
542
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
543
+ "description": "",
544
+ "target_delimiter": " ",
545
+ "fewshot_delimiter": "\n\n",
546
+ "num_fewshot": 0,
547
+ "metric_list": [
548
+ {
549
+ "metric": "acc"
550
+ }
551
+ ],
552
+ "output_type": "multiple_choice",
553
+ "repeats": 1,
554
+ "should_decontaminate": true,
555
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
556
+ "metadata": {
557
+ "version": 1.0
558
+ }
559
+ },
560
+ "blimp_coordinate_structure_constraint_object_extraction": {
561
+ "task": "blimp_coordinate_structure_constraint_object_extraction",
562
+ "group": "blimp",
563
+ "dataset_path": "blimp",
564
+ "dataset_name": "coordinate_structure_constraint_object_extraction",
565
+ "validation_split": "train",
566
+ "doc_to_text": "",
567
+ "doc_to_target": 0,
568
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
569
+ "description": "",
570
+ "target_delimiter": " ",
571
+ "fewshot_delimiter": "\n\n",
572
+ "num_fewshot": 0,
573
+ "metric_list": [
574
+ {
575
+ "metric": "acc"
576
+ }
577
+ ],
578
+ "output_type": "multiple_choice",
579
+ "repeats": 1,
580
+ "should_decontaminate": true,
581
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
582
+ "metadata": {
583
+ "version": 1.0
584
+ }
585
+ },
586
+ "blimp_determiner_noun_agreement_1": {
587
+ "task": "blimp_determiner_noun_agreement_1",
588
+ "group": "blimp",
589
+ "dataset_path": "blimp",
590
+ "dataset_name": "determiner_noun_agreement_1",
591
+ "validation_split": "train",
592
+ "doc_to_text": "",
593
+ "doc_to_target": 0,
594
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
595
+ "description": "",
596
+ "target_delimiter": " ",
597
+ "fewshot_delimiter": "\n\n",
598
+ "num_fewshot": 0,
599
+ "metric_list": [
600
+ {
601
+ "metric": "acc"
602
+ }
603
+ ],
604
+ "output_type": "multiple_choice",
605
+ "repeats": 1,
606
+ "should_decontaminate": true,
607
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
608
+ "metadata": {
609
+ "version": 1.0
610
+ }
611
+ },
612
+ "blimp_determiner_noun_agreement_2": {
613
+ "task": "blimp_determiner_noun_agreement_2",
614
+ "group": "blimp",
615
+ "dataset_path": "blimp",
616
+ "dataset_name": "determiner_noun_agreement_2",
617
+ "validation_split": "train",
618
+ "doc_to_text": "",
619
+ "doc_to_target": 0,
620
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
621
+ "description": "",
622
+ "target_delimiter": " ",
623
+ "fewshot_delimiter": "\n\n",
624
+ "num_fewshot": 0,
625
+ "metric_list": [
626
+ {
627
+ "metric": "acc"
628
+ }
629
+ ],
630
+ "output_type": "multiple_choice",
631
+ "repeats": 1,
632
+ "should_decontaminate": true,
633
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
634
+ "metadata": {
635
+ "version": 1.0
636
+ }
637
+ },
638
+ "blimp_determiner_noun_agreement_irregular_1": {
639
+ "task": "blimp_determiner_noun_agreement_irregular_1",
640
+ "group": "blimp",
641
+ "dataset_path": "blimp",
642
+ "dataset_name": "determiner_noun_agreement_irregular_1",
643
+ "validation_split": "train",
644
+ "doc_to_text": "",
645
+ "doc_to_target": 0,
646
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
647
+ "description": "",
648
+ "target_delimiter": " ",
649
+ "fewshot_delimiter": "\n\n",
650
+ "num_fewshot": 0,
651
+ "metric_list": [
652
+ {
653
+ "metric": "acc"
654
+ }
655
+ ],
656
+ "output_type": "multiple_choice",
657
+ "repeats": 1,
658
+ "should_decontaminate": true,
659
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
660
+ "metadata": {
661
+ "version": 1.0
662
+ }
663
+ },
664
+ "blimp_determiner_noun_agreement_irregular_2": {
665
+ "task": "blimp_determiner_noun_agreement_irregular_2",
666
+ "group": "blimp",
667
+ "dataset_path": "blimp",
668
+ "dataset_name": "determiner_noun_agreement_irregular_2",
669
+ "validation_split": "train",
670
+ "doc_to_text": "",
671
+ "doc_to_target": 0,
672
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
673
+ "description": "",
674
+ "target_delimiter": " ",
675
+ "fewshot_delimiter": "\n\n",
676
+ "num_fewshot": 0,
677
+ "metric_list": [
678
+ {
679
+ "metric": "acc"
680
+ }
681
+ ],
682
+ "output_type": "multiple_choice",
683
+ "repeats": 1,
684
+ "should_decontaminate": true,
685
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
686
+ "metadata": {
687
+ "version": 1.0
688
+ }
689
+ },
690
+ "blimp_determiner_noun_agreement_with_adj_2": {
691
+ "task": "blimp_determiner_noun_agreement_with_adj_2",
692
+ "group": "blimp",
693
+ "dataset_path": "blimp",
694
+ "dataset_name": "determiner_noun_agreement_with_adj_2",
695
+ "validation_split": "train",
696
+ "doc_to_text": "",
697
+ "doc_to_target": 0,
698
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
699
+ "description": "",
700
+ "target_delimiter": " ",
701
+ "fewshot_delimiter": "\n\n",
702
+ "num_fewshot": 0,
703
+ "metric_list": [
704
+ {
705
+ "metric": "acc"
706
+ }
707
+ ],
708
+ "output_type": "multiple_choice",
709
+ "repeats": 1,
710
+ "should_decontaminate": true,
711
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
712
+ "metadata": {
713
+ "version": 1.0
714
+ }
715
+ },
716
+ "blimp_determiner_noun_agreement_with_adj_irregular_1": {
717
+ "task": "blimp_determiner_noun_agreement_with_adj_irregular_1",
718
+ "group": "blimp",
719
+ "dataset_path": "blimp",
720
+ "dataset_name": "determiner_noun_agreement_with_adj_irregular_1",
721
+ "validation_split": "train",
722
+ "doc_to_text": "",
723
+ "doc_to_target": 0,
724
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
725
+ "description": "",
726
+ "target_delimiter": " ",
727
+ "fewshot_delimiter": "\n\n",
728
+ "num_fewshot": 0,
729
+ "metric_list": [
730
+ {
731
+ "metric": "acc"
732
+ }
733
+ ],
734
+ "output_type": "multiple_choice",
735
+ "repeats": 1,
736
+ "should_decontaminate": true,
737
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
738
+ "metadata": {
739
+ "version": 1.0
740
+ }
741
+ },
742
+ "blimp_determiner_noun_agreement_with_adj_irregular_2": {
743
+ "task": "blimp_determiner_noun_agreement_with_adj_irregular_2",
744
+ "group": "blimp",
745
+ "dataset_path": "blimp",
746
+ "dataset_name": "determiner_noun_agreement_with_adj_irregular_2",
747
+ "validation_split": "train",
748
+ "doc_to_text": "",
749
+ "doc_to_target": 0,
750
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
751
+ "description": "",
752
+ "target_delimiter": " ",
753
+ "fewshot_delimiter": "\n\n",
754
+ "num_fewshot": 0,
755
+ "metric_list": [
756
+ {
757
+ "metric": "acc"
758
+ }
759
+ ],
760
+ "output_type": "multiple_choice",
761
+ "repeats": 1,
762
+ "should_decontaminate": true,
763
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
764
+ "metadata": {
765
+ "version": 1.0
766
+ }
767
+ },
768
+ "blimp_determiner_noun_agreement_with_adjective_1": {
769
+ "task": "blimp_determiner_noun_agreement_with_adjective_1",
770
+ "group": "blimp",
771
+ "dataset_path": "blimp",
772
+ "dataset_name": "determiner_noun_agreement_with_adjective_1",
773
+ "validation_split": "train",
774
+ "doc_to_text": "",
775
+ "doc_to_target": 0,
776
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
777
+ "description": "",
778
+ "target_delimiter": " ",
779
+ "fewshot_delimiter": "\n\n",
780
+ "num_fewshot": 0,
781
+ "metric_list": [
782
+ {
783
+ "metric": "acc"
784
+ }
785
+ ],
786
+ "output_type": "multiple_choice",
787
+ "repeats": 1,
788
+ "should_decontaminate": true,
789
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
790
+ "metadata": {
791
+ "version": 1.0
792
+ }
793
+ },
794
+ "blimp_distractor_agreement_relational_noun": {
795
+ "task": "blimp_distractor_agreement_relational_noun",
796
+ "group": "blimp",
797
+ "dataset_path": "blimp",
798
+ "dataset_name": "distractor_agreement_relational_noun",
799
+ "validation_split": "train",
800
+ "doc_to_text": "",
801
+ "doc_to_target": 0,
802
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
803
+ "description": "",
804
+ "target_delimiter": " ",
805
+ "fewshot_delimiter": "\n\n",
806
+ "num_fewshot": 0,
807
+ "metric_list": [
808
+ {
809
+ "metric": "acc"
810
+ }
811
+ ],
812
+ "output_type": "multiple_choice",
813
+ "repeats": 1,
814
+ "should_decontaminate": true,
815
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
816
+ "metadata": {
817
+ "version": 1.0
818
+ }
819
+ },
820
+ "blimp_distractor_agreement_relative_clause": {
821
+ "task": "blimp_distractor_agreement_relative_clause",
822
+ "group": "blimp",
823
+ "dataset_path": "blimp",
824
+ "dataset_name": "distractor_agreement_relative_clause",
825
+ "validation_split": "train",
826
+ "doc_to_text": "",
827
+ "doc_to_target": 0,
828
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
829
+ "description": "",
830
+ "target_delimiter": " ",
831
+ "fewshot_delimiter": "\n\n",
832
+ "num_fewshot": 0,
833
+ "metric_list": [
834
+ {
835
+ "metric": "acc"
836
+ }
837
+ ],
838
+ "output_type": "multiple_choice",
839
+ "repeats": 1,
840
+ "should_decontaminate": true,
841
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
842
+ "metadata": {
843
+ "version": 1.0
844
+ }
845
+ },
846
+ "blimp_drop_argument": {
847
+ "task": "blimp_drop_argument",
848
+ "group": "blimp",
849
+ "dataset_path": "blimp",
850
+ "dataset_name": "drop_argument",
851
+ "validation_split": "train",
852
+ "doc_to_text": "",
853
+ "doc_to_target": 0,
854
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
855
+ "description": "",
856
+ "target_delimiter": " ",
857
+ "fewshot_delimiter": "\n\n",
858
+ "num_fewshot": 0,
859
+ "metric_list": [
860
+ {
861
+ "metric": "acc"
862
+ }
863
+ ],
864
+ "output_type": "multiple_choice",
865
+ "repeats": 1,
866
+ "should_decontaminate": true,
867
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
868
+ "metadata": {
869
+ "version": 1.0
870
+ }
871
+ },
872
+ "blimp_ellipsis_n_bar_1": {
873
+ "task": "blimp_ellipsis_n_bar_1",
874
+ "group": "blimp",
875
+ "dataset_path": "blimp",
876
+ "dataset_name": "ellipsis_n_bar_1",
877
+ "validation_split": "train",
878
+ "doc_to_text": "",
879
+ "doc_to_target": 0,
880
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
881
+ "description": "",
882
+ "target_delimiter": " ",
883
+ "fewshot_delimiter": "\n\n",
884
+ "num_fewshot": 0,
885
+ "metric_list": [
886
+ {
887
+ "metric": "acc"
888
+ }
889
+ ],
890
+ "output_type": "multiple_choice",
891
+ "repeats": 1,
892
+ "should_decontaminate": true,
893
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
894
+ "metadata": {
895
+ "version": 1.0
896
+ }
897
+ },
898
+ "blimp_ellipsis_n_bar_2": {
899
+ "task": "blimp_ellipsis_n_bar_2",
900
+ "group": "blimp",
901
+ "dataset_path": "blimp",
902
+ "dataset_name": "ellipsis_n_bar_2",
903
+ "validation_split": "train",
904
+ "doc_to_text": "",
905
+ "doc_to_target": 0,
906
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
907
+ "description": "",
908
+ "target_delimiter": " ",
909
+ "fewshot_delimiter": "\n\n",
910
+ "num_fewshot": 0,
911
+ "metric_list": [
912
+ {
913
+ "metric": "acc"
914
+ }
915
+ ],
916
+ "output_type": "multiple_choice",
917
+ "repeats": 1,
918
+ "should_decontaminate": true,
919
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
920
+ "metadata": {
921
+ "version": 1.0
922
+ }
923
+ },
924
+ "blimp_existential_there_object_raising": {
925
+ "task": "blimp_existential_there_object_raising",
926
+ "group": "blimp",
927
+ "dataset_path": "blimp",
928
+ "dataset_name": "existential_there_object_raising",
929
+ "validation_split": "train",
930
+ "doc_to_text": "",
931
+ "doc_to_target": 0,
932
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
933
+ "description": "",
934
+ "target_delimiter": " ",
935
+ "fewshot_delimiter": "\n\n",
936
+ "num_fewshot": 0,
937
+ "metric_list": [
938
+ {
939
+ "metric": "acc"
940
+ }
941
+ ],
942
+ "output_type": "multiple_choice",
943
+ "repeats": 1,
944
+ "should_decontaminate": true,
945
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
946
+ "metadata": {
947
+ "version": 1.0
948
+ }
949
+ },
950
+ "blimp_existential_there_quantifiers_1": {
951
+ "task": "blimp_existential_there_quantifiers_1",
952
+ "group": "blimp",
953
+ "dataset_path": "blimp",
954
+ "dataset_name": "existential_there_quantifiers_1",
955
+ "validation_split": "train",
956
+ "doc_to_text": "",
957
+ "doc_to_target": 0,
958
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
959
+ "description": "",
960
+ "target_delimiter": " ",
961
+ "fewshot_delimiter": "\n\n",
962
+ "num_fewshot": 0,
963
+ "metric_list": [
964
+ {
965
+ "metric": "acc"
966
+ }
967
+ ],
968
+ "output_type": "multiple_choice",
969
+ "repeats": 1,
970
+ "should_decontaminate": true,
971
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
972
+ "metadata": {
973
+ "version": 1.0
974
+ }
975
+ },
976
+ "blimp_existential_there_quantifiers_2": {
977
+ "task": "blimp_existential_there_quantifiers_2",
978
+ "group": "blimp",
979
+ "dataset_path": "blimp",
980
+ "dataset_name": "existential_there_quantifiers_2",
981
+ "validation_split": "train",
982
+ "doc_to_text": "",
983
+ "doc_to_target": 0,
984
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
985
+ "description": "",
986
+ "target_delimiter": " ",
987
+ "fewshot_delimiter": "\n\n",
988
+ "num_fewshot": 0,
989
+ "metric_list": [
990
+ {
991
+ "metric": "acc"
992
+ }
993
+ ],
994
+ "output_type": "multiple_choice",
995
+ "repeats": 1,
996
+ "should_decontaminate": true,
997
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
998
+ "metadata": {
999
+ "version": 1.0
1000
+ }
1001
+ },
1002
+ "blimp_existential_there_subject_raising": {
1003
+ "task": "blimp_existential_there_subject_raising",
1004
+ "group": "blimp",
1005
+ "dataset_path": "blimp",
1006
+ "dataset_name": "existential_there_subject_raising",
1007
+ "validation_split": "train",
1008
+ "doc_to_text": "",
1009
+ "doc_to_target": 0,
1010
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
1011
+ "description": "",
1012
+ "target_delimiter": " ",
1013
+ "fewshot_delimiter": "\n\n",
1014
+ "num_fewshot": 0,
1015
+ "metric_list": [
1016
+ {
1017
+ "metric": "acc"
1018
+ }
1019
+ ],
1020
+ "output_type": "multiple_choice",
1021
+ "repeats": 1,
1022
+ "should_decontaminate": true,
1023
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
1024
+ "metadata": {
1025
+ "version": 1.0
1026
+ }
1027
+ },
1028
+ "blimp_expletive_it_object_raising": {
1029
+ "task": "blimp_expletive_it_object_raising",
1030
+ "group": "blimp",
1031
+ "dataset_path": "blimp",
1032
+ "dataset_name": "expletive_it_object_raising",
1033
+ "validation_split": "train",
1034
+ "doc_to_text": "",
1035
+ "doc_to_target": 0,
1036
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
1037
+ "description": "",
1038
+ "target_delimiter": " ",
1039
+ "fewshot_delimiter": "\n\n",
1040
+ "num_fewshot": 0,
1041
+ "metric_list": [
1042
+ {
1043
+ "metric": "acc"
1044
+ }
1045
+ ],
1046
+ "output_type": "multiple_choice",
1047
+ "repeats": 1,
1048
+ "should_decontaminate": true,
1049
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
1050
+ "metadata": {
1051
+ "version": 1.0
1052
+ }
1053
+ },
1054
+ "blimp_inchoative": {
1055
+ "task": "blimp_inchoative",
1056
+ "group": "blimp",
1057
+ "dataset_path": "blimp",
1058
+ "dataset_name": "inchoative",
1059
+ "validation_split": "train",
1060
+ "doc_to_text": "",
1061
+ "doc_to_target": 0,
1062
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
1063
+ "description": "",
1064
+ "target_delimiter": " ",
1065
+ "fewshot_delimiter": "\n\n",
1066
+ "num_fewshot": 0,
1067
+ "metric_list": [
1068
+ {
1069
+ "metric": "acc"
1070
+ }
1071
+ ],
1072
+ "output_type": "multiple_choice",
1073
+ "repeats": 1,
1074
+ "should_decontaminate": true,
1075
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
1076
+ "metadata": {
1077
+ "version": 1.0
1078
+ }
1079
+ },
1080
+ "blimp_intransitive": {
1081
+ "task": "blimp_intransitive",
1082
+ "group": "blimp",
1083
+ "dataset_path": "blimp",
1084
+ "dataset_name": "intransitive",
1085
+ "validation_split": "train",
1086
+ "doc_to_text": "",
1087
+ "doc_to_target": 0,
1088
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
1089
+ "description": "",
1090
+ "target_delimiter": " ",
1091
+ "fewshot_delimiter": "\n\n",
1092
+ "num_fewshot": 0,
1093
+ "metric_list": [
1094
+ {
1095
+ "metric": "acc"
1096
+ }
1097
+ ],
1098
+ "output_type": "multiple_choice",
1099
+ "repeats": 1,
1100
+ "should_decontaminate": true,
1101
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
1102
+ "metadata": {
1103
+ "version": 1.0
1104
+ }
1105
+ },
1106
+ "blimp_irregular_past_participle_adjectives": {
1107
+ "task": "blimp_irregular_past_participle_adjectives",
1108
+ "group": "blimp",
1109
+ "dataset_path": "blimp",
1110
+ "dataset_name": "irregular_past_participle_adjectives",
1111
+ "validation_split": "train",
1112
+ "doc_to_text": "",
1113
+ "doc_to_target": 0,
1114
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
1115
+ "description": "",
1116
+ "target_delimiter": " ",
1117
+ "fewshot_delimiter": "\n\n",
1118
+ "num_fewshot": 0,
1119
+ "metric_list": [
1120
+ {
1121
+ "metric": "acc"
1122
+ }
1123
+ ],
1124
+ "output_type": "multiple_choice",
1125
+ "repeats": 1,
1126
+ "should_decontaminate": true,
1127
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
1128
+ "metadata": {
1129
+ "version": 1.0
1130
+ }
1131
+ },
1132
+ "blimp_irregular_past_participle_verbs": {
1133
+ "task": "blimp_irregular_past_participle_verbs",
1134
+ "group": "blimp",
1135
+ "dataset_path": "blimp",
1136
+ "dataset_name": "irregular_past_participle_verbs",
1137
+ "validation_split": "train",
1138
+ "doc_to_text": "",
1139
+ "doc_to_target": 0,
1140
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
1141
+ "description": "",
1142
+ "target_delimiter": " ",
1143
+ "fewshot_delimiter": "\n\n",
1144
+ "num_fewshot": 0,
1145
+ "metric_list": [
1146
+ {
1147
+ "metric": "acc"
1148
+ }
1149
+ ],
1150
+ "output_type": "multiple_choice",
1151
+ "repeats": 1,
1152
+ "should_decontaminate": true,
1153
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
1154
+ "metadata": {
1155
+ "version": 1.0
1156
+ }
1157
+ },
1158
+ "blimp_irregular_plural_subject_verb_agreement_1": {
1159
+ "task": "blimp_irregular_plural_subject_verb_agreement_1",
1160
+ "group": "blimp",
1161
+ "dataset_path": "blimp",
1162
+ "dataset_name": "irregular_plural_subject_verb_agreement_1",
1163
+ "validation_split": "train",
1164
+ "doc_to_text": "",
1165
+ "doc_to_target": 0,
1166
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
1167
+ "description": "",
1168
+ "target_delimiter": " ",
1169
+ "fewshot_delimiter": "\n\n",
1170
+ "num_fewshot": 0,
1171
+ "metric_list": [
1172
+ {
1173
+ "metric": "acc"
1174
+ }
1175
+ ],
1176
+ "output_type": "multiple_choice",
1177
+ "repeats": 1,
1178
+ "should_decontaminate": true,
1179
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
1180
+ "metadata": {
1181
+ "version": 1.0
1182
+ }
1183
+ },
1184
+ "blimp_irregular_plural_subject_verb_agreement_2": {
1185
+ "task": "blimp_irregular_plural_subject_verb_agreement_2",
1186
+ "group": "blimp",
1187
+ "dataset_path": "blimp",
1188
+ "dataset_name": "irregular_plural_subject_verb_agreement_2",
1189
+ "validation_split": "train",
1190
+ "doc_to_text": "",
1191
+ "doc_to_target": 0,
1192
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
1193
+ "description": "",
1194
+ "target_delimiter": " ",
1195
+ "fewshot_delimiter": "\n\n",
1196
+ "num_fewshot": 0,
1197
+ "metric_list": [
1198
+ {
1199
+ "metric": "acc"
1200
+ }
1201
+ ],
1202
+ "output_type": "multiple_choice",
1203
+ "repeats": 1,
1204
+ "should_decontaminate": true,
1205
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
1206
+ "metadata": {
1207
+ "version": 1.0
1208
+ }
1209
+ },
1210
+ "blimp_left_branch_island_echo_question": {
1211
+ "task": "blimp_left_branch_island_echo_question",
1212
+ "group": "blimp",
1213
+ "dataset_path": "blimp",
1214
+ "dataset_name": "left_branch_island_echo_question",
1215
+ "validation_split": "train",
1216
+ "doc_to_text": "",
1217
+ "doc_to_target": 0,
1218
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
1219
+ "description": "",
1220
+ "target_delimiter": " ",
1221
+ "fewshot_delimiter": "\n\n",
1222
+ "num_fewshot": 0,
1223
+ "metric_list": [
1224
+ {
1225
+ "metric": "acc"
1226
+ }
1227
+ ],
1228
+ "output_type": "multiple_choice",
1229
+ "repeats": 1,
1230
+ "should_decontaminate": true,
1231
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
1232
+ "metadata": {
1233
+ "version": 1.0
1234
+ }
1235
+ },
1236
+ "blimp_left_branch_island_simple_question": {
1237
+ "task": "blimp_left_branch_island_simple_question",
1238
+ "group": "blimp",
1239
+ "dataset_path": "blimp",
1240
+ "dataset_name": "left_branch_island_simple_question",
1241
+ "validation_split": "train",
1242
+ "doc_to_text": "",
1243
+ "doc_to_target": 0,
1244
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
1245
+ "description": "",
1246
+ "target_delimiter": " ",
1247
+ "fewshot_delimiter": "\n\n",
1248
+ "num_fewshot": 0,
1249
+ "metric_list": [
1250
+ {
1251
+ "metric": "acc"
1252
+ }
1253
+ ],
1254
+ "output_type": "multiple_choice",
1255
+ "repeats": 1,
1256
+ "should_decontaminate": true,
1257
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
1258
+ "metadata": {
1259
+ "version": 1.0
1260
+ }
1261
+ },
1262
+ "blimp_matrix_question_npi_licensor_present": {
1263
+ "task": "blimp_matrix_question_npi_licensor_present",
1264
+ "group": "blimp",
1265
+ "dataset_path": "blimp",
1266
+ "dataset_name": "matrix_question_npi_licensor_present",
1267
+ "validation_split": "train",
1268
+ "doc_to_text": "",
1269
+ "doc_to_target": 0,
1270
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
1271
+ "description": "",
1272
+ "target_delimiter": " ",
1273
+ "fewshot_delimiter": "\n\n",
1274
+ "num_fewshot": 0,
1275
+ "metric_list": [
1276
+ {
1277
+ "metric": "acc"
1278
+ }
1279
+ ],
1280
+ "output_type": "multiple_choice",
1281
+ "repeats": 1,
1282
+ "should_decontaminate": true,
1283
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
1284
+ "metadata": {
1285
+ "version": 1.0
1286
+ }
1287
+ },
1288
+ "blimp_npi_present_1": {
1289
+ "task": "blimp_npi_present_1",
1290
+ "group": "blimp",
1291
+ "dataset_path": "blimp",
1292
+ "dataset_name": "npi_present_1",
1293
+ "validation_split": "train",
1294
+ "doc_to_text": "",
1295
+ "doc_to_target": 0,
1296
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
1297
+ "description": "",
1298
+ "target_delimiter": " ",
1299
+ "fewshot_delimiter": "\n\n",
1300
+ "num_fewshot": 0,
1301
+ "metric_list": [
1302
+ {
1303
+ "metric": "acc"
1304
+ }
1305
+ ],
1306
+ "output_type": "multiple_choice",
1307
+ "repeats": 1,
1308
+ "should_decontaminate": true,
1309
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
1310
+ "metadata": {
1311
+ "version": 1.0
1312
+ }
1313
+ },
1314
+ "blimp_npi_present_2": {
1315
+ "task": "blimp_npi_present_2",
1316
+ "group": "blimp",
1317
+ "dataset_path": "blimp",
1318
+ "dataset_name": "npi_present_2",
1319
+ "validation_split": "train",
1320
+ "doc_to_text": "",
1321
+ "doc_to_target": 0,
1322
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
1323
+ "description": "",
1324
+ "target_delimiter": " ",
1325
+ "fewshot_delimiter": "\n\n",
1326
+ "num_fewshot": 0,
1327
+ "metric_list": [
1328
+ {
1329
+ "metric": "acc"
1330
+ }
1331
+ ],
1332
+ "output_type": "multiple_choice",
1333
+ "repeats": 1,
1334
+ "should_decontaminate": true,
1335
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
1336
+ "metadata": {
1337
+ "version": 1.0
1338
+ }
1339
+ },
1340
+ "blimp_only_npi_licensor_present": {
1341
+ "task": "blimp_only_npi_licensor_present",
1342
+ "group": "blimp",
1343
+ "dataset_path": "blimp",
1344
+ "dataset_name": "only_npi_licensor_present",
1345
+ "validation_split": "train",
1346
+ "doc_to_text": "",
1347
+ "doc_to_target": 0,
1348
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
1349
+ "description": "",
1350
+ "target_delimiter": " ",
1351
+ "fewshot_delimiter": "\n\n",
1352
+ "num_fewshot": 0,
1353
+ "metric_list": [
1354
+ {
1355
+ "metric": "acc"
1356
+ }
1357
+ ],
1358
+ "output_type": "multiple_choice",
1359
+ "repeats": 1,
1360
+ "should_decontaminate": true,
1361
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
1362
+ "metadata": {
1363
+ "version": 1.0
1364
+ }
1365
+ },
1366
+ "blimp_only_npi_scope": {
1367
+ "task": "blimp_only_npi_scope",
1368
+ "group": "blimp",
1369
+ "dataset_path": "blimp",
1370
+ "dataset_name": "only_npi_scope",
1371
+ "validation_split": "train",
1372
+ "doc_to_text": "",
1373
+ "doc_to_target": 0,
1374
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
1375
+ "description": "",
1376
+ "target_delimiter": " ",
1377
+ "fewshot_delimiter": "\n\n",
1378
+ "num_fewshot": 0,
1379
+ "metric_list": [
1380
+ {
1381
+ "metric": "acc"
1382
+ }
1383
+ ],
1384
+ "output_type": "multiple_choice",
1385
+ "repeats": 1,
1386
+ "should_decontaminate": true,
1387
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
1388
+ "metadata": {
1389
+ "version": 1.0
1390
+ }
1391
+ },
1392
+ "blimp_passive_1": {
1393
+ "task": "blimp_passive_1",
1394
+ "group": "blimp",
1395
+ "dataset_path": "blimp",
1396
+ "dataset_name": "passive_1",
1397
+ "validation_split": "train",
1398
+ "doc_to_text": "",
1399
+ "doc_to_target": 0,
1400
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
1401
+ "description": "",
1402
+ "target_delimiter": " ",
1403
+ "fewshot_delimiter": "\n\n",
1404
+ "num_fewshot": 0,
1405
+ "metric_list": [
1406
+ {
1407
+ "metric": "acc"
1408
+ }
1409
+ ],
1410
+ "output_type": "multiple_choice",
1411
+ "repeats": 1,
1412
+ "should_decontaminate": true,
1413
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
1414
+ "metadata": {
1415
+ "version": 1.0
1416
+ }
1417
+ },
1418
+ "blimp_passive_2": {
1419
+ "task": "blimp_passive_2",
1420
+ "group": "blimp",
1421
+ "dataset_path": "blimp",
1422
+ "dataset_name": "passive_2",
1423
+ "validation_split": "train",
1424
+ "doc_to_text": "",
1425
+ "doc_to_target": 0,
1426
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
1427
+ "description": "",
1428
+ "target_delimiter": " ",
1429
+ "fewshot_delimiter": "\n\n",
1430
+ "num_fewshot": 0,
1431
+ "metric_list": [
1432
+ {
1433
+ "metric": "acc"
1434
+ }
1435
+ ],
1436
+ "output_type": "multiple_choice",
1437
+ "repeats": 1,
1438
+ "should_decontaminate": true,
1439
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
1440
+ "metadata": {
1441
+ "version": 1.0
1442
+ }
1443
+ },
1444
+ "blimp_principle_A_c_command": {
1445
+ "task": "blimp_principle_A_c_command",
1446
+ "group": "blimp",
1447
+ "dataset_path": "blimp",
1448
+ "dataset_name": "principle_A_c_command",
1449
+ "validation_split": "train",
1450
+ "doc_to_text": "",
1451
+ "doc_to_target": 0,
1452
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
1453
+ "description": "",
1454
+ "target_delimiter": " ",
1455
+ "fewshot_delimiter": "\n\n",
1456
+ "num_fewshot": 0,
1457
+ "metric_list": [
1458
+ {
1459
+ "metric": "acc"
1460
+ }
1461
+ ],
1462
+ "output_type": "multiple_choice",
1463
+ "repeats": 1,
1464
+ "should_decontaminate": true,
1465
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
1466
+ "metadata": {
1467
+ "version": 1.0
1468
+ }
1469
+ },
1470
+ "blimp_principle_A_case_1": {
1471
+ "task": "blimp_principle_A_case_1",
1472
+ "group": "blimp",
1473
+ "dataset_path": "blimp",
1474
+ "dataset_name": "principle_A_case_1",
1475
+ "validation_split": "train",
1476
+ "doc_to_text": "",
1477
+ "doc_to_target": 0,
1478
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
1479
+ "description": "",
1480
+ "target_delimiter": " ",
1481
+ "fewshot_delimiter": "\n\n",
1482
+ "num_fewshot": 0,
1483
+ "metric_list": [
1484
+ {
1485
+ "metric": "acc"
1486
+ }
1487
+ ],
1488
+ "output_type": "multiple_choice",
1489
+ "repeats": 1,
1490
+ "should_decontaminate": true,
1491
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
1492
+ "metadata": {
1493
+ "version": 1.0
1494
+ }
1495
+ },
1496
+ "blimp_principle_A_case_2": {
1497
+ "task": "blimp_principle_A_case_2",
1498
+ "group": "blimp",
1499
+ "dataset_path": "blimp",
1500
+ "dataset_name": "principle_A_case_2",
1501
+ "validation_split": "train",
1502
+ "doc_to_text": "",
1503
+ "doc_to_target": 0,
1504
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
1505
+ "description": "",
1506
+ "target_delimiter": " ",
1507
+ "fewshot_delimiter": "\n\n",
1508
+ "num_fewshot": 0,
1509
+ "metric_list": [
1510
+ {
1511
+ "metric": "acc"
1512
+ }
1513
+ ],
1514
+ "output_type": "multiple_choice",
1515
+ "repeats": 1,
1516
+ "should_decontaminate": true,
1517
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
1518
+ "metadata": {
1519
+ "version": 1.0
1520
+ }
1521
+ },
1522
+ "blimp_principle_A_domain_1": {
1523
+ "task": "blimp_principle_A_domain_1",
1524
+ "group": "blimp",
1525
+ "dataset_path": "blimp",
1526
+ "dataset_name": "principle_A_domain_1",
1527
+ "validation_split": "train",
1528
+ "doc_to_text": "",
1529
+ "doc_to_target": 0,
1530
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
1531
+ "description": "",
1532
+ "target_delimiter": " ",
1533
+ "fewshot_delimiter": "\n\n",
1534
+ "num_fewshot": 0,
1535
+ "metric_list": [
1536
+ {
1537
+ "metric": "acc"
1538
+ }
1539
+ ],
1540
+ "output_type": "multiple_choice",
1541
+ "repeats": 1,
1542
+ "should_decontaminate": true,
1543
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
1544
+ "metadata": {
1545
+ "version": 1.0
1546
+ }
1547
+ },
1548
+ "blimp_principle_A_domain_2": {
1549
+ "task": "blimp_principle_A_domain_2",
1550
+ "group": "blimp",
1551
+ "dataset_path": "blimp",
1552
+ "dataset_name": "principle_A_domain_2",
1553
+ "validation_split": "train",
1554
+ "doc_to_text": "",
1555
+ "doc_to_target": 0,
1556
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
1557
+ "description": "",
1558
+ "target_delimiter": " ",
1559
+ "fewshot_delimiter": "\n\n",
1560
+ "num_fewshot": 0,
1561
+ "metric_list": [
1562
+ {
1563
+ "metric": "acc"
1564
+ }
1565
+ ],
1566
+ "output_type": "multiple_choice",
1567
+ "repeats": 1,
1568
+ "should_decontaminate": true,
1569
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
1570
+ "metadata": {
1571
+ "version": 1.0
1572
+ }
1573
+ },
1574
+ "blimp_principle_A_domain_3": {
1575
+ "task": "blimp_principle_A_domain_3",
1576
+ "group": "blimp",
1577
+ "dataset_path": "blimp",
1578
+ "dataset_name": "principle_A_domain_3",
1579
+ "validation_split": "train",
1580
+ "doc_to_text": "",
1581
+ "doc_to_target": 0,
1582
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
1583
+ "description": "",
1584
+ "target_delimiter": " ",
1585
+ "fewshot_delimiter": "\n\n",
1586
+ "num_fewshot": 0,
1587
+ "metric_list": [
1588
+ {
1589
+ "metric": "acc"
1590
+ }
1591
+ ],
1592
+ "output_type": "multiple_choice",
1593
+ "repeats": 1,
1594
+ "should_decontaminate": true,
1595
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
1596
+ "metadata": {
1597
+ "version": 1.0
1598
+ }
1599
+ },
1600
+ "blimp_principle_A_reconstruction": {
1601
+ "task": "blimp_principle_A_reconstruction",
1602
+ "group": "blimp",
1603
+ "dataset_path": "blimp",
1604
+ "dataset_name": "principle_A_reconstruction",
1605
+ "validation_split": "train",
1606
+ "doc_to_text": "",
1607
+ "doc_to_target": 0,
1608
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
1609
+ "description": "",
1610
+ "target_delimiter": " ",
1611
+ "fewshot_delimiter": "\n\n",
1612
+ "num_fewshot": 0,
1613
+ "metric_list": [
1614
+ {
1615
+ "metric": "acc"
1616
+ }
1617
+ ],
1618
+ "output_type": "multiple_choice",
1619
+ "repeats": 1,
1620
+ "should_decontaminate": true,
1621
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
1622
+ "metadata": {
1623
+ "version": 1.0
1624
+ }
1625
+ },
1626
+ "blimp_regular_plural_subject_verb_agreement_1": {
1627
+ "task": "blimp_regular_plural_subject_verb_agreement_1",
1628
+ "group": "blimp",
1629
+ "dataset_path": "blimp",
1630
+ "dataset_name": "regular_plural_subject_verb_agreement_1",
1631
+ "validation_split": "train",
1632
+ "doc_to_text": "",
1633
+ "doc_to_target": 0,
1634
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
1635
+ "description": "",
1636
+ "target_delimiter": " ",
1637
+ "fewshot_delimiter": "\n\n",
1638
+ "num_fewshot": 0,
1639
+ "metric_list": [
1640
+ {
1641
+ "metric": "acc"
1642
+ }
1643
+ ],
1644
+ "output_type": "multiple_choice",
1645
+ "repeats": 1,
1646
+ "should_decontaminate": true,
1647
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
1648
+ "metadata": {
1649
+ "version": 1.0
1650
+ }
1651
+ },
1652
+ "blimp_regular_plural_subject_verb_agreement_2": {
1653
+ "task": "blimp_regular_plural_subject_verb_agreement_2",
1654
+ "group": "blimp",
1655
+ "dataset_path": "blimp",
1656
+ "dataset_name": "regular_plural_subject_verb_agreement_2",
1657
+ "validation_split": "train",
1658
+ "doc_to_text": "",
1659
+ "doc_to_target": 0,
1660
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
1661
+ "description": "",
1662
+ "target_delimiter": " ",
1663
+ "fewshot_delimiter": "\n\n",
1664
+ "num_fewshot": 0,
1665
+ "metric_list": [
1666
+ {
1667
+ "metric": "acc"
1668
+ }
1669
+ ],
1670
+ "output_type": "multiple_choice",
1671
+ "repeats": 1,
1672
+ "should_decontaminate": true,
1673
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
1674
+ "metadata": {
1675
+ "version": 1.0
1676
+ }
1677
+ },
1678
+ "blimp_sentential_negation_npi_licensor_present": {
1679
+ "task": "blimp_sentential_negation_npi_licensor_present",
1680
+ "group": "blimp",
1681
+ "dataset_path": "blimp",
1682
+ "dataset_name": "sentential_negation_npi_licensor_present",
1683
+ "validation_split": "train",
1684
+ "doc_to_text": "",
1685
+ "doc_to_target": 0,
1686
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
1687
+ "description": "",
1688
+ "target_delimiter": " ",
1689
+ "fewshot_delimiter": "\n\n",
1690
+ "num_fewshot": 0,
1691
+ "metric_list": [
1692
+ {
1693
+ "metric": "acc"
1694
+ }
1695
+ ],
1696
+ "output_type": "multiple_choice",
1697
+ "repeats": 1,
1698
+ "should_decontaminate": true,
1699
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
1700
+ "metadata": {
1701
+ "version": 1.0
1702
+ }
1703
+ },
1704
+ "blimp_sentential_negation_npi_scope": {
1705
+ "task": "blimp_sentential_negation_npi_scope",
1706
+ "group": "blimp",
1707
+ "dataset_path": "blimp",
1708
+ "dataset_name": "sentential_negation_npi_scope",
1709
+ "validation_split": "train",
1710
+ "doc_to_text": "",
1711
+ "doc_to_target": 0,
1712
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
1713
+ "description": "",
1714
+ "target_delimiter": " ",
1715
+ "fewshot_delimiter": "\n\n",
1716
+ "num_fewshot": 0,
1717
+ "metric_list": [
1718
+ {
1719
+ "metric": "acc"
1720
+ }
1721
+ ],
1722
+ "output_type": "multiple_choice",
1723
+ "repeats": 1,
1724
+ "should_decontaminate": true,
1725
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
1726
+ "metadata": {
1727
+ "version": 1.0
1728
+ }
1729
+ },
1730
+ "blimp_sentential_subject_island": {
1731
+ "task": "blimp_sentential_subject_island",
1732
+ "group": "blimp",
1733
+ "dataset_path": "blimp",
1734
+ "dataset_name": "sentential_subject_island",
1735
+ "validation_split": "train",
1736
+ "doc_to_text": "",
1737
+ "doc_to_target": 0,
1738
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
1739
+ "description": "",
1740
+ "target_delimiter": " ",
1741
+ "fewshot_delimiter": "\n\n",
1742
+ "num_fewshot": 0,
1743
+ "metric_list": [
1744
+ {
1745
+ "metric": "acc"
1746
+ }
1747
+ ],
1748
+ "output_type": "multiple_choice",
1749
+ "repeats": 1,
1750
+ "should_decontaminate": true,
1751
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
1752
+ "metadata": {
1753
+ "version": 1.0
1754
+ }
1755
+ },
1756
+ "blimp_superlative_quantifiers_1": {
1757
+ "task": "blimp_superlative_quantifiers_1",
1758
+ "group": "blimp",
1759
+ "dataset_path": "blimp",
1760
+ "dataset_name": "superlative_quantifiers_1",
1761
+ "validation_split": "train",
1762
+ "doc_to_text": "",
1763
+ "doc_to_target": 0,
1764
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
1765
+ "description": "",
1766
+ "target_delimiter": " ",
1767
+ "fewshot_delimiter": "\n\n",
1768
+ "num_fewshot": 0,
1769
+ "metric_list": [
1770
+ {
1771
+ "metric": "acc"
1772
+ }
1773
+ ],
1774
+ "output_type": "multiple_choice",
1775
+ "repeats": 1,
1776
+ "should_decontaminate": true,
1777
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
1778
+ "metadata": {
1779
+ "version": 1.0
1780
+ }
1781
+ },
1782
+ "blimp_superlative_quantifiers_2": {
1783
+ "task": "blimp_superlative_quantifiers_2",
1784
+ "group": "blimp",
1785
+ "dataset_path": "blimp",
1786
+ "dataset_name": "superlative_quantifiers_2",
1787
+ "validation_split": "train",
1788
+ "doc_to_text": "",
1789
+ "doc_to_target": 0,
1790
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
1791
+ "description": "",
1792
+ "target_delimiter": " ",
1793
+ "fewshot_delimiter": "\n\n",
1794
+ "num_fewshot": 0,
1795
+ "metric_list": [
1796
+ {
1797
+ "metric": "acc"
1798
+ }
1799
+ ],
1800
+ "output_type": "multiple_choice",
1801
+ "repeats": 1,
1802
+ "should_decontaminate": true,
1803
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
1804
+ "metadata": {
1805
+ "version": 1.0
1806
+ }
1807
+ },
1808
+ "blimp_tough_vs_raising_1": {
1809
+ "task": "blimp_tough_vs_raising_1",
1810
+ "group": "blimp",
1811
+ "dataset_path": "blimp",
1812
+ "dataset_name": "tough_vs_raising_1",
1813
+ "validation_split": "train",
1814
+ "doc_to_text": "",
1815
+ "doc_to_target": 0,
1816
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
1817
+ "description": "",
1818
+ "target_delimiter": " ",
1819
+ "fewshot_delimiter": "\n\n",
1820
+ "num_fewshot": 0,
1821
+ "metric_list": [
1822
+ {
1823
+ "metric": "acc"
1824
+ }
1825
+ ],
1826
+ "output_type": "multiple_choice",
1827
+ "repeats": 1,
1828
+ "should_decontaminate": true,
1829
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
1830
+ "metadata": {
1831
+ "version": 1.0
1832
+ }
1833
+ },
1834
+ "blimp_tough_vs_raising_2": {
1835
+ "task": "blimp_tough_vs_raising_2",
1836
+ "group": "blimp",
1837
+ "dataset_path": "blimp",
1838
+ "dataset_name": "tough_vs_raising_2",
1839
+ "validation_split": "train",
1840
+ "doc_to_text": "",
1841
+ "doc_to_target": 0,
1842
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
1843
+ "description": "",
1844
+ "target_delimiter": " ",
1845
+ "fewshot_delimiter": "\n\n",
1846
+ "num_fewshot": 0,
1847
+ "metric_list": [
1848
+ {
1849
+ "metric": "acc"
1850
+ }
1851
+ ],
1852
+ "output_type": "multiple_choice",
1853
+ "repeats": 1,
1854
+ "should_decontaminate": true,
1855
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
1856
+ "metadata": {
1857
+ "version": 1.0
1858
+ }
1859
+ },
1860
+ "blimp_transitive": {
1861
+ "task": "blimp_transitive",
1862
+ "group": "blimp",
1863
+ "dataset_path": "blimp",
1864
+ "dataset_name": "transitive",
1865
+ "validation_split": "train",
1866
+ "doc_to_text": "",
1867
+ "doc_to_target": 0,
1868
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
1869
+ "description": "",
1870
+ "target_delimiter": " ",
1871
+ "fewshot_delimiter": "\n\n",
1872
+ "num_fewshot": 0,
1873
+ "metric_list": [
1874
+ {
1875
+ "metric": "acc"
1876
+ }
1877
+ ],
1878
+ "output_type": "multiple_choice",
1879
+ "repeats": 1,
1880
+ "should_decontaminate": true,
1881
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
1882
+ "metadata": {
1883
+ "version": 1.0
1884
+ }
1885
+ },
1886
+ "blimp_wh_island": {
1887
+ "task": "blimp_wh_island",
1888
+ "group": "blimp",
1889
+ "dataset_path": "blimp",
1890
+ "dataset_name": "wh_island",
1891
+ "validation_split": "train",
1892
+ "doc_to_text": "",
1893
+ "doc_to_target": 0,
1894
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
1895
+ "description": "",
1896
+ "target_delimiter": " ",
1897
+ "fewshot_delimiter": "\n\n",
1898
+ "num_fewshot": 0,
1899
+ "metric_list": [
1900
+ {
1901
+ "metric": "acc"
1902
+ }
1903
+ ],
1904
+ "output_type": "multiple_choice",
1905
+ "repeats": 1,
1906
+ "should_decontaminate": true,
1907
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
1908
+ "metadata": {
1909
+ "version": 1.0
1910
+ }
1911
+ },
1912
+ "blimp_wh_questions_object_gap": {
1913
+ "task": "blimp_wh_questions_object_gap",
1914
+ "group": "blimp",
1915
+ "dataset_path": "blimp",
1916
+ "dataset_name": "wh_questions_object_gap",
1917
+ "validation_split": "train",
1918
+ "doc_to_text": "",
1919
+ "doc_to_target": 0,
1920
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
1921
+ "description": "",
1922
+ "target_delimiter": " ",
1923
+ "fewshot_delimiter": "\n\n",
1924
+ "num_fewshot": 0,
1925
+ "metric_list": [
1926
+ {
1927
+ "metric": "acc"
1928
+ }
1929
+ ],
1930
+ "output_type": "multiple_choice",
1931
+ "repeats": 1,
1932
+ "should_decontaminate": true,
1933
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
1934
+ "metadata": {
1935
+ "version": 1.0
1936
+ }
1937
+ },
1938
+ "blimp_wh_questions_subject_gap": {
1939
+ "task": "blimp_wh_questions_subject_gap",
1940
+ "group": "blimp",
1941
+ "dataset_path": "blimp",
1942
+ "dataset_name": "wh_questions_subject_gap",
1943
+ "validation_split": "train",
1944
+ "doc_to_text": "",
1945
+ "doc_to_target": 0,
1946
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
1947
+ "description": "",
1948
+ "target_delimiter": " ",
1949
+ "fewshot_delimiter": "\n\n",
1950
+ "num_fewshot": 0,
1951
+ "metric_list": [
1952
+ {
1953
+ "metric": "acc"
1954
+ }
1955
+ ],
1956
+ "output_type": "multiple_choice",
1957
+ "repeats": 1,
1958
+ "should_decontaminate": true,
1959
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
1960
+ "metadata": {
1961
+ "version": 1.0
1962
+ }
1963
+ },
1964
+ "blimp_wh_questions_subject_gap_long_distance": {
1965
+ "task": "blimp_wh_questions_subject_gap_long_distance",
1966
+ "group": "blimp",
1967
+ "dataset_path": "blimp",
1968
+ "dataset_name": "wh_questions_subject_gap_long_distance",
1969
+ "validation_split": "train",
1970
+ "doc_to_text": "",
1971
+ "doc_to_target": 0,
1972
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
1973
+ "description": "",
1974
+ "target_delimiter": " ",
1975
+ "fewshot_delimiter": "\n\n",
1976
+ "num_fewshot": 0,
1977
+ "metric_list": [
1978
+ {
1979
+ "metric": "acc"
1980
+ }
1981
+ ],
1982
+ "output_type": "multiple_choice",
1983
+ "repeats": 1,
1984
+ "should_decontaminate": true,
1985
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
1986
+ "metadata": {
1987
+ "version": 1.0
1988
+ }
1989
+ },
1990
+ "blimp_wh_vs_that_no_gap": {
1991
+ "task": "blimp_wh_vs_that_no_gap",
1992
+ "group": "blimp",
1993
+ "dataset_path": "blimp",
1994
+ "dataset_name": "wh_vs_that_no_gap",
1995
+ "validation_split": "train",
1996
+ "doc_to_text": "",
1997
+ "doc_to_target": 0,
1998
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
1999
+ "description": "",
2000
+ "target_delimiter": " ",
2001
+ "fewshot_delimiter": "\n\n",
2002
+ "num_fewshot": 0,
2003
+ "metric_list": [
2004
+ {
2005
+ "metric": "acc"
2006
+ }
2007
+ ],
2008
+ "output_type": "multiple_choice",
2009
+ "repeats": 1,
2010
+ "should_decontaminate": true,
2011
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
2012
+ "metadata": {
2013
+ "version": 1.0
2014
+ }
2015
+ },
2016
+ "blimp_wh_vs_that_no_gap_long_distance": {
2017
+ "task": "blimp_wh_vs_that_no_gap_long_distance",
2018
+ "group": "blimp",
2019
+ "dataset_path": "blimp",
2020
+ "dataset_name": "wh_vs_that_no_gap_long_distance",
2021
+ "validation_split": "train",
2022
+ "doc_to_text": "",
2023
+ "doc_to_target": 0,
2024
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
2025
+ "description": "",
2026
+ "target_delimiter": " ",
2027
+ "fewshot_delimiter": "\n\n",
2028
+ "num_fewshot": 0,
2029
+ "metric_list": [
2030
+ {
2031
+ "metric": "acc"
2032
+ }
2033
+ ],
2034
+ "output_type": "multiple_choice",
2035
+ "repeats": 1,
2036
+ "should_decontaminate": true,
2037
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
2038
+ "metadata": {
2039
+ "version": 1.0
2040
+ }
2041
+ },
2042
+ "blimp_wh_vs_that_with_gap": {
2043
+ "task": "blimp_wh_vs_that_with_gap",
2044
+ "group": "blimp",
2045
+ "dataset_path": "blimp",
2046
+ "dataset_name": "wh_vs_that_with_gap",
2047
+ "validation_split": "train",
2048
+ "doc_to_text": "",
2049
+ "doc_to_target": 0,
2050
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
2051
+ "description": "",
2052
+ "target_delimiter": " ",
2053
+ "fewshot_delimiter": "\n\n",
2054
+ "num_fewshot": 0,
2055
+ "metric_list": [
2056
+ {
2057
+ "metric": "acc"
2058
+ }
2059
+ ],
2060
+ "output_type": "multiple_choice",
2061
+ "repeats": 1,
2062
+ "should_decontaminate": true,
2063
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
2064
+ "metadata": {
2065
+ "version": 1.0
2066
+ }
2067
+ },
2068
+ "blimp_wh_vs_that_with_gap_long_distance": {
2069
+ "task": "blimp_wh_vs_that_with_gap_long_distance",
2070
+ "group": "blimp",
2071
+ "dataset_path": "blimp",
2072
+ "dataset_name": "wh_vs_that_with_gap_long_distance",
2073
+ "validation_split": "train",
2074
+ "doc_to_text": "",
2075
+ "doc_to_target": 0,
2076
+ "doc_to_choice": "{{[sentence_good, sentence_bad]}}",
2077
+ "description": "",
2078
+ "target_delimiter": " ",
2079
+ "fewshot_delimiter": "\n\n",
2080
+ "num_fewshot": 0,
2081
+ "metric_list": [
2082
+ {
2083
+ "metric": "acc"
2084
+ }
2085
+ ],
2086
+ "output_type": "multiple_choice",
2087
+ "repeats": 1,
2088
+ "should_decontaminate": true,
2089
+ "doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
2090
+ "metadata": {
2091
+ "version": 1.0
2092
+ }
2093
+ }
2094
+ },
2095
+ "versions": {
2096
+ "blimp": "N/A",
2097
+ "blimp_adjunct_island": 1.0,
2098
+ "blimp_anaphor_gender_agreement": 1.0,
2099
+ "blimp_anaphor_number_agreement": 1.0,
2100
+ "blimp_animate_subject_passive": 1.0,
2101
+ "blimp_animate_subject_trans": 1.0,
2102
+ "blimp_causative": 1.0,
2103
+ "blimp_complex_NP_island": 1.0,
2104
+ "blimp_coordinate_structure_constraint_complex_left_branch": 1.0,
2105
+ "blimp_coordinate_structure_constraint_object_extraction": 1.0,
2106
+ "blimp_determiner_noun_agreement_1": 1.0,
2107
+ "blimp_determiner_noun_agreement_2": 1.0,
2108
+ "blimp_determiner_noun_agreement_irregular_1": 1.0,
2109
+ "blimp_determiner_noun_agreement_irregular_2": 1.0,
2110
+ "blimp_determiner_noun_agreement_with_adj_2": 1.0,
2111
+ "blimp_determiner_noun_agreement_with_adj_irregular_1": 1.0,
2112
+ "blimp_determiner_noun_agreement_with_adj_irregular_2": 1.0,
2113
+ "blimp_determiner_noun_agreement_with_adjective_1": 1.0,
2114
+ "blimp_distractor_agreement_relational_noun": 1.0,
2115
+ "blimp_distractor_agreement_relative_clause": 1.0,
2116
+ "blimp_drop_argument": 1.0,
2117
+ "blimp_ellipsis_n_bar_1": 1.0,
2118
+ "blimp_ellipsis_n_bar_2": 1.0,
2119
+ "blimp_existential_there_object_raising": 1.0,
2120
+ "blimp_existential_there_quantifiers_1": 1.0,
2121
+ "blimp_existential_there_quantifiers_2": 1.0,
2122
+ "blimp_existential_there_subject_raising": 1.0,
2123
+ "blimp_expletive_it_object_raising": 1.0,
2124
+ "blimp_inchoative": 1.0,
2125
+ "blimp_intransitive": 1.0,
2126
+ "blimp_irregular_past_participle_adjectives": 1.0,
2127
+ "blimp_irregular_past_participle_verbs": 1.0,
2128
+ "blimp_irregular_plural_subject_verb_agreement_1": 1.0,
2129
+ "blimp_irregular_plural_subject_verb_agreement_2": 1.0,
2130
+ "blimp_left_branch_island_echo_question": 1.0,
2131
+ "blimp_left_branch_island_simple_question": 1.0,
2132
+ "blimp_matrix_question_npi_licensor_present": 1.0,
2133
+ "blimp_npi_present_1": 1.0,
2134
+ "blimp_npi_present_2": 1.0,
2135
+ "blimp_only_npi_licensor_present": 1.0,
2136
+ "blimp_only_npi_scope": 1.0,
2137
+ "blimp_passive_1": 1.0,
2138
+ "blimp_passive_2": 1.0,
2139
+ "blimp_principle_A_c_command": 1.0,
2140
+ "blimp_principle_A_case_1": 1.0,
2141
+ "blimp_principle_A_case_2": 1.0,
2142
+ "blimp_principle_A_domain_1": 1.0,
2143
+ "blimp_principle_A_domain_2": 1.0,
2144
+ "blimp_principle_A_domain_3": 1.0,
2145
+ "blimp_principle_A_reconstruction": 1.0,
2146
+ "blimp_regular_plural_subject_verb_agreement_1": 1.0,
2147
+ "blimp_regular_plural_subject_verb_agreement_2": 1.0,
2148
+ "blimp_sentential_negation_npi_licensor_present": 1.0,
2149
+ "blimp_sentential_negation_npi_scope": 1.0,
2150
+ "blimp_sentential_subject_island": 1.0,
2151
+ "blimp_superlative_quantifiers_1": 1.0,
2152
+ "blimp_superlative_quantifiers_2": 1.0,
2153
+ "blimp_tough_vs_raising_1": 1.0,
2154
+ "blimp_tough_vs_raising_2": 1.0,
2155
+ "blimp_transitive": 1.0,
2156
+ "blimp_wh_island": 1.0,
2157
+ "blimp_wh_questions_object_gap": 1.0,
2158
+ "blimp_wh_questions_subject_gap": 1.0,
2159
+ "blimp_wh_questions_subject_gap_long_distance": 1.0,
2160
+ "blimp_wh_vs_that_no_gap": 1.0,
2161
+ "blimp_wh_vs_that_no_gap_long_distance": 1.0,
2162
+ "blimp_wh_vs_that_with_gap": 1.0,
2163
+ "blimp_wh_vs_that_with_gap_long_distance": 1.0
2164
+ },
2165
+ "n-shot": {
2166
+ "blimp": 0,
2167
+ "blimp_adjunct_island": 0,
2168
+ "blimp_anaphor_gender_agreement": 0,
2169
+ "blimp_anaphor_number_agreement": 0,
2170
+ "blimp_animate_subject_passive": 0,
2171
+ "blimp_animate_subject_trans": 0,
2172
+ "blimp_causative": 0,
2173
+ "blimp_complex_NP_island": 0,
2174
+ "blimp_coordinate_structure_constraint_complex_left_branch": 0,
2175
+ "blimp_coordinate_structure_constraint_object_extraction": 0,
2176
+ "blimp_determiner_noun_agreement_1": 0,
2177
+ "blimp_determiner_noun_agreement_2": 0,
2178
+ "blimp_determiner_noun_agreement_irregular_1": 0,
2179
+ "blimp_determiner_noun_agreement_irregular_2": 0,
2180
+ "blimp_determiner_noun_agreement_with_adj_2": 0,
2181
+ "blimp_determiner_noun_agreement_with_adj_irregular_1": 0,
2182
+ "blimp_determiner_noun_agreement_with_adj_irregular_2": 0,
2183
+ "blimp_determiner_noun_agreement_with_adjective_1": 0,
2184
+ "blimp_distractor_agreement_relational_noun": 0,
2185
+ "blimp_distractor_agreement_relative_clause": 0,
2186
+ "blimp_drop_argument": 0,
2187
+ "blimp_ellipsis_n_bar_1": 0,
2188
+ "blimp_ellipsis_n_bar_2": 0,
2189
+ "blimp_existential_there_object_raising": 0,
2190
+ "blimp_existential_there_quantifiers_1": 0,
2191
+ "blimp_existential_there_quantifiers_2": 0,
2192
+ "blimp_existential_there_subject_raising": 0,
2193
+ "blimp_expletive_it_object_raising": 0,
2194
+ "blimp_inchoative": 0,
2195
+ "blimp_intransitive": 0,
2196
+ "blimp_irregular_past_participle_adjectives": 0,
2197
+ "blimp_irregular_past_participle_verbs": 0,
2198
+ "blimp_irregular_plural_subject_verb_agreement_1": 0,
2199
+ "blimp_irregular_plural_subject_verb_agreement_2": 0,
2200
+ "blimp_left_branch_island_echo_question": 0,
2201
+ "blimp_left_branch_island_simple_question": 0,
2202
+ "blimp_matrix_question_npi_licensor_present": 0,
2203
+ "blimp_npi_present_1": 0,
2204
+ "blimp_npi_present_2": 0,
2205
+ "blimp_only_npi_licensor_present": 0,
2206
+ "blimp_only_npi_scope": 0,
2207
+ "blimp_passive_1": 0,
2208
+ "blimp_passive_2": 0,
2209
+ "blimp_principle_A_c_command": 0,
2210
+ "blimp_principle_A_case_1": 0,
2211
+ "blimp_principle_A_case_2": 0,
2212
+ "blimp_principle_A_domain_1": 0,
2213
+ "blimp_principle_A_domain_2": 0,
2214
+ "blimp_principle_A_domain_3": 0,
2215
+ "blimp_principle_A_reconstruction": 0,
2216
+ "blimp_regular_plural_subject_verb_agreement_1": 0,
2217
+ "blimp_regular_plural_subject_verb_agreement_2": 0,
2218
+ "blimp_sentential_negation_npi_licensor_present": 0,
2219
+ "blimp_sentential_negation_npi_scope": 0,
2220
+ "blimp_sentential_subject_island": 0,
2221
+ "blimp_superlative_quantifiers_1": 0,
2222
+ "blimp_superlative_quantifiers_2": 0,
2223
+ "blimp_tough_vs_raising_1": 0,
2224
+ "blimp_tough_vs_raising_2": 0,
2225
+ "blimp_transitive": 0,
2226
+ "blimp_wh_island": 0,
2227
+ "blimp_wh_questions_object_gap": 0,
2228
+ "blimp_wh_questions_subject_gap": 0,
2229
+ "blimp_wh_questions_subject_gap_long_distance": 0,
2230
+ "blimp_wh_vs_that_no_gap": 0,
2231
+ "blimp_wh_vs_that_no_gap_long_distance": 0,
2232
+ "blimp_wh_vs_that_with_gap": 0,
2233
+ "blimp_wh_vs_that_with_gap_long_distance": 0
2234
+ },
2235
+ "config": {
2236
+ "model": "hf",
2237
+ "model_args": "pretrained=./rwkv-x-dev/Quetzal-N8-1,dtype=bfloat16,trust_remote_code=True",
2238
+ "batch_size": "auto",
2239
+ "batch_sizes": [
2240
+ 64
2241
+ ],
2242
+ "device": null,
2243
+ "use_cache": null,
2244
+ "limit": null,
2245
+ "bootstrap_iters": 100000,
2246
+ "gen_kwargs": null
2247
+ },
2248
+ "git_hash": "1ee41f7"
2249
+ }
lm-eval-output/rwkv-x-dev/Quetzal-N8-1/blimp/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a95d19396f65f99321d1c6b49e3a5f0525e5a383cb3a53650ce3991b3663b16d
3
+ size 325653
lm-eval-output/rwkv-x-dev/Quetzal-N8-1/cmmlu/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json ADDED
The diff for this file is too large to render. See raw diff
 
lm-eval-output/rwkv-x-dev/Quetzal-N8-1/cmmlu/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:047ef1e7d5eb7dfb74ff13c45b31574d7210b64546d3e6dca643b2546d5d5fc1
3
+ size 194482
lm-eval-output/rwkv-x-dev/Quetzal-N8-1/copa/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "copa": {
4
+ "acc,none": 0.86,
5
+ "acc_stderr,none": 0.03487350880197771,
6
+ "alias": "copa"
7
+ }
8
+ },
9
+ "configs": {
10
+ "copa": {
11
+ "task": "copa",
12
+ "group": [
13
+ "super-glue-lm-eval-v1"
14
+ ],
15
+ "dataset_path": "super_glue",
16
+ "dataset_name": "copa",
17
+ "training_split": "train",
18
+ "validation_split": "validation",
19
+ "doc_to_text": "def doc_to_text(doc):\n # Drop the period\n connector = {\n \"cause\": \"because\",\n \"effect\": \"therefore\",\n }[doc[\"question\"]]\n return doc[\"premise\"].strip()[:-1] + f\" {connector}\"\n",
20
+ "doc_to_target": "def doc_to_target(doc):\n correct_choice = doc[\"choice1\"] if doc[\"label\"] == 0 else doc[\"choice2\"]\n # Connect the sentences\n return \" \" + convert_choice(correct_choice)\n",
21
+ "doc_to_choice": "def doc_to_choice(doc):\n return [\" \" + convert_choice(doc[\"choice1\"]), \" \" + convert_choice(doc[\"choice2\"])]\n",
22
+ "description": "",
23
+ "target_delimiter": " ",
24
+ "fewshot_delimiter": "\n\n",
25
+ "metric_list": [
26
+ {
27
+ "metric": "acc"
28
+ }
29
+ ],
30
+ "output_type": "multiple_choice",
31
+ "repeats": 1,
32
+ "should_decontaminate": false,
33
+ "metadata": {
34
+ "version": 1.0
35
+ }
36
+ }
37
+ },
38
+ "versions": {
39
+ "copa": 1.0
40
+ },
41
+ "n-shot": {
42
+ "copa": 0
43
+ },
44
+ "config": {
45
+ "model": "hf",
46
+ "model_args": "pretrained=./rwkv-x-dev/Quetzal-N8-1,dtype=bfloat16,trust_remote_code=True",
47
+ "batch_size": "auto",
48
+ "batch_sizes": [
49
+ 64
50
+ ],
51
+ "device": null,
52
+ "use_cache": null,
53
+ "limit": null,
54
+ "bootstrap_iters": 100000,
55
+ "gen_kwargs": null
56
+ },
57
+ "git_hash": "1ee41f7"
58
+ }
lm-eval-output/rwkv-x-dev/Quetzal-N8-1/copa/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b32b84d890222fafab040977cc6b1d53d8aceac853373d49bd05a71013be4b5c
3
+ size 37241
lm-eval-output/rwkv-x-dev/Quetzal-N8-1/glue/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json ADDED
@@ -0,0 +1,374 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "glue": {
4
+ "mcc,none": 0.03640174058932784,
5
+ "mcc_stderr,none": 0.0011625627927557005,
6
+ "acc,none": 0.5093895114617711,
7
+ "acc_stderr,none": 0.09360226157209069,
8
+ "f1,none": 0.6334377064699201,
9
+ "f1_stderr,none": 0.00031936062925547746,
10
+ "alias": "glue"
11
+ },
12
+ "cola": {
13
+ "mcc,none": 0.03640174058932784,
14
+ "mcc_stderr,none": 0.034096375067676925,
15
+ "alias": " - cola"
16
+ },
17
+ "mnli": {
18
+ "acc,none": 0.3574121242995415,
19
+ "acc_stderr,none": 0.004837576847532127,
20
+ "alias": " - mnli"
21
+ },
22
+ "mnli_mismatch": {
23
+ "acc,none": 0.3470301057770545,
24
+ "acc_stderr,none": 0.004800995593412548,
25
+ "alias": " - mnli_mismatch"
26
+ },
27
+ "mrpc": {
28
+ "acc,none": 0.7156862745098039,
29
+ "acc_stderr,none": 0.022359549679883524,
30
+ "f1,none": 0.8263473053892215,
31
+ "f1_stderr,none": 0.015892424268190306,
32
+ "alias": " - mrpc"
33
+ },
34
+ "qnli": {
35
+ "acc,none": 0.4966135822807981,
36
+ "acc_stderr,none": 0.006765255380909209,
37
+ "alias": " - qnli"
38
+ },
39
+ "qqp": {
40
+ "acc,none": 0.576675735839723,
41
+ "acc_stderr,none": 0.0024572872125706116,
42
+ "f1,none": 0.6318008734376008,
43
+ "f1_stderr,none": 0.00261189258077531,
44
+ "alias": " - qqp"
45
+ },
46
+ "rte": {
47
+ "acc,none": 0.5848375451263538,
48
+ "acc_stderr,none": 0.029660066290893485,
49
+ "alias": " - rte"
50
+ },
51
+ "sst2": {
52
+ "acc,none": 0.9128440366972477,
53
+ "acc_stderr,none": 0.009557356094989465,
54
+ "alias": " - sst2"
55
+ },
56
+ "wnli": {
57
+ "acc,none": 0.4225352112676056,
58
+ "acc_stderr,none": 0.0590398420568258,
59
+ "alias": " - wnli"
60
+ }
61
+ },
62
+ "groups": {
63
+ "glue": {
64
+ "mcc,none": 0.03640174058932784,
65
+ "mcc_stderr,none": 0.0011625627927557005,
66
+ "acc,none": 0.5093895114617711,
67
+ "acc_stderr,none": 0.09360226157209069,
68
+ "f1,none": 0.6334377064699201,
69
+ "f1_stderr,none": 0.00031936062925547746,
70
+ "alias": "glue"
71
+ }
72
+ },
73
+ "configs": {
74
+ "cola": {
75
+ "task": "cola",
76
+ "group": "glue",
77
+ "dataset_path": "glue",
78
+ "dataset_name": "cola",
79
+ "training_split": "train",
80
+ "validation_split": "validation",
81
+ "doc_to_text": "{{sentence}}\nQuestion: Does this sentence make sense?\nAnswer:",
82
+ "doc_to_target": "label",
83
+ "doc_to_choice": [
84
+ "no",
85
+ "yes"
86
+ ],
87
+ "description": "",
88
+ "target_delimiter": " ",
89
+ "fewshot_delimiter": "\n\n",
90
+ "metric_list": [
91
+ {
92
+ "metric": "mcc"
93
+ }
94
+ ],
95
+ "output_type": "multiple_choice",
96
+ "repeats": 1,
97
+ "should_decontaminate": true,
98
+ "doc_to_decontamination_query": "sentence",
99
+ "metadata": {
100
+ "version": 1.0
101
+ }
102
+ },
103
+ "mnli": {
104
+ "task": "mnli",
105
+ "group": "glue",
106
+ "dataset_path": "glue",
107
+ "dataset_name": "mnli",
108
+ "training_split": "train",
109
+ "validation_split": "validation_matched",
110
+ "doc_to_text": "def doc_to_text(doc) -> str:\n return \"{}\\nQuestion: {} True, False or Neither?\\nAnswer:\".format(\n doc[\"premise\"],\n doc[\"hypothesis\"].strip()\n + (\"\" if doc[\"hypothesis\"].strip().endswith(\".\") else \".\"),\n )\n",
111
+ "doc_to_target": "label",
112
+ "doc_to_choice": [
113
+ "True",
114
+ "Neither",
115
+ "False"
116
+ ],
117
+ "description": "",
118
+ "target_delimiter": " ",
119
+ "fewshot_delimiter": "\n\n",
120
+ "metric_list": [
121
+ {
122
+ "metric": "acc"
123
+ }
124
+ ],
125
+ "output_type": "multiple_choice",
126
+ "repeats": 1,
127
+ "should_decontaminate": false,
128
+ "metadata": {
129
+ "version": 1.0
130
+ }
131
+ },
132
+ "mnli_mismatch": {
133
+ "task": "mnli_mismatch",
134
+ "group": "glue",
135
+ "dataset_path": "glue",
136
+ "dataset_name": "mnli",
137
+ "training_split": "train",
138
+ "validation_split": "validation_mismatched",
139
+ "doc_to_text": "def doc_to_text(doc) -> str:\n return \"{}\\nQuestion: {} True, False or Neither?\\nAnswer:\".format(\n doc[\"premise\"],\n doc[\"hypothesis\"].strip()\n + (\"\" if doc[\"hypothesis\"].strip().endswith(\".\") else \".\"),\n )\n",
140
+ "doc_to_target": "label",
141
+ "doc_to_choice": [
142
+ "True",
143
+ "Neither",
144
+ "False"
145
+ ],
146
+ "description": "",
147
+ "target_delimiter": " ",
148
+ "fewshot_delimiter": "\n\n",
149
+ "metric_list": [
150
+ {
151
+ "metric": "acc"
152
+ }
153
+ ],
154
+ "output_type": "multiple_choice",
155
+ "repeats": 1,
156
+ "should_decontaminate": false,
157
+ "metadata": {
158
+ "version": 1.0
159
+ }
160
+ },
161
+ "mrpc": {
162
+ "task": "mrpc",
163
+ "group": "glue",
164
+ "dataset_path": "glue",
165
+ "dataset_name": "mrpc",
166
+ "training_split": "train",
167
+ "validation_split": "validation",
168
+ "doc_to_text": "Sentence 1: {{sentence1}}\nSentence 2: {{sentence2}}\nQuestion: Do both sentences mean the same thing?\nAnswer:",
169
+ "doc_to_target": "label",
170
+ "doc_to_choice": [
171
+ "no",
172
+ "yes"
173
+ ],
174
+ "description": "",
175
+ "target_delimiter": " ",
176
+ "fewshot_delimiter": "\n\n",
177
+ "metric_list": [
178
+ {
179
+ "metric": "acc"
180
+ },
181
+ {
182
+ "metric": "f1"
183
+ }
184
+ ],
185
+ "output_type": "multiple_choice",
186
+ "repeats": 1,
187
+ "should_decontaminate": false,
188
+ "metadata": {
189
+ "version": 1.0
190
+ }
191
+ },
192
+ "qnli": {
193
+ "task": "qnli",
194
+ "group": "glue",
195
+ "dataset_path": "glue",
196
+ "dataset_name": "qnli",
197
+ "training_split": "train",
198
+ "validation_split": "validation",
199
+ "doc_to_text": "{{question}}\n{{sentence}}\nQuestion: Does this response answer the question?\nAnswer:",
200
+ "doc_to_target": "label",
201
+ "doc_to_choice": [
202
+ "yes",
203
+ "no"
204
+ ],
205
+ "description": "",
206
+ "target_delimiter": " ",
207
+ "fewshot_delimiter": "\n\n",
208
+ "metric_list": [
209
+ {
210
+ "metric": "acc"
211
+ }
212
+ ],
213
+ "output_type": "multiple_choice",
214
+ "repeats": 1,
215
+ "should_decontaminate": false,
216
+ "metadata": {
217
+ "version": 1.0
218
+ }
219
+ },
220
+ "qqp": {
221
+ "task": "qqp",
222
+ "group": "glue",
223
+ "dataset_path": "glue",
224
+ "dataset_name": "qqp",
225
+ "training_split": "train",
226
+ "validation_split": "validation",
227
+ "doc_to_text": "\nSentence 1: {{question1}}\nSentence 2: {{question2}}\nAnswer:",
228
+ "doc_to_target": "label",
229
+ "doc_to_choice": [
230
+ "no",
231
+ "yes"
232
+ ],
233
+ "description": "",
234
+ "target_delimiter": " ",
235
+ "fewshot_delimiter": "\n\n",
236
+ "metric_list": [
237
+ {
238
+ "metric": "acc"
239
+ },
240
+ {
241
+ "metric": "f1"
242
+ }
243
+ ],
244
+ "output_type": "multiple_choice",
245
+ "repeats": 1,
246
+ "should_decontaminate": false,
247
+ "metadata": {
248
+ "version": 1.0
249
+ }
250
+ },
251
+ "rte": {
252
+ "task": "rte",
253
+ "group": "glue",
254
+ "dataset_path": "glue",
255
+ "dataset_name": "rte",
256
+ "training_split": "train",
257
+ "validation_split": "validation",
258
+ "doc_to_text": "{{sentence1}}\nQuestion: {{sentence2}} True or False?\nAnswer:",
259
+ "doc_to_target": "label",
260
+ "doc_to_choice": [
261
+ "True",
262
+ "False"
263
+ ],
264
+ "description": "",
265
+ "target_delimiter": " ",
266
+ "fewshot_delimiter": "\n\n",
267
+ "metric_list": [
268
+ {
269
+ "metric": "acc"
270
+ }
271
+ ],
272
+ "output_type": "multiple_choice",
273
+ "repeats": 1,
274
+ "should_decontaminate": false,
275
+ "metadata": {
276
+ "version": 1.0
277
+ }
278
+ },
279
+ "sst2": {
280
+ "task": "sst2",
281
+ "group": "glue",
282
+ "dataset_path": "glue",
283
+ "dataset_name": "sst2",
284
+ "training_split": "train",
285
+ "validation_split": "validation",
286
+ "doc_to_text": "{{sentence}}\nQuestion: Is this sentence positive or negative?\nAnswer:",
287
+ "doc_to_target": "label",
288
+ "doc_to_choice": [
289
+ "negative",
290
+ "positive"
291
+ ],
292
+ "description": "",
293
+ "target_delimiter": " ",
294
+ "fewshot_delimiter": "\n\n",
295
+ "metric_list": [
296
+ {
297
+ "metric": "acc"
298
+ }
299
+ ],
300
+ "output_type": "multiple_choice",
301
+ "repeats": 1,
302
+ "should_decontaminate": false,
303
+ "metadata": {
304
+ "version": 1.0
305
+ }
306
+ },
307
+ "wnli": {
308
+ "task": "wnli",
309
+ "group": "glue",
310
+ "dataset_path": "glue",
311
+ "dataset_name": "wnli",
312
+ "training_split": "train",
313
+ "validation_split": "validation",
314
+ "doc_to_text": "{{sentence1}}\nQuestion: {{sentence2}} True or False?\nAnswer:",
315
+ "doc_to_target": "label",
316
+ "doc_to_choice": [
317
+ "False",
318
+ "True"
319
+ ],
320
+ "description": "",
321
+ "target_delimiter": " ",
322
+ "fewshot_delimiter": "\n\n",
323
+ "metric_list": [
324
+ {
325
+ "metric": "acc"
326
+ }
327
+ ],
328
+ "output_type": "multiple_choice",
329
+ "repeats": 1,
330
+ "should_decontaminate": false,
331
+ "metadata": {
332
+ "version": 2.0
333
+ }
334
+ }
335
+ },
336
+ "versions": {
337
+ "cola": 1.0,
338
+ "glue": "N/A",
339
+ "mnli": 1.0,
340
+ "mnli_mismatch": 1.0,
341
+ "mrpc": 1.0,
342
+ "qnli": 1.0,
343
+ "qqp": 1.0,
344
+ "rte": 1.0,
345
+ "sst2": 1.0,
346
+ "wnli": 2.0
347
+ },
348
+ "n-shot": {
349
+ "cola": 0,
350
+ "glue": 0,
351
+ "mnli": 0,
352
+ "mnli_mismatch": 0,
353
+ "mrpc": 0,
354
+ "qnli": 0,
355
+ "qqp": 0,
356
+ "rte": 0,
357
+ "sst2": 0,
358
+ "wnli": 0
359
+ },
360
+ "config": {
361
+ "model": "hf",
362
+ "model_args": "pretrained=./rwkv-x-dev/Quetzal-N8-1,dtype=bfloat16,trust_remote_code=True",
363
+ "batch_size": "auto",
364
+ "batch_sizes": [
365
+ 64
366
+ ],
367
+ "device": null,
368
+ "use_cache": null,
369
+ "limit": null,
370
+ "bootstrap_iters": 100000,
371
+ "gen_kwargs": null
372
+ },
373
+ "git_hash": "1ee41f7"
374
+ }
lm-eval-output/rwkv-x-dev/Quetzal-N8-1/glue/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fa5ca38641053c7be3ccec85f812d7d95324e6a8ac79f2316d257fa2b1fc8d0d
3
+ size 99354
lm-eval-output/rwkv-x-dev/Quetzal-N8-1/hellaswag/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "hellaswag": {
4
+ "acc,none": 0.5273849830711014,
5
+ "acc_stderr,none": 0.004982291744069926,
6
+ "acc_norm,none": 0.7071300537741486,
7
+ "acc_norm_stderr,none": 0.004541492151639223,
8
+ "alias": "hellaswag"
9
+ }
10
+ },
11
+ "configs": {
12
+ "hellaswag": {
13
+ "task": "hellaswag",
14
+ "group": [
15
+ "multiple_choice"
16
+ ],
17
+ "dataset_path": "hellaswag",
18
+ "training_split": "train",
19
+ "validation_split": "validation",
20
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc):\n ctx = doc[\"ctx_a\"] + \" \" + doc[\"ctx_b\"].capitalize()\n out_doc = {\n \"query\": preprocess(doc[\"activity_label\"] + \": \" + ctx),\n \"choices\": [preprocess(ending) for ending in doc[\"endings\"]],\n \"gold\": int(doc[\"label\"]),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
21
+ "doc_to_text": "{{query}}",
22
+ "doc_to_target": "{{label}}",
23
+ "doc_to_choice": "choices",
24
+ "description": "",
25
+ "target_delimiter": " ",
26
+ "fewshot_delimiter": "\n\n",
27
+ "metric_list": [
28
+ {
29
+ "metric": "acc",
30
+ "aggregation": "mean",
31
+ "higher_is_better": true
32
+ },
33
+ {
34
+ "metric": "acc_norm",
35
+ "aggregation": "mean",
36
+ "higher_is_better": true
37
+ }
38
+ ],
39
+ "output_type": "multiple_choice",
40
+ "repeats": 1,
41
+ "should_decontaminate": false,
42
+ "metadata": {
43
+ "version": 1.0
44
+ }
45
+ }
46
+ },
47
+ "versions": {
48
+ "hellaswag": 1.0
49
+ },
50
+ "n-shot": {
51
+ "hellaswag": 0
52
+ },
53
+ "config": {
54
+ "model": "hf",
55
+ "model_args": "pretrained=./rwkv-x-dev/Quetzal-N8-1,dtype=bfloat16,trust_remote_code=True",
56
+ "batch_size": "auto",
57
+ "batch_sizes": [
58
+ 64
59
+ ],
60
+ "device": null,
61
+ "use_cache": null,
62
+ "limit": null,
63
+ "bootstrap_iters": 100000,
64
+ "gen_kwargs": null
65
+ },
66
+ "git_hash": "1ee41f7"
67
+ }
lm-eval-output/rwkv-x-dev/Quetzal-N8-1/hellaswag/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:07261cdea18f9c4d99930fcb4e735a9deb2b27ea82ba07186cfb6c5cb01bfe15
3
+ size 92138
lm-eval-output/rwkv-x-dev/Quetzal-N8-1/lambada/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json ADDED
@@ -0,0 +1,126 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "lambada": {
4
+ "perplexity,none": 3.7142611589589056,
5
+ "perplexity_stderr,none": 0.2798699028664125,
6
+ "acc,none": 0.7152144381913449,
7
+ "acc_stderr,none": 0.02025464229078477,
8
+ "alias": "lambada"
9
+ },
10
+ "lambada_openai": {
11
+ "perplexity,none": 3.1767632751180077,
12
+ "perplexity_stderr,none": 0.062497729693508725,
13
+ "acc,none": 0.7537356879487677,
14
+ "acc_stderr,none": 0.006002364322291895,
15
+ "alias": " - lambada_openai"
16
+ },
17
+ "lambada_standard": {
18
+ "perplexity,none": 4.251759042799803,
19
+ "perplexity_stderr,none": 0.09101393569051683,
20
+ "acc,none": 0.676693188433922,
21
+ "acc_stderr,none": 0.006516515049707146,
22
+ "alias": " - lambada_standard"
23
+ }
24
+ },
25
+ "groups": {
26
+ "lambada": {
27
+ "perplexity,none": 3.7142611589589056,
28
+ "perplexity_stderr,none": 0.2798699028664125,
29
+ "acc,none": 0.7152144381913449,
30
+ "acc_stderr,none": 0.02025464229078477,
31
+ "alias": "lambada"
32
+ }
33
+ },
34
+ "configs": {
35
+ "lambada_openai": {
36
+ "task": "lambada_openai",
37
+ "group": [
38
+ "lambada"
39
+ ],
40
+ "dataset_path": "EleutherAI/lambada_openai",
41
+ "dataset_name": "default",
42
+ "test_split": "test",
43
+ "doc_to_text": "{{text.split(' ')[:-1]|join(' ')}}",
44
+ "doc_to_target": "{{' '+text.split(' ')[-1]}}",
45
+ "description": "",
46
+ "target_delimiter": " ",
47
+ "fewshot_delimiter": "\n\n",
48
+ "metric_list": [
49
+ {
50
+ "metric": "perplexity",
51
+ "aggregation": "perplexity",
52
+ "higher_is_better": false
53
+ },
54
+ {
55
+ "metric": "acc",
56
+ "aggregation": "mean",
57
+ "higher_is_better": true
58
+ }
59
+ ],
60
+ "output_type": "loglikelihood",
61
+ "repeats": 1,
62
+ "should_decontaminate": true,
63
+ "doc_to_decontamination_query": "{{text}}",
64
+ "metadata": {
65
+ "version": 1.0
66
+ }
67
+ },
68
+ "lambada_standard": {
69
+ "task": "lambada_standard",
70
+ "group": [
71
+ "lambada"
72
+ ],
73
+ "dataset_path": "lambada",
74
+ "validation_split": "validation",
75
+ "test_split": "test",
76
+ "doc_to_text": "{{text.split(' ')[:-1]|join(' ')}}",
77
+ "doc_to_target": "{{' '+text.split(' ')[-1]}}",
78
+ "description": "",
79
+ "target_delimiter": " ",
80
+ "fewshot_delimiter": "\n\n",
81
+ "metric_list": [
82
+ {
83
+ "metric": "perplexity",
84
+ "aggregation": "perplexity",
85
+ "higher_is_better": false
86
+ },
87
+ {
88
+ "metric": "acc",
89
+ "aggregation": "mean",
90
+ "higher_is_better": true
91
+ }
92
+ ],
93
+ "output_type": "loglikelihood",
94
+ "repeats": 1,
95
+ "should_decontaminate": true,
96
+ "doc_to_decontamination_query": "{{text}}",
97
+ "metadata": {
98
+ "version": 1.0
99
+ }
100
+ }
101
+ },
102
+ "versions": {
103
+ "lambada": "N/A",
104
+ "lambada_openai": 1.0,
105
+ "lambada_standard": 1.0
106
+ },
107
+ "n-shot": {
108
+ "lambada": 0,
109
+ "lambada_openai": 0,
110
+ "lambada_standard": 0
111
+ },
112
+ "config": {
113
+ "model": "hf",
114
+ "model_args": "pretrained=./rwkv-x-dev/Quetzal-N8-1,dtype=bfloat16,trust_remote_code=True",
115
+ "batch_size": "auto",
116
+ "batch_sizes": [
117
+ 64
118
+ ],
119
+ "device": null,
120
+ "use_cache": null,
121
+ "limit": null,
122
+ "bootstrap_iters": 100000,
123
+ "gen_kwargs": null
124
+ },
125
+ "git_hash": "1ee41f7"
126
+ }
lm-eval-output/rwkv-x-dev/Quetzal-N8-1/lambada/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:95dbbc0be31bea25ac07929ccd3981e075f18cb4a2bc0c30d100216cf82edb82
3
+ size 57355