picocreator commited on
Commit
726c775
·
1 Parent(s): ba431fb

initial model results?

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. lm-eval-output/RWKV/HF_v5-Eagle-7B/arc_challenge/dtype=bfloat16,trust_remote_code=True-num_fewshot=1-nvidia-gpu/result-jsonl.tar.gz +3 -0
  2. lm-eval-output/RWKV/HF_v5-Eagle-7B/arc_challenge/dtype=bfloat16,trust_remote_code=True-num_fewshot=1-nvidia-gpu/results.json +70 -0
  3. lm-eval-output/RWKV/HF_v5-Eagle-7B/arc_challenge/dtype=bfloat16,trust_remote_code=True-num_fewshot=1-nvidia-gpu/taskrun.log +3 -0
  4. lm-eval-output/RWKV/HF_v5-Eagle-7B/arc_challenge/dtype=bfloat16,trust_remote_code=True-num_fewshot=10-nvidia-gpu/result-jsonl.tar.gz +3 -0
  5. lm-eval-output/RWKV/HF_v5-Eagle-7B/arc_challenge/dtype=bfloat16,trust_remote_code=True-num_fewshot=10-nvidia-gpu/results.json +70 -0
  6. lm-eval-output/RWKV/HF_v5-Eagle-7B/arc_challenge/dtype=bfloat16,trust_remote_code=True-num_fewshot=10-nvidia-gpu/taskrun.log +3 -0
  7. lm-eval-output/RWKV/HF_v5-Eagle-7B/arc_challenge/dtype=bfloat16,trust_remote_code=True-num_fewshot=2-nvidia-gpu/result-jsonl.tar.gz +3 -0
  8. lm-eval-output/RWKV/HF_v5-Eagle-7B/arc_challenge/dtype=bfloat16,trust_remote_code=True-num_fewshot=2-nvidia-gpu/results.json +70 -0
  9. lm-eval-output/RWKV/HF_v5-Eagle-7B/arc_challenge/dtype=bfloat16,trust_remote_code=True-num_fewshot=2-nvidia-gpu/taskrun.log +3 -0
  10. lm-eval-output/RWKV/HF_v5-Eagle-7B/arc_challenge/dtype=bfloat16,trust_remote_code=True-num_fewshot=25-nvidia-gpu/result-jsonl.tar.gz +3 -0
  11. lm-eval-output/RWKV/HF_v5-Eagle-7B/arc_challenge/dtype=bfloat16,trust_remote_code=True-num_fewshot=25-nvidia-gpu/results.json +70 -0
  12. lm-eval-output/RWKV/HF_v5-Eagle-7B/arc_challenge/dtype=bfloat16,trust_remote_code=True-num_fewshot=25-nvidia-gpu/taskrun.log +3 -0
  13. lm-eval-output/RWKV/HF_v5-Eagle-7B/arc_challenge/dtype=bfloat16,trust_remote_code=True-num_fewshot=5-nvidia-gpu/result-jsonl.tar.gz +3 -0
  14. lm-eval-output/RWKV/HF_v5-Eagle-7B/arc_challenge/dtype=bfloat16,trust_remote_code=True-num_fewshot=5-nvidia-gpu/results.json +70 -0
  15. lm-eval-output/RWKV/HF_v5-Eagle-7B/arc_challenge/dtype=bfloat16,trust_remote_code=True-num_fewshot=5-nvidia-gpu/taskrun.log +3 -0
  16. lm-eval-output/RWKV/HF_v5-Eagle-7B/hellaswag/dtype=bfloat16,trust_remote_code=True-num_fewshot=1-nvidia-gpu/result-jsonl.tar.gz +3 -0
  17. lm-eval-output/RWKV/HF_v5-Eagle-7B/hellaswag/dtype=bfloat16,trust_remote_code=True-num_fewshot=1-nvidia-gpu/results.json +68 -0
  18. lm-eval-output/RWKV/HF_v5-Eagle-7B/hellaswag/dtype=bfloat16,trust_remote_code=True-num_fewshot=1-nvidia-gpu/taskrun.log +3 -0
  19. lm-eval-output/RWKV/HF_v5-Eagle-7B/hellaswag/dtype=bfloat16,trust_remote_code=True-num_fewshot=10-nvidia-gpu/result-jsonl.tar.gz +3 -0
  20. lm-eval-output/RWKV/HF_v5-Eagle-7B/hellaswag/dtype=bfloat16,trust_remote_code=True-num_fewshot=10-nvidia-gpu/results.json +68 -0
  21. lm-eval-output/RWKV/HF_v5-Eagle-7B/hellaswag/dtype=bfloat16,trust_remote_code=True-num_fewshot=10-nvidia-gpu/taskrun.log +3 -0
  22. lm-eval-output/RWKV/HF_v5-Eagle-7B/hellaswag/dtype=bfloat16,trust_remote_code=True-num_fewshot=2-nvidia-gpu/result-jsonl.tar.gz +3 -0
  23. lm-eval-output/RWKV/HF_v5-Eagle-7B/hellaswag/dtype=bfloat16,trust_remote_code=True-num_fewshot=2-nvidia-gpu/results.json +68 -0
  24. lm-eval-output/RWKV/HF_v5-Eagle-7B/hellaswag/dtype=bfloat16,trust_remote_code=True-num_fewshot=2-nvidia-gpu/taskrun.log +3 -0
  25. lm-eval-output/RWKV/HF_v5-Eagle-7B/hellaswag/dtype=bfloat16,trust_remote_code=True-num_fewshot=25-nvidia-gpu/result-jsonl.tar.gz +3 -0
  26. lm-eval-output/RWKV/HF_v5-Eagle-7B/hellaswag/dtype=bfloat16,trust_remote_code=True-num_fewshot=25-nvidia-gpu/results.json +68 -0
  27. lm-eval-output/RWKV/HF_v5-Eagle-7B/hellaswag/dtype=bfloat16,trust_remote_code=True-num_fewshot=25-nvidia-gpu/taskrun.log +3 -0
  28. lm-eval-output/RWKV/HF_v5-Eagle-7B/hellaswag/dtype=bfloat16,trust_remote_code=True-num_fewshot=5-nvidia-gpu/result-jsonl.tar.gz +3 -0
  29. lm-eval-output/RWKV/HF_v5-Eagle-7B/hellaswag/dtype=bfloat16,trust_remote_code=True-num_fewshot=5-nvidia-gpu/results.json +68 -0
  30. lm-eval-output/RWKV/HF_v5-Eagle-7B/hellaswag/dtype=bfloat16,trust_remote_code=True-num_fewshot=5-nvidia-gpu/taskrun.log +3 -0
  31. lm-eval-output/RWKV/HF_v5-Eagle-7B/lambada_multilingual/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz +3 -0
  32. lm-eval-output/RWKV/HF_v5-Eagle-7B/lambada_multilingual/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json +252 -0
  33. lm-eval-output/RWKV/HF_v5-Eagle-7B/lambada_multilingual/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log +3 -0
  34. lm-eval-output/RWKV/HF_v5-Eagle-7B/lambada_multilingual/trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz +3 -0
  35. lm-eval-output/RWKV/HF_v5-Eagle-7B/lambada_multilingual/trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json +252 -0
  36. lm-eval-output/RWKV/HF_v5-Eagle-7B/lambada_multilingual/trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log +3 -0
  37. lm-eval-output/RWKV/HF_v5-Eagle-7B/mmlu/dtype=bfloat16,trust_remote_code=True-num_fewshot=1-nvidia-gpu/result-jsonl.tar.gz +3 -0
  38. lm-eval-output/RWKV/HF_v5-Eagle-7B/mmlu/dtype=bfloat16,trust_remote_code=True-num_fewshot=1-nvidia-gpu/results.json +2651 -0
  39. lm-eval-output/RWKV/HF_v5-Eagle-7B/mmlu/dtype=bfloat16,trust_remote_code=True-num_fewshot=1-nvidia-gpu/taskrun.log +3 -0
  40. lm-eval-output/RWKV/HF_v5-Eagle-7B/mmlu/dtype=bfloat16,trust_remote_code=True-num_fewshot=2-nvidia-gpu/result-jsonl.tar.gz +3 -0
  41. lm-eval-output/RWKV/HF_v5-Eagle-7B/mmlu/dtype=bfloat16,trust_remote_code=True-num_fewshot=2-nvidia-gpu/results.json +2651 -0
  42. lm-eval-output/RWKV/HF_v5-Eagle-7B/mmlu/dtype=bfloat16,trust_remote_code=True-num_fewshot=2-nvidia-gpu/taskrun.log +3 -0
  43. lm-eval-output/RWKV/HF_v5-Eagle-7B/mmlu/dtype=bfloat16,trust_remote_code=True-num_fewshot=5-nvidia-gpu/result-jsonl.tar.gz +3 -0
  44. lm-eval-output/RWKV/HF_v5-Eagle-7B/mmlu/dtype=bfloat16,trust_remote_code=True-num_fewshot=5-nvidia-gpu/results.json +2651 -0
  45. lm-eval-output/RWKV/HF_v5-Eagle-7B/mmlu/dtype=bfloat16,trust_remote_code=True-num_fewshot=5-nvidia-gpu/taskrun.log +3 -0
  46. lm-eval-output/RWKV/HF_v5-Eagle-7B/pawsx/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz +3 -0
  47. lm-eval-output/RWKV/HF_v5-Eagle-7B/pawsx/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json +283 -0
  48. lm-eval-output/RWKV/HF_v5-Eagle-7B/pawsx/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log +3 -0
  49. lm-eval-output/RWKV/HF_v5-Eagle-7B/pawsx/trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz +3 -0
  50. lm-eval-output/RWKV/HF_v5-Eagle-7B/pawsx/trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json +283 -0
lm-eval-output/RWKV/HF_v5-Eagle-7B/arc_challenge/dtype=bfloat16,trust_remote_code=True-num_fewshot=1-nvidia-gpu/result-jsonl.tar.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:606c1d714389dff29546575ed2478a85e8edccc28ce1dd0083f2b229b25c329d
3
+ size 329869
lm-eval-output/RWKV/HF_v5-Eagle-7B/arc_challenge/dtype=bfloat16,trust_remote_code=True-num_fewshot=1-nvidia-gpu/results.json ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "arc_challenge": {
4
+ "acc,none": 0.41723549488054607,
5
+ "acc_stderr,none": 0.014409825518403075,
6
+ "acc_norm,none": 0.4641638225255973,
7
+ "acc_norm_stderr,none": 0.01457381366473572,
8
+ "alias": "arc_challenge"
9
+ }
10
+ },
11
+ "configs": {
12
+ "arc_challenge": {
13
+ "task": "arc_challenge",
14
+ "group": [
15
+ "ai2_arc"
16
+ ],
17
+ "dataset_path": "allenai/ai2_arc",
18
+ "dataset_name": "ARC-Challenge",
19
+ "training_split": "train",
20
+ "validation_split": "validation",
21
+ "test_split": "test",
22
+ "doc_to_text": "Question: {{question}}\nAnswer:",
23
+ "doc_to_target": "{{choices.label.index(answerKey)}}",
24
+ "doc_to_choice": "{{choices.text}}",
25
+ "description": "",
26
+ "target_delimiter": " ",
27
+ "fewshot_delimiter": "\n\n",
28
+ "num_fewshot": 1,
29
+ "metric_list": [
30
+ {
31
+ "metric": "acc",
32
+ "aggregation": "mean",
33
+ "higher_is_better": true
34
+ },
35
+ {
36
+ "metric": "acc_norm",
37
+ "aggregation": "mean",
38
+ "higher_is_better": true
39
+ }
40
+ ],
41
+ "output_type": "multiple_choice",
42
+ "repeats": 1,
43
+ "should_decontaminate": true,
44
+ "doc_to_decontamination_query": "Question: {{question}}\nAnswer:",
45
+ "metadata": {
46
+ "version": 1.0
47
+ }
48
+ }
49
+ },
50
+ "versions": {
51
+ "arc_challenge": 1.0
52
+ },
53
+ "n-shot": {
54
+ "arc_challenge": 1
55
+ },
56
+ "config": {
57
+ "model": "hf",
58
+ "model_args": "pretrained=RWKV/HF_v5-Eagle-7B,dtype=bfloat16,trust_remote_code=True",
59
+ "batch_size": "auto",
60
+ "batch_sizes": [
61
+ 64
62
+ ],
63
+ "device": null,
64
+ "use_cache": null,
65
+ "limit": null,
66
+ "bootstrap_iters": 100000,
67
+ "gen_kwargs": null
68
+ },
69
+ "git_hash": "99f5004"
70
+ }
lm-eval-output/RWKV/HF_v5-Eagle-7B/arc_challenge/dtype=bfloat16,trust_remote_code=True-num_fewshot=1-nvidia-gpu/taskrun.log ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6a8f79fe888ab683bc37bec5ecbcb41aa13bd798b6ba25d767aefff388e1606e
3
+ size 41958
lm-eval-output/RWKV/HF_v5-Eagle-7B/arc_challenge/dtype=bfloat16,trust_remote_code=True-num_fewshot=10-nvidia-gpu/result-jsonl.tar.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3db453642cafc7542d4bade86566d81449fd7992060e54418c3a7789a9d46296
3
+ size 1077245
lm-eval-output/RWKV/HF_v5-Eagle-7B/arc_challenge/dtype=bfloat16,trust_remote_code=True-num_fewshot=10-nvidia-gpu/results.json ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "arc_challenge": {
4
+ "acc,none": 0.4300341296928328,
5
+ "acc_stderr,none": 0.014467631559138007,
6
+ "acc_norm,none": 0.4761092150170648,
7
+ "acc_norm_stderr,none": 0.014594701798071655,
8
+ "alias": "arc_challenge"
9
+ }
10
+ },
11
+ "configs": {
12
+ "arc_challenge": {
13
+ "task": "arc_challenge",
14
+ "group": [
15
+ "ai2_arc"
16
+ ],
17
+ "dataset_path": "allenai/ai2_arc",
18
+ "dataset_name": "ARC-Challenge",
19
+ "training_split": "train",
20
+ "validation_split": "validation",
21
+ "test_split": "test",
22
+ "doc_to_text": "Question: {{question}}\nAnswer:",
23
+ "doc_to_target": "{{choices.label.index(answerKey)}}",
24
+ "doc_to_choice": "{{choices.text}}",
25
+ "description": "",
26
+ "target_delimiter": " ",
27
+ "fewshot_delimiter": "\n\n",
28
+ "num_fewshot": 10,
29
+ "metric_list": [
30
+ {
31
+ "metric": "acc",
32
+ "aggregation": "mean",
33
+ "higher_is_better": true
34
+ },
35
+ {
36
+ "metric": "acc_norm",
37
+ "aggregation": "mean",
38
+ "higher_is_better": true
39
+ }
40
+ ],
41
+ "output_type": "multiple_choice",
42
+ "repeats": 1,
43
+ "should_decontaminate": true,
44
+ "doc_to_decontamination_query": "Question: {{question}}\nAnswer:",
45
+ "metadata": {
46
+ "version": 1.0
47
+ }
48
+ }
49
+ },
50
+ "versions": {
51
+ "arc_challenge": 1.0
52
+ },
53
+ "n-shot": {
54
+ "arc_challenge": 10
55
+ },
56
+ "config": {
57
+ "model": "hf",
58
+ "model_args": "pretrained=RWKV/HF_v5-Eagle-7B,dtype=bfloat16,trust_remote_code=True",
59
+ "batch_size": "auto",
60
+ "batch_sizes": [
61
+ 16
62
+ ],
63
+ "device": null,
64
+ "use_cache": null,
65
+ "limit": null,
66
+ "bootstrap_iters": 100000,
67
+ "gen_kwargs": null
68
+ },
69
+ "git_hash": "99f5004"
70
+ }
lm-eval-output/RWKV/HF_v5-Eagle-7B/arc_challenge/dtype=bfloat16,trust_remote_code=True-num_fewshot=10-nvidia-gpu/taskrun.log ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c43a1e33d929fdd0baef800b09b9c18a2d2a19f84d532f7c067d9e4998fd070
3
+ size 164403
lm-eval-output/RWKV/HF_v5-Eagle-7B/arc_challenge/dtype=bfloat16,trust_remote_code=True-num_fewshot=2-nvidia-gpu/result-jsonl.tar.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:62db1c3c1b7738bdf3ca09f406aa16ddb0da83dcfbd0695b6c00f2b9716ac27d
3
+ size 424798
lm-eval-output/RWKV/HF_v5-Eagle-7B/arc_challenge/dtype=bfloat16,trust_remote_code=True-num_fewshot=2-nvidia-gpu/results.json ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "arc_challenge": {
4
+ "acc,none": 0.42235494880546076,
5
+ "acc_stderr,none": 0.014434138713379998,
6
+ "acc_norm,none": 0.46245733788395904,
7
+ "acc_norm_stderr,none": 0.014570144495075578,
8
+ "alias": "arc_challenge"
9
+ }
10
+ },
11
+ "configs": {
12
+ "arc_challenge": {
13
+ "task": "arc_challenge",
14
+ "group": [
15
+ "ai2_arc"
16
+ ],
17
+ "dataset_path": "allenai/ai2_arc",
18
+ "dataset_name": "ARC-Challenge",
19
+ "training_split": "train",
20
+ "validation_split": "validation",
21
+ "test_split": "test",
22
+ "doc_to_text": "Question: {{question}}\nAnswer:",
23
+ "doc_to_target": "{{choices.label.index(answerKey)}}",
24
+ "doc_to_choice": "{{choices.text}}",
25
+ "description": "",
26
+ "target_delimiter": " ",
27
+ "fewshot_delimiter": "\n\n",
28
+ "num_fewshot": 2,
29
+ "metric_list": [
30
+ {
31
+ "metric": "acc",
32
+ "aggregation": "mean",
33
+ "higher_is_better": true
34
+ },
35
+ {
36
+ "metric": "acc_norm",
37
+ "aggregation": "mean",
38
+ "higher_is_better": true
39
+ }
40
+ ],
41
+ "output_type": "multiple_choice",
42
+ "repeats": 1,
43
+ "should_decontaminate": true,
44
+ "doc_to_decontamination_query": "Question: {{question}}\nAnswer:",
45
+ "metadata": {
46
+ "version": 1.0
47
+ }
48
+ }
49
+ },
50
+ "versions": {
51
+ "arc_challenge": 1.0
52
+ },
53
+ "n-shot": {
54
+ "arc_challenge": 2
55
+ },
56
+ "config": {
57
+ "model": "hf",
58
+ "model_args": "pretrained=RWKV/HF_v5-Eagle-7B,dtype=bfloat16,trust_remote_code=True",
59
+ "batch_size": "auto",
60
+ "batch_sizes": [
61
+ 64
62
+ ],
63
+ "device": null,
64
+ "use_cache": null,
65
+ "limit": null,
66
+ "bootstrap_iters": 100000,
67
+ "gen_kwargs": null
68
+ },
69
+ "git_hash": "99f5004"
70
+ }
lm-eval-output/RWKV/HF_v5-Eagle-7B/arc_challenge/dtype=bfloat16,trust_remote_code=True-num_fewshot=2-nvidia-gpu/taskrun.log ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fb6044012ea315ee7553f0903739529c1ddc63f02984d420650e15173df2c301
3
+ size 41958
lm-eval-output/RWKV/HF_v5-Eagle-7B/arc_challenge/dtype=bfloat16,trust_remote_code=True-num_fewshot=25-nvidia-gpu/result-jsonl.tar.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c01cfe4dde9cc86cf2a355d37c31c20b95934f2ce19f1599037d874fc641e9a
3
+ size 2212513
lm-eval-output/RWKV/HF_v5-Eagle-7B/arc_challenge/dtype=bfloat16,trust_remote_code=True-num_fewshot=25-nvidia-gpu/results.json ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "arc_challenge": {
4
+ "acc,none": 0.4300341296928328,
5
+ "acc_stderr,none": 0.014467631559138008,
6
+ "acc_norm,none": 0.47696245733788395,
7
+ "acc_norm_stderr,none": 0.014595873205358276,
8
+ "alias": "arc_challenge"
9
+ }
10
+ },
11
+ "configs": {
12
+ "arc_challenge": {
13
+ "task": "arc_challenge",
14
+ "group": [
15
+ "ai2_arc"
16
+ ],
17
+ "dataset_path": "allenai/ai2_arc",
18
+ "dataset_name": "ARC-Challenge",
19
+ "training_split": "train",
20
+ "validation_split": "validation",
21
+ "test_split": "test",
22
+ "doc_to_text": "Question: {{question}}\nAnswer:",
23
+ "doc_to_target": "{{choices.label.index(answerKey)}}",
24
+ "doc_to_choice": "{{choices.text}}",
25
+ "description": "",
26
+ "target_delimiter": " ",
27
+ "fewshot_delimiter": "\n\n",
28
+ "num_fewshot": 25,
29
+ "metric_list": [
30
+ {
31
+ "metric": "acc",
32
+ "aggregation": "mean",
33
+ "higher_is_better": true
34
+ },
35
+ {
36
+ "metric": "acc_norm",
37
+ "aggregation": "mean",
38
+ "higher_is_better": true
39
+ }
40
+ ],
41
+ "output_type": "multiple_choice",
42
+ "repeats": 1,
43
+ "should_decontaminate": true,
44
+ "doc_to_decontamination_query": "Question: {{question}}\nAnswer:",
45
+ "metadata": {
46
+ "version": 1.0
47
+ }
48
+ }
49
+ },
50
+ "versions": {
51
+ "arc_challenge": 1.0
52
+ },
53
+ "n-shot": {
54
+ "arc_challenge": 25
55
+ },
56
+ "config": {
57
+ "model": "hf",
58
+ "model_args": "pretrained=RWKV/HF_v5-Eagle-7B,dtype=bfloat16,trust_remote_code=True",
59
+ "batch_size": "auto",
60
+ "batch_sizes": [
61
+ 8
62
+ ],
63
+ "device": null,
64
+ "use_cache": null,
65
+ "limit": null,
66
+ "bootstrap_iters": 100000,
67
+ "gen_kwargs": null
68
+ },
69
+ "git_hash": "99f5004"
70
+ }
lm-eval-output/RWKV/HF_v5-Eagle-7B/arc_challenge/dtype=bfloat16,trust_remote_code=True-num_fewshot=25-nvidia-gpu/taskrun.log ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8b3897289f6f8bd3237e395179fb441b74f9f9047ebb63593ad3a7324780b2fe
3
+ size 45834
lm-eval-output/RWKV/HF_v5-Eagle-7B/arc_challenge/dtype=bfloat16,trust_remote_code=True-num_fewshot=5-nvidia-gpu/result-jsonl.tar.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2e50b7e08b0c04df5a8a82b4b1bc12cd3ff9e19d66fd626baab2ac45fdbfcda1
3
+ size 681746
lm-eval-output/RWKV/HF_v5-Eagle-7B/arc_challenge/dtype=bfloat16,trust_remote_code=True-num_fewshot=5-nvidia-gpu/results.json ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "arc_challenge": {
4
+ "acc,none": 0.43600682593856654,
5
+ "acc_stderr,none": 0.014491225699230916,
6
+ "acc_norm,none": 0.4735494880546075,
7
+ "acc_norm_stderr,none": 0.014590931358120167,
8
+ "alias": "arc_challenge"
9
+ }
10
+ },
11
+ "configs": {
12
+ "arc_challenge": {
13
+ "task": "arc_challenge",
14
+ "group": [
15
+ "ai2_arc"
16
+ ],
17
+ "dataset_path": "allenai/ai2_arc",
18
+ "dataset_name": "ARC-Challenge",
19
+ "training_split": "train",
20
+ "validation_split": "validation",
21
+ "test_split": "test",
22
+ "doc_to_text": "Question: {{question}}\nAnswer:",
23
+ "doc_to_target": "{{choices.label.index(answerKey)}}",
24
+ "doc_to_choice": "{{choices.text}}",
25
+ "description": "",
26
+ "target_delimiter": " ",
27
+ "fewshot_delimiter": "\n\n",
28
+ "num_fewshot": 5,
29
+ "metric_list": [
30
+ {
31
+ "metric": "acc",
32
+ "aggregation": "mean",
33
+ "higher_is_better": true
34
+ },
35
+ {
36
+ "metric": "acc_norm",
37
+ "aggregation": "mean",
38
+ "higher_is_better": true
39
+ }
40
+ ],
41
+ "output_type": "multiple_choice",
42
+ "repeats": 1,
43
+ "should_decontaminate": true,
44
+ "doc_to_decontamination_query": "Question: {{question}}\nAnswer:",
45
+ "metadata": {
46
+ "version": 1.0
47
+ }
48
+ }
49
+ },
50
+ "versions": {
51
+ "arc_challenge": 1.0
52
+ },
53
+ "n-shot": {
54
+ "arc_challenge": 5
55
+ },
56
+ "config": {
57
+ "model": "hf",
58
+ "model_args": "pretrained=RWKV/HF_v5-Eagle-7B,dtype=bfloat16,trust_remote_code=True",
59
+ "batch_size": "auto",
60
+ "batch_sizes": [
61
+ 32
62
+ ],
63
+ "device": null,
64
+ "use_cache": null,
65
+ "limit": null,
66
+ "bootstrap_iters": 100000,
67
+ "gen_kwargs": null
68
+ },
69
+ "git_hash": "99f5004"
70
+ }
lm-eval-output/RWKV/HF_v5-Eagle-7B/arc_challenge/dtype=bfloat16,trust_remote_code=True-num_fewshot=5-nvidia-gpu/taskrun.log ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:11ce3fdaaf87dcb954e58bbdd0e8e4f5dd7992aed05474340731167a4b2e1542
3
+ size 43830
lm-eval-output/RWKV/HF_v5-Eagle-7B/hellaswag/dtype=bfloat16,trust_remote_code=True-num_fewshot=1-nvidia-gpu/result-jsonl.tar.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3d5a04ea374f31341821a828d13530e06f25c144e91312927a922d17b4c2e748
3
+ size 6656902
lm-eval-output/RWKV/HF_v5-Eagle-7B/hellaswag/dtype=bfloat16,trust_remote_code=True-num_fewshot=1-nvidia-gpu/results.json ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "hellaswag": {
4
+ "acc,none": 0.5177255526787492,
5
+ "acc_stderr,none": 0.004986644894743122,
6
+ "acc_norm,none": 0.6976697868950408,
7
+ "acc_norm_stderr,none": 0.004583289072937751,
8
+ "alias": "hellaswag"
9
+ }
10
+ },
11
+ "configs": {
12
+ "hellaswag": {
13
+ "task": "hellaswag",
14
+ "group": [
15
+ "multiple_choice"
16
+ ],
17
+ "dataset_path": "hellaswag",
18
+ "training_split": "train",
19
+ "validation_split": "validation",
20
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc):\n ctx = doc[\"ctx_a\"] + \" \" + doc[\"ctx_b\"].capitalize()\n out_doc = {\n \"query\": preprocess(doc[\"activity_label\"] + \": \" + ctx),\n \"choices\": [preprocess(ending) for ending in doc[\"endings\"]],\n \"gold\": int(doc[\"label\"]),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
21
+ "doc_to_text": "{{query}}",
22
+ "doc_to_target": "{{label}}",
23
+ "doc_to_choice": "choices",
24
+ "description": "",
25
+ "target_delimiter": " ",
26
+ "fewshot_delimiter": "\n\n",
27
+ "num_fewshot": 1,
28
+ "metric_list": [
29
+ {
30
+ "metric": "acc",
31
+ "aggregation": "mean",
32
+ "higher_is_better": true
33
+ },
34
+ {
35
+ "metric": "acc_norm",
36
+ "aggregation": "mean",
37
+ "higher_is_better": true
38
+ }
39
+ ],
40
+ "output_type": "multiple_choice",
41
+ "repeats": 1,
42
+ "should_decontaminate": false,
43
+ "metadata": {
44
+ "version": 1.0
45
+ }
46
+ }
47
+ },
48
+ "versions": {
49
+ "hellaswag": 1.0
50
+ },
51
+ "n-shot": {
52
+ "hellaswag": 1
53
+ },
54
+ "config": {
55
+ "model": "hf",
56
+ "model_args": "pretrained=RWKV/HF_v5-Eagle-7B,dtype=bfloat16,trust_remote_code=True",
57
+ "batch_size": "auto",
58
+ "batch_sizes": [
59
+ 64
60
+ ],
61
+ "device": null,
62
+ "use_cache": null,
63
+ "limit": null,
64
+ "bootstrap_iters": 100000,
65
+ "gen_kwargs": null
66
+ },
67
+ "git_hash": "99f5004"
68
+ }
lm-eval-output/RWKV/HF_v5-Eagle-7B/hellaswag/dtype=bfloat16,trust_remote_code=True-num_fewshot=1-nvidia-gpu/taskrun.log ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7030ed476b156a711aac97c6b769f351444f337d34649739bf5d2b8a0d0c36d1
3
+ size 51632
lm-eval-output/RWKV/HF_v5-Eagle-7B/hellaswag/dtype=bfloat16,trust_remote_code=True-num_fewshot=10-nvidia-gpu/result-jsonl.tar.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e9d837b45c58dc0ff298525707c58ed81b08c7eeb93682322a1895cd192ce88e
3
+ size 20818899
lm-eval-output/RWKV/HF_v5-Eagle-7B/hellaswag/dtype=bfloat16,trust_remote_code=True-num_fewshot=10-nvidia-gpu/results.json ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "hellaswag": {
4
+ "acc,none": 0.5270862378012349,
5
+ "acc_stderr,none": 0.004982454383162069,
6
+ "acc_norm,none": 0.7167894841665007,
7
+ "acc_norm_stderr,none": 0.004496369742132106,
8
+ "alias": "hellaswag"
9
+ }
10
+ },
11
+ "configs": {
12
+ "hellaswag": {
13
+ "task": "hellaswag",
14
+ "group": [
15
+ "multiple_choice"
16
+ ],
17
+ "dataset_path": "hellaswag",
18
+ "training_split": "train",
19
+ "validation_split": "validation",
20
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc):\n ctx = doc[\"ctx_a\"] + \" \" + doc[\"ctx_b\"].capitalize()\n out_doc = {\n \"query\": preprocess(doc[\"activity_label\"] + \": \" + ctx),\n \"choices\": [preprocess(ending) for ending in doc[\"endings\"]],\n \"gold\": int(doc[\"label\"]),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
21
+ "doc_to_text": "{{query}}",
22
+ "doc_to_target": "{{label}}",
23
+ "doc_to_choice": "choices",
24
+ "description": "",
25
+ "target_delimiter": " ",
26
+ "fewshot_delimiter": "\n\n",
27
+ "num_fewshot": 10,
28
+ "metric_list": [
29
+ {
30
+ "metric": "acc",
31
+ "aggregation": "mean",
32
+ "higher_is_better": true
33
+ },
34
+ {
35
+ "metric": "acc_norm",
36
+ "aggregation": "mean",
37
+ "higher_is_better": true
38
+ }
39
+ ],
40
+ "output_type": "multiple_choice",
41
+ "repeats": 1,
42
+ "should_decontaminate": false,
43
+ "metadata": {
44
+ "version": 1.0
45
+ }
46
+ }
47
+ },
48
+ "versions": {
49
+ "hellaswag": 1.0
50
+ },
51
+ "n-shot": {
52
+ "hellaswag": 10
53
+ },
54
+ "config": {
55
+ "model": "hf",
56
+ "model_args": "pretrained=RWKV/HF_v5-Eagle-7B,dtype=bfloat16,trust_remote_code=True",
57
+ "batch_size": "auto",
58
+ "batch_sizes": [
59
+ 8
60
+ ],
61
+ "device": null,
62
+ "use_cache": null,
63
+ "limit": null,
64
+ "bootstrap_iters": 100000,
65
+ "gen_kwargs": null
66
+ },
67
+ "git_hash": "99f5004"
68
+ }
lm-eval-output/RWKV/HF_v5-Eagle-7B/hellaswag/dtype=bfloat16,trust_remote_code=True-num_fewshot=10-nvidia-gpu/taskrun.log ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b71e0b17189ed9af3a3304c0202efec2f8461961fd58e6f37b60051995207127
3
+ size 84683
lm-eval-output/RWKV/HF_v5-Eagle-7B/hellaswag/dtype=bfloat16,trust_remote_code=True-num_fewshot=2-nvidia-gpu/result-jsonl.tar.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3a2d96a347c42118a571089112f72f8f42ab297ea4bac567972bda2d4102f1c9
3
+ size 8347910
lm-eval-output/RWKV/HF_v5-Eagle-7B/hellaswag/dtype=bfloat16,trust_remote_code=True-num_fewshot=2-nvidia-gpu/results.json ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "hellaswag": {
4
+ "acc,none": 0.5218084047002589,
5
+ "acc_stderr,none": 0.004985032806802434,
6
+ "acc_norm,none": 0.702051384186417,
7
+ "acc_norm_stderr,none": 0.004564220870531572,
8
+ "alias": "hellaswag"
9
+ }
10
+ },
11
+ "configs": {
12
+ "hellaswag": {
13
+ "task": "hellaswag",
14
+ "group": [
15
+ "multiple_choice"
16
+ ],
17
+ "dataset_path": "hellaswag",
18
+ "training_split": "train",
19
+ "validation_split": "validation",
20
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc):\n ctx = doc[\"ctx_a\"] + \" \" + doc[\"ctx_b\"].capitalize()\n out_doc = {\n \"query\": preprocess(doc[\"activity_label\"] + \": \" + ctx),\n \"choices\": [preprocess(ending) for ending in doc[\"endings\"]],\n \"gold\": int(doc[\"label\"]),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
21
+ "doc_to_text": "{{query}}",
22
+ "doc_to_target": "{{label}}",
23
+ "doc_to_choice": "choices",
24
+ "description": "",
25
+ "target_delimiter": " ",
26
+ "fewshot_delimiter": "\n\n",
27
+ "num_fewshot": 2,
28
+ "metric_list": [
29
+ {
30
+ "metric": "acc",
31
+ "aggregation": "mean",
32
+ "higher_is_better": true
33
+ },
34
+ {
35
+ "metric": "acc_norm",
36
+ "aggregation": "mean",
37
+ "higher_is_better": true
38
+ }
39
+ ],
40
+ "output_type": "multiple_choice",
41
+ "repeats": 1,
42
+ "should_decontaminate": false,
43
+ "metadata": {
44
+ "version": 1.0
45
+ }
46
+ }
47
+ },
48
+ "versions": {
49
+ "hellaswag": 1.0
50
+ },
51
+ "n-shot": {
52
+ "hellaswag": 2
53
+ },
54
+ "config": {
55
+ "model": "hf",
56
+ "model_args": "pretrained=RWKV/HF_v5-Eagle-7B,dtype=bfloat16,trust_remote_code=True",
57
+ "batch_size": "auto",
58
+ "batch_sizes": [
59
+ 64
60
+ ],
61
+ "device": null,
62
+ "use_cache": null,
63
+ "limit": null,
64
+ "bootstrap_iters": 100000,
65
+ "gen_kwargs": null
66
+ },
67
+ "git_hash": "99f5004"
68
+ }
lm-eval-output/RWKV/HF_v5-Eagle-7B/hellaswag/dtype=bfloat16,trust_remote_code=True-num_fewshot=2-nvidia-gpu/taskrun.log ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:94c0529d0c355e7549cd2660abcbce9912544cdca62d903109c86c48476cd51b
3
+ size 50306
lm-eval-output/RWKV/HF_v5-Eagle-7B/hellaswag/dtype=bfloat16,trust_remote_code=True-num_fewshot=25-nvidia-gpu/result-jsonl.tar.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dc2638855acf1b3cedd27cce2e8522451eb180a819c4c5eb1af64c473507e5c3
3
+ size 45106723
lm-eval-output/RWKV/HF_v5-Eagle-7B/hellaswag/dtype=bfloat16,trust_remote_code=True-num_fewshot=25-nvidia-gpu/results.json ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "hellaswag": {
4
+ "acc,none": 0.530870344552878,
5
+ "acc_stderr,none": 0.004980262025472473,
6
+ "acc_norm,none": 0.7227643895638319,
7
+ "acc_norm_stderr,none": 0.004467189716140494,
8
+ "alias": "hellaswag"
9
+ }
10
+ },
11
+ "configs": {
12
+ "hellaswag": {
13
+ "task": "hellaswag",
14
+ "group": [
15
+ "multiple_choice"
16
+ ],
17
+ "dataset_path": "hellaswag",
18
+ "training_split": "train",
19
+ "validation_split": "validation",
20
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc):\n ctx = doc[\"ctx_a\"] + \" \" + doc[\"ctx_b\"].capitalize()\n out_doc = {\n \"query\": preprocess(doc[\"activity_label\"] + \": \" + ctx),\n \"choices\": [preprocess(ending) for ending in doc[\"endings\"]],\n \"gold\": int(doc[\"label\"]),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
21
+ "doc_to_text": "{{query}}",
22
+ "doc_to_target": "{{label}}",
23
+ "doc_to_choice": "choices",
24
+ "description": "",
25
+ "target_delimiter": " ",
26
+ "fewshot_delimiter": "\n\n",
27
+ "num_fewshot": 25,
28
+ "metric_list": [
29
+ {
30
+ "metric": "acc",
31
+ "aggregation": "mean",
32
+ "higher_is_better": true
33
+ },
34
+ {
35
+ "metric": "acc_norm",
36
+ "aggregation": "mean",
37
+ "higher_is_better": true
38
+ }
39
+ ],
40
+ "output_type": "multiple_choice",
41
+ "repeats": 1,
42
+ "should_decontaminate": false,
43
+ "metadata": {
44
+ "version": 1.0
45
+ }
46
+ }
47
+ },
48
+ "versions": {
49
+ "hellaswag": 1.0
50
+ },
51
+ "n-shot": {
52
+ "hellaswag": 25
53
+ },
54
+ "config": {
55
+ "model": "hf",
56
+ "model_args": "pretrained=RWKV/HF_v5-Eagle-7B,dtype=bfloat16,trust_remote_code=True",
57
+ "batch_size": "auto",
58
+ "batch_sizes": [
59
+ 8
60
+ ],
61
+ "device": null,
62
+ "use_cache": null,
63
+ "limit": null,
64
+ "bootstrap_iters": 100000,
65
+ "gen_kwargs": null
66
+ },
67
+ "git_hash": "99f5004"
68
+ }
lm-eval-output/RWKV/HF_v5-Eagle-7B/hellaswag/dtype=bfloat16,trust_remote_code=True-num_fewshot=25-nvidia-gpu/taskrun.log ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7cdf1173cdb56c1a06000a7d76b15eab6d8468be5d31cddedd13b7aa8962b985
3
+ size 87299
lm-eval-output/RWKV/HF_v5-Eagle-7B/hellaswag/dtype=bfloat16,trust_remote_code=True-num_fewshot=5-nvidia-gpu/result-jsonl.tar.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:663e3c42edb505346df7276a18854babb8fb789400c212f227d1fb3693a0c74f
3
+ size 13182828
lm-eval-output/RWKV/HF_v5-Eagle-7B/hellaswag/dtype=bfloat16,trust_remote_code=True-num_fewshot=5-nvidia-gpu/results.json ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "hellaswag": {
4
+ "acc,none": 0.527185819557857,
5
+ "acc_stderr,none": 0.004982400368939668,
6
+ "acc_norm,none": 0.7122087233618801,
7
+ "acc_norm_stderr,none": 0.004518080594528022,
8
+ "alias": "hellaswag"
9
+ }
10
+ },
11
+ "configs": {
12
+ "hellaswag": {
13
+ "task": "hellaswag",
14
+ "group": [
15
+ "multiple_choice"
16
+ ],
17
+ "dataset_path": "hellaswag",
18
+ "training_split": "train",
19
+ "validation_split": "validation",
20
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc):\n ctx = doc[\"ctx_a\"] + \" \" + doc[\"ctx_b\"].capitalize()\n out_doc = {\n \"query\": preprocess(doc[\"activity_label\"] + \": \" + ctx),\n \"choices\": [preprocess(ending) for ending in doc[\"endings\"]],\n \"gold\": int(doc[\"label\"]),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
21
+ "doc_to_text": "{{query}}",
22
+ "doc_to_target": "{{label}}",
23
+ "doc_to_choice": "choices",
24
+ "description": "",
25
+ "target_delimiter": " ",
26
+ "fewshot_delimiter": "\n\n",
27
+ "num_fewshot": 5,
28
+ "metric_list": [
29
+ {
30
+ "metric": "acc",
31
+ "aggregation": "mean",
32
+ "higher_is_better": true
33
+ },
34
+ {
35
+ "metric": "acc_norm",
36
+ "aggregation": "mean",
37
+ "higher_is_better": true
38
+ }
39
+ ],
40
+ "output_type": "multiple_choice",
41
+ "repeats": 1,
42
+ "should_decontaminate": false,
43
+ "metadata": {
44
+ "version": 1.0
45
+ }
46
+ }
47
+ },
48
+ "versions": {
49
+ "hellaswag": 1.0
50
+ },
51
+ "n-shot": {
52
+ "hellaswag": 5
53
+ },
54
+ "config": {
55
+ "model": "hf",
56
+ "model_args": "pretrained=RWKV/HF_v5-Eagle-7B,dtype=bfloat16,trust_remote_code=True",
57
+ "batch_size": "auto",
58
+ "batch_sizes": [
59
+ 32
60
+ ],
61
+ "device": null,
62
+ "use_cache": null,
63
+ "limit": null,
64
+ "bootstrap_iters": 100000,
65
+ "gen_kwargs": null
66
+ },
67
+ "git_hash": "99f5004"
68
+ }
lm-eval-output/RWKV/HF_v5-Eagle-7B/hellaswag/dtype=bfloat16,trust_remote_code=True-num_fewshot=5-nvidia-gpu/taskrun.log ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a92e99965167f778329e92ba5056828fc4ebc0d12daef47a3cdc357faee509b7
3
+ size 55177
lm-eval-output/RWKV/HF_v5-Eagle-7B/lambada_multilingual/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:faa8c04050b605cf1c8f2e5dd9cca1ecdd96690354a293ba67f2705c7e50c4db
3
+ size 5218162
lm-eval-output/RWKV/HF_v5-Eagle-7B/lambada_multilingual/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json ADDED
@@ -0,0 +1,252 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "lambada_multilingual": {
4
+ "perplexity,none": 21.000049955979808,
5
+ "perplexity_stderr,none": 6.40017218612115,
6
+ "acc,none": 0.537356879487677,
7
+ "acc_stderr,none": 0.06283288884259476,
8
+ "alias": "lambada_multilingual"
9
+ },
10
+ "lambada_openai_mt_de": {
11
+ "perplexity,none": 34.40995706565969,
12
+ "perplexity_stderr,none": 1.9198882405259308,
13
+ "acc,none": 0.42751795070832527,
14
+ "acc_stderr,none": 0.0068923954478686475,
15
+ "alias": " - lambada_openai_mt_de"
16
+ },
17
+ "lambada_openai_mt_en": {
18
+ "perplexity,none": 3.376233478695252,
19
+ "perplexity_stderr,none": 0.0662417387622138,
20
+ "acc,none": 0.7432563555210557,
21
+ "acc_stderr,none": 0.006085990070284605,
22
+ "alias": " - lambada_openai_mt_en"
23
+ },
24
+ "lambada_openai_mt_es": {
25
+ "perplexity,none": 29.08178023365845,
26
+ "perplexity_stderr,none": 1.438828440779044,
27
+ "acc,none": 0.4486706772753736,
28
+ "acc_stderr,none": 0.006929173919665489,
29
+ "alias": " - lambada_openai_mt_es"
30
+ },
31
+ "lambada_openai_mt_fr": {
32
+ "perplexity,none": 16.477136806072853,
33
+ "perplexity_stderr,none": 0.8029953639024064,
34
+ "acc,none": 0.5476421502037648,
35
+ "acc_stderr,none": 0.006934283157219039,
36
+ "alias": " - lambada_openai_mt_fr"
37
+ },
38
+ "lambada_openai_mt_it": {
39
+ "perplexity,none": 21.65514219581279,
40
+ "perplexity_stderr,none": 1.1521232467165174,
41
+ "acc,none": 0.5196972637298661,
42
+ "acc_stderr,none": 0.006960570207731863,
43
+ "alias": " - lambada_openai_mt_it"
44
+ }
45
+ },
46
+ "groups": {
47
+ "lambada_multilingual": {
48
+ "perplexity,none": 21.000049955979808,
49
+ "perplexity_stderr,none": 6.40017218612115,
50
+ "acc,none": 0.537356879487677,
51
+ "acc_stderr,none": 0.06283288884259476,
52
+ "alias": "lambada_multilingual"
53
+ }
54
+ },
55
+ "configs": {
56
+ "lambada_openai_mt_de": {
57
+ "task": "lambada_openai_mt_de",
58
+ "group": [
59
+ "lambada_multilingual"
60
+ ],
61
+ "dataset_path": "EleutherAI/lambada_openai",
62
+ "dataset_name": "de",
63
+ "test_split": "test",
64
+ "doc_to_text": "{{text.split(' ')[:-1]|join(' ')}}",
65
+ "doc_to_target": "{{' '+text.split(' ')[-1]}}",
66
+ "description": "",
67
+ "target_delimiter": " ",
68
+ "fewshot_delimiter": "\n\n",
69
+ "metric_list": [
70
+ {
71
+ "metric": "perplexity",
72
+ "aggregation": "perplexity",
73
+ "higher_is_better": false
74
+ },
75
+ {
76
+ "metric": "acc",
77
+ "aggregation": "mean",
78
+ "higher_is_better": true
79
+ }
80
+ ],
81
+ "output_type": "loglikelihood",
82
+ "repeats": 1,
83
+ "should_decontaminate": true,
84
+ "doc_to_decontamination_query": "{{text}}",
85
+ "metadata": {
86
+ "version": 1.0
87
+ }
88
+ },
89
+ "lambada_openai_mt_en": {
90
+ "task": "lambada_openai_mt_en",
91
+ "group": [
92
+ "lambada_multilingual"
93
+ ],
94
+ "dataset_path": "EleutherAI/lambada_openai",
95
+ "dataset_name": "en",
96
+ "test_split": "test",
97
+ "doc_to_text": "{{text.split(' ')[:-1]|join(' ')}}",
98
+ "doc_to_target": "{{' '+text.split(' ')[-1]}}",
99
+ "description": "",
100
+ "target_delimiter": " ",
101
+ "fewshot_delimiter": "\n\n",
102
+ "metric_list": [
103
+ {
104
+ "metric": "perplexity",
105
+ "aggregation": "perplexity",
106
+ "higher_is_better": false
107
+ },
108
+ {
109
+ "metric": "acc",
110
+ "aggregation": "mean",
111
+ "higher_is_better": true
112
+ }
113
+ ],
114
+ "output_type": "loglikelihood",
115
+ "repeats": 1,
116
+ "should_decontaminate": true,
117
+ "doc_to_decontamination_query": "{{text}}",
118
+ "metadata": {
119
+ "version": 1.0
120
+ }
121
+ },
122
+ "lambada_openai_mt_es": {
123
+ "task": "lambada_openai_mt_es",
124
+ "group": [
125
+ "lambada_multilingual"
126
+ ],
127
+ "dataset_path": "EleutherAI/lambada_openai",
128
+ "dataset_name": "es",
129
+ "test_split": "test",
130
+ "doc_to_text": "{{text.split(' ')[:-1]|join(' ')}}",
131
+ "doc_to_target": "{{' '+text.split(' ')[-1]}}",
132
+ "description": "",
133
+ "target_delimiter": " ",
134
+ "fewshot_delimiter": "\n\n",
135
+ "metric_list": [
136
+ {
137
+ "metric": "perplexity",
138
+ "aggregation": "perplexity",
139
+ "higher_is_better": false
140
+ },
141
+ {
142
+ "metric": "acc",
143
+ "aggregation": "mean",
144
+ "higher_is_better": true
145
+ }
146
+ ],
147
+ "output_type": "loglikelihood",
148
+ "repeats": 1,
149
+ "should_decontaminate": true,
150
+ "doc_to_decontamination_query": "{{text}}",
151
+ "metadata": {
152
+ "version": 1.0
153
+ }
154
+ },
155
+ "lambada_openai_mt_fr": {
156
+ "task": "lambada_openai_mt_fr",
157
+ "group": [
158
+ "lambada_multilingual"
159
+ ],
160
+ "dataset_path": "EleutherAI/lambada_openai",
161
+ "dataset_name": "fr",
162
+ "test_split": "test",
163
+ "doc_to_text": "{{text.split(' ')[:-1]|join(' ')}}",
164
+ "doc_to_target": "{{' '+text.split(' ')[-1]}}",
165
+ "description": "",
166
+ "target_delimiter": " ",
167
+ "fewshot_delimiter": "\n\n",
168
+ "metric_list": [
169
+ {
170
+ "metric": "perplexity",
171
+ "aggregation": "perplexity",
172
+ "higher_is_better": false
173
+ },
174
+ {
175
+ "metric": "acc",
176
+ "aggregation": "mean",
177
+ "higher_is_better": true
178
+ }
179
+ ],
180
+ "output_type": "loglikelihood",
181
+ "repeats": 1,
182
+ "should_decontaminate": true,
183
+ "doc_to_decontamination_query": "{{text}}",
184
+ "metadata": {
185
+ "version": 1.0
186
+ }
187
+ },
188
+ "lambada_openai_mt_it": {
189
+ "task": "lambada_openai_mt_it",
190
+ "group": [
191
+ "lambada_multilingual"
192
+ ],
193
+ "dataset_path": "EleutherAI/lambada_openai",
194
+ "dataset_name": "it",
195
+ "test_split": "test",
196
+ "doc_to_text": "{{text.split(' ')[:-1]|join(' ')}}",
197
+ "doc_to_target": "{{' '+text.split(' ')[-1]}}",
198
+ "description": "",
199
+ "target_delimiter": " ",
200
+ "fewshot_delimiter": "\n\n",
201
+ "metric_list": [
202
+ {
203
+ "metric": "perplexity",
204
+ "aggregation": "perplexity",
205
+ "higher_is_better": false
206
+ },
207
+ {
208
+ "metric": "acc",
209
+ "aggregation": "mean",
210
+ "higher_is_better": true
211
+ }
212
+ ],
213
+ "output_type": "loglikelihood",
214
+ "repeats": 1,
215
+ "should_decontaminate": true,
216
+ "doc_to_decontamination_query": "{{text}}",
217
+ "metadata": {
218
+ "version": 1.0
219
+ }
220
+ }
221
+ },
222
+ "versions": {
223
+ "lambada_multilingual": "N/A",
224
+ "lambada_openai_mt_de": 1.0,
225
+ "lambada_openai_mt_en": 1.0,
226
+ "lambada_openai_mt_es": 1.0,
227
+ "lambada_openai_mt_fr": 1.0,
228
+ "lambada_openai_mt_it": 1.0
229
+ },
230
+ "n-shot": {
231
+ "lambada_multilingual": 0,
232
+ "lambada_openai_mt_de": 0,
233
+ "lambada_openai_mt_en": 0,
234
+ "lambada_openai_mt_es": 0,
235
+ "lambada_openai_mt_fr": 0,
236
+ "lambada_openai_mt_it": 0
237
+ },
238
+ "config": {
239
+ "model": "hf",
240
+ "model_args": "pretrained=RWKV/HF_v5-Eagle-7B,dtype=bfloat16,trust_remote_code=True",
241
+ "batch_size": "auto",
242
+ "batch_sizes": [
243
+ 64
244
+ ],
245
+ "device": null,
246
+ "use_cache": null,
247
+ "limit": null,
248
+ "bootstrap_iters": 100000,
249
+ "gen_kwargs": null
250
+ },
251
+ "git_hash": "99f5004"
252
+ }
lm-eval-output/RWKV/HF_v5-Eagle-7B/lambada_multilingual/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c76f26a7d4c6549f6f9e03a6eaeab506018ec6e3fd1160a19751764d733a3c06
3
+ size 67853
lm-eval-output/RWKV/HF_v5-Eagle-7B/lambada_multilingual/trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a59db7139a5f7b727b6c6bb0cec13f1627fb33f4abf9a29bdf9a228b5e436158
3
+ size 5218026
lm-eval-output/RWKV/HF_v5-Eagle-7B/lambada_multilingual/trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json ADDED
@@ -0,0 +1,252 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "lambada_multilingual": {
4
+ "perplexity,none": 20.99725893141735,
5
+ "perplexity_stderr,none": 8.213261901364534,
6
+ "acc,none": 0.5373180671453522,
7
+ "acc_stderr,none": 0.084854928421691,
8
+ "alias": "lambada_multilingual"
9
+ },
10
+ "lambada_openai_mt_de": {
11
+ "perplexity,none": 34.40417838764442,
12
+ "perplexity_stderr,none": 1.9194150131315955,
13
+ "acc,none": 0.42732388899670093,
14
+ "acc_stderr,none": 0.00689199878844782,
15
+ "alias": " - lambada_openai_mt_de"
16
+ },
17
+ "lambada_openai_mt_en": {
18
+ "perplexity,none": 3.3752600927697225,
19
+ "perplexity_stderr,none": 0.06620127895333149,
20
+ "acc,none": 0.7432563555210557,
21
+ "acc_stderr,none": 0.006085990070284606,
22
+ "alias": " - lambada_openai_mt_en"
23
+ },
24
+ "lambada_openai_mt_es": {
25
+ "perplexity,none": 29.07358750583119,
26
+ "perplexity_stderr,none": 1.4383741470995577,
27
+ "acc,none": 0.44905880069862214,
28
+ "acc_stderr,none": 0.006929729843881883,
29
+ "alias": " - lambada_openai_mt_es"
30
+ },
31
+ "lambada_openai_mt_fr": {
32
+ "perplexity,none": 16.47843119038625,
33
+ "perplexity_stderr,none": 0.8030140849186048,
34
+ "acc,none": 0.5476421502037648,
35
+ "acc_stderr,none": 0.006934283157219039,
36
+ "alias": " - lambada_openai_mt_fr"
37
+ },
38
+ "lambada_openai_mt_it": {
39
+ "perplexity,none": 21.65483748045518,
40
+ "perplexity_stderr,none": 1.152131238974256,
41
+ "acc,none": 0.5193091403066175,
42
+ "acc_stderr,none": 0.0069607812884263836,
43
+ "alias": " - lambada_openai_mt_it"
44
+ }
45
+ },
46
+ "groups": {
47
+ "lambada_multilingual": {
48
+ "perplexity,none": 20.99725893141735,
49
+ "perplexity_stderr,none": 8.213261901364534,
50
+ "acc,none": 0.5373180671453522,
51
+ "acc_stderr,none": 0.084854928421691,
52
+ "alias": "lambada_multilingual"
53
+ }
54
+ },
55
+ "configs": {
56
+ "lambada_openai_mt_de": {
57
+ "task": "lambada_openai_mt_de",
58
+ "group": [
59
+ "lambada_multilingual"
60
+ ],
61
+ "dataset_path": "EleutherAI/lambada_openai",
62
+ "dataset_name": "de",
63
+ "test_split": "test",
64
+ "doc_to_text": "{{text.split(' ')[:-1]|join(' ')}}",
65
+ "doc_to_target": "{{' '+text.split(' ')[-1]}}",
66
+ "description": "",
67
+ "target_delimiter": " ",
68
+ "fewshot_delimiter": "\n\n",
69
+ "metric_list": [
70
+ {
71
+ "metric": "perplexity",
72
+ "aggregation": "perplexity",
73
+ "higher_is_better": false
74
+ },
75
+ {
76
+ "metric": "acc",
77
+ "aggregation": "mean",
78
+ "higher_is_better": true
79
+ }
80
+ ],
81
+ "output_type": "loglikelihood",
82
+ "repeats": 1,
83
+ "should_decontaminate": true,
84
+ "doc_to_decontamination_query": "{{text}}",
85
+ "metadata": {
86
+ "version": 1.0
87
+ }
88
+ },
89
+ "lambada_openai_mt_en": {
90
+ "task": "lambada_openai_mt_en",
91
+ "group": [
92
+ "lambada_multilingual"
93
+ ],
94
+ "dataset_path": "EleutherAI/lambada_openai",
95
+ "dataset_name": "en",
96
+ "test_split": "test",
97
+ "doc_to_text": "{{text.split(' ')[:-1]|join(' ')}}",
98
+ "doc_to_target": "{{' '+text.split(' ')[-1]}}",
99
+ "description": "",
100
+ "target_delimiter": " ",
101
+ "fewshot_delimiter": "\n\n",
102
+ "metric_list": [
103
+ {
104
+ "metric": "perplexity",
105
+ "aggregation": "perplexity",
106
+ "higher_is_better": false
107
+ },
108
+ {
109
+ "metric": "acc",
110
+ "aggregation": "mean",
111
+ "higher_is_better": true
112
+ }
113
+ ],
114
+ "output_type": "loglikelihood",
115
+ "repeats": 1,
116
+ "should_decontaminate": true,
117
+ "doc_to_decontamination_query": "{{text}}",
118
+ "metadata": {
119
+ "version": 1.0
120
+ }
121
+ },
122
+ "lambada_openai_mt_es": {
123
+ "task": "lambada_openai_mt_es",
124
+ "group": [
125
+ "lambada_multilingual"
126
+ ],
127
+ "dataset_path": "EleutherAI/lambada_openai",
128
+ "dataset_name": "es",
129
+ "test_split": "test",
130
+ "doc_to_text": "{{text.split(' ')[:-1]|join(' ')}}",
131
+ "doc_to_target": "{{' '+text.split(' ')[-1]}}",
132
+ "description": "",
133
+ "target_delimiter": " ",
134
+ "fewshot_delimiter": "\n\n",
135
+ "metric_list": [
136
+ {
137
+ "metric": "perplexity",
138
+ "aggregation": "perplexity",
139
+ "higher_is_better": false
140
+ },
141
+ {
142
+ "metric": "acc",
143
+ "aggregation": "mean",
144
+ "higher_is_better": true
145
+ }
146
+ ],
147
+ "output_type": "loglikelihood",
148
+ "repeats": 1,
149
+ "should_decontaminate": true,
150
+ "doc_to_decontamination_query": "{{text}}",
151
+ "metadata": {
152
+ "version": 1.0
153
+ }
154
+ },
155
+ "lambada_openai_mt_fr": {
156
+ "task": "lambada_openai_mt_fr",
157
+ "group": [
158
+ "lambada_multilingual"
159
+ ],
160
+ "dataset_path": "EleutherAI/lambada_openai",
161
+ "dataset_name": "fr",
162
+ "test_split": "test",
163
+ "doc_to_text": "{{text.split(' ')[:-1]|join(' ')}}",
164
+ "doc_to_target": "{{' '+text.split(' ')[-1]}}",
165
+ "description": "",
166
+ "target_delimiter": " ",
167
+ "fewshot_delimiter": "\n\n",
168
+ "metric_list": [
169
+ {
170
+ "metric": "perplexity",
171
+ "aggregation": "perplexity",
172
+ "higher_is_better": false
173
+ },
174
+ {
175
+ "metric": "acc",
176
+ "aggregation": "mean",
177
+ "higher_is_better": true
178
+ }
179
+ ],
180
+ "output_type": "loglikelihood",
181
+ "repeats": 1,
182
+ "should_decontaminate": true,
183
+ "doc_to_decontamination_query": "{{text}}",
184
+ "metadata": {
185
+ "version": 1.0
186
+ }
187
+ },
188
+ "lambada_openai_mt_it": {
189
+ "task": "lambada_openai_mt_it",
190
+ "group": [
191
+ "lambada_multilingual"
192
+ ],
193
+ "dataset_path": "EleutherAI/lambada_openai",
194
+ "dataset_name": "it",
195
+ "test_split": "test",
196
+ "doc_to_text": "{{text.split(' ')[:-1]|join(' ')}}",
197
+ "doc_to_target": "{{' '+text.split(' ')[-1]}}",
198
+ "description": "",
199
+ "target_delimiter": " ",
200
+ "fewshot_delimiter": "\n\n",
201
+ "metric_list": [
202
+ {
203
+ "metric": "perplexity",
204
+ "aggregation": "perplexity",
205
+ "higher_is_better": false
206
+ },
207
+ {
208
+ "metric": "acc",
209
+ "aggregation": "mean",
210
+ "higher_is_better": true
211
+ }
212
+ ],
213
+ "output_type": "loglikelihood",
214
+ "repeats": 1,
215
+ "should_decontaminate": true,
216
+ "doc_to_decontamination_query": "{{text}}",
217
+ "metadata": {
218
+ "version": 1.0
219
+ }
220
+ }
221
+ },
222
+ "versions": {
223
+ "lambada_multilingual": "N/A",
224
+ "lambada_openai_mt_de": 1.0,
225
+ "lambada_openai_mt_en": 1.0,
226
+ "lambada_openai_mt_es": 1.0,
227
+ "lambada_openai_mt_fr": 1.0,
228
+ "lambada_openai_mt_it": 1.0
229
+ },
230
+ "n-shot": {
231
+ "lambada_multilingual": 0,
232
+ "lambada_openai_mt_de": 0,
233
+ "lambada_openai_mt_en": 0,
234
+ "lambada_openai_mt_es": 0,
235
+ "lambada_openai_mt_fr": 0,
236
+ "lambada_openai_mt_it": 0
237
+ },
238
+ "config": {
239
+ "model": "hf",
240
+ "model_args": "pretrained=RWKV/HF_v5-Eagle-7B,trust_remote_code=True",
241
+ "batch_size": "auto",
242
+ "batch_sizes": [
243
+ 64
244
+ ],
245
+ "device": null,
246
+ "use_cache": null,
247
+ "limit": null,
248
+ "bootstrap_iters": 100000,
249
+ "gen_kwargs": null
250
+ },
251
+ "git_hash": "c8d9bbd"
252
+ }
lm-eval-output/RWKV/HF_v5-Eagle-7B/lambada_multilingual/trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:420be7924a2cc3a7d1ebfa9c1d9aff971ec4cb50379d0508aeed12d7ce8aa508
3
+ size 68224
lm-eval-output/RWKV/HF_v5-Eagle-7B/mmlu/dtype=bfloat16,trust_remote_code=True-num_fewshot=1-nvidia-gpu/result-jsonl.tar.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9f6a6693e11c5dfb17ee390db1a90ab57e078db75fbef6af2e90e7fc0becb58e
3
+ size 4234089
lm-eval-output/RWKV/HF_v5-Eagle-7B/mmlu/dtype=bfloat16,trust_remote_code=True-num_fewshot=1-nvidia-gpu/results.json ADDED
@@ -0,0 +1,2651 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "mmlu": {
4
+ "acc,none": 0.3064378293690358,
5
+ "acc_stderr,none": 0.04981928640245539,
6
+ "alias": "mmlu"
7
+ },
8
+ "mmlu_humanities": {
9
+ "alias": " - humanities",
10
+ "acc,none": 0.2913921360255048,
11
+ "acc_stderr,none": 0.04490801351337553
12
+ },
13
+ "mmlu_formal_logic": {
14
+ "alias": " - formal_logic",
15
+ "acc,none": 0.29365079365079366,
16
+ "acc_stderr,none": 0.040735243221471255
17
+ },
18
+ "mmlu_high_school_european_history": {
19
+ "alias": " - high_school_european_history",
20
+ "acc,none": 0.4121212121212121,
21
+ "acc_stderr,none": 0.03843566993588717
22
+ },
23
+ "mmlu_high_school_us_history": {
24
+ "alias": " - high_school_us_history",
25
+ "acc,none": 0.35294117647058826,
26
+ "acc_stderr,none": 0.03354092437591519
27
+ },
28
+ "mmlu_high_school_world_history": {
29
+ "alias": " - high_school_world_history",
30
+ "acc,none": 0.3291139240506329,
31
+ "acc_stderr,none": 0.03058732629470236
32
+ },
33
+ "mmlu_international_law": {
34
+ "alias": " - international_law",
35
+ "acc,none": 0.2396694214876033,
36
+ "acc_stderr,none": 0.03896878985070417
37
+ },
38
+ "mmlu_jurisprudence": {
39
+ "alias": " - jurisprudence",
40
+ "acc,none": 0.28703703703703703,
41
+ "acc_stderr,none": 0.043733130409147614
42
+ },
43
+ "mmlu_logical_fallacies": {
44
+ "alias": " - logical_fallacies",
45
+ "acc,none": 0.26993865030674846,
46
+ "acc_stderr,none": 0.03487825168497892
47
+ },
48
+ "mmlu_moral_disputes": {
49
+ "alias": " - moral_disputes",
50
+ "acc,none": 0.3265895953757225,
51
+ "acc_stderr,none": 0.025248264774242826
52
+ },
53
+ "mmlu_moral_scenarios": {
54
+ "alias": " - moral_scenarios",
55
+ "acc,none": 0.23798882681564246,
56
+ "acc_stderr,none": 0.014242630070574885
57
+ },
58
+ "mmlu_philosophy": {
59
+ "alias": " - philosophy",
60
+ "acc,none": 0.26688102893890675,
61
+ "acc_stderr,none": 0.025122637608816646
62
+ },
63
+ "mmlu_prehistory": {
64
+ "alias": " - prehistory",
65
+ "acc,none": 0.37037037037037035,
66
+ "acc_stderr,none": 0.02686949074481525
67
+ },
68
+ "mmlu_professional_law": {
69
+ "alias": " - professional_law",
70
+ "acc,none": 0.27640156453715775,
71
+ "acc_stderr,none": 0.011422153194553576
72
+ },
73
+ "mmlu_world_religions": {
74
+ "alias": " - world_religions",
75
+ "acc,none": 0.34502923976608185,
76
+ "acc_stderr,none": 0.03645981377388806
77
+ },
78
+ "mmlu_other": {
79
+ "alias": " - other",
80
+ "acc,none": 0.31992275506919854,
81
+ "acc_stderr,none": 0.038871837655311235
82
+ },
83
+ "mmlu_business_ethics": {
84
+ "alias": " - business_ethics",
85
+ "acc,none": 0.22,
86
+ "acc_stderr,none": 0.041633319989322716
87
+ },
88
+ "mmlu_clinical_knowledge": {
89
+ "alias": " - clinical_knowledge",
90
+ "acc,none": 0.33584905660377357,
91
+ "acc_stderr,none": 0.02906722014664483
92
+ },
93
+ "mmlu_college_medicine": {
94
+ "alias": " - college_medicine",
95
+ "acc,none": 0.2947976878612717,
96
+ "acc_stderr,none": 0.03476599607516478
97
+ },
98
+ "mmlu_global_facts": {
99
+ "alias": " - global_facts",
100
+ "acc,none": 0.3,
101
+ "acc_stderr,none": 0.046056618647183814
102
+ },
103
+ "mmlu_human_aging": {
104
+ "alias": " - human_aging",
105
+ "acc,none": 0.3273542600896861,
106
+ "acc_stderr,none": 0.03149384670994131
107
+ },
108
+ "mmlu_management": {
109
+ "alias": " - management",
110
+ "acc,none": 0.32038834951456313,
111
+ "acc_stderr,none": 0.0462028408228004
112
+ },
113
+ "mmlu_marketing": {
114
+ "alias": " - marketing",
115
+ "acc,none": 0.3418803418803419,
116
+ "acc_stderr,none": 0.03107502852650775
117
+ },
118
+ "mmlu_medical_genetics": {
119
+ "alias": " - medical_genetics",
120
+ "acc,none": 0.32,
121
+ "acc_stderr,none": 0.046882617226215034
122
+ },
123
+ "mmlu_miscellaneous": {
124
+ "alias": " - miscellaneous",
125
+ "acc,none": 0.34099616858237547,
126
+ "acc_stderr,none": 0.01695178138322331
127
+ },
128
+ "mmlu_nutrition": {
129
+ "alias": " - nutrition",
130
+ "acc,none": 0.34967320261437906,
131
+ "acc_stderr,none": 0.0273053080762747
132
+ },
133
+ "mmlu_professional_accounting": {
134
+ "alias": " - professional_accounting",
135
+ "acc,none": 0.24822695035460993,
136
+ "acc_stderr,none": 0.025770015644290396
137
+ },
138
+ "mmlu_professional_medicine": {
139
+ "alias": " - professional_medicine",
140
+ "acc,none": 0.3088235294117647,
141
+ "acc_stderr,none": 0.02806499816704009
142
+ },
143
+ "mmlu_virology": {
144
+ "alias": " - virology",
145
+ "acc,none": 0.3373493975903614,
146
+ "acc_stderr,none": 0.0368078369072758
147
+ },
148
+ "mmlu_social_sciences": {
149
+ "alias": " - social_sciences",
150
+ "acc,none": 0.3340916477088073,
151
+ "acc_stderr,none": 0.05303756240020363
152
+ },
153
+ "mmlu_econometrics": {
154
+ "alias": " - econometrics",
155
+ "acc,none": 0.2807017543859649,
156
+ "acc_stderr,none": 0.042270544512322
157
+ },
158
+ "mmlu_high_school_geography": {
159
+ "alias": " - high_school_geography",
160
+ "acc,none": 0.37373737373737376,
161
+ "acc_stderr,none": 0.034468977386593325
162
+ },
163
+ "mmlu_high_school_government_and_politics": {
164
+ "alias": " - high_school_government_and_politics",
165
+ "acc,none": 0.38860103626943004,
166
+ "acc_stderr,none": 0.035177397963731316
167
+ },
168
+ "mmlu_high_school_macroeconomics": {
169
+ "alias": " - high_school_macroeconomics",
170
+ "acc,none": 0.3487179487179487,
171
+ "acc_stderr,none": 0.02416278028401772
172
+ },
173
+ "mmlu_high_school_microeconomics": {
174
+ "alias": " - high_school_microeconomics",
175
+ "acc,none": 0.3067226890756303,
176
+ "acc_stderr,none": 0.029953823891887048
177
+ },
178
+ "mmlu_high_school_psychology": {
179
+ "alias": " - high_school_psychology",
180
+ "acc,none": 0.27155963302752295,
181
+ "acc_stderr,none": 0.019069098363191428
182
+ },
183
+ "mmlu_human_sexuality": {
184
+ "alias": " - human_sexuality",
185
+ "acc,none": 0.35877862595419846,
186
+ "acc_stderr,none": 0.04206739313864908
187
+ },
188
+ "mmlu_professional_psychology": {
189
+ "alias": " - professional_psychology",
190
+ "acc,none": 0.2875816993464052,
191
+ "acc_stderr,none": 0.018311653053648222
192
+ },
193
+ "mmlu_public_relations": {
194
+ "alias": " - public_relations",
195
+ "acc,none": 0.39090909090909093,
196
+ "acc_stderr,none": 0.04673752333670237
197
+ },
198
+ "mmlu_security_studies": {
199
+ "alias": " - security_studies",
200
+ "acc,none": 0.4163265306122449,
201
+ "acc_stderr,none": 0.031557828165561644
202
+ },
203
+ "mmlu_sociology": {
204
+ "alias": " - sociology",
205
+ "acc,none": 0.39303482587064675,
206
+ "acc_stderr,none": 0.0345368246603156
207
+ },
208
+ "mmlu_us_foreign_policy": {
209
+ "alias": " - us_foreign_policy",
210
+ "acc,none": 0.43,
211
+ "acc_stderr,none": 0.049756985195624284
212
+ },
213
+ "mmlu_stem": {
214
+ "alias": " - stem",
215
+ "acc,none": 0.28861401839517925,
216
+ "acc_stderr,none": 0.055890566512636665
217
+ },
218
+ "mmlu_abstract_algebra": {
219
+ "alias": " - abstract_algebra",
220
+ "acc,none": 0.19,
221
+ "acc_stderr,none": 0.03942772444036622
222
+ },
223
+ "mmlu_anatomy": {
224
+ "alias": " - anatomy",
225
+ "acc,none": 0.3037037037037037,
226
+ "acc_stderr,none": 0.03972552884785136
227
+ },
228
+ "mmlu_astronomy": {
229
+ "alias": " - astronomy",
230
+ "acc,none": 0.3355263157894737,
231
+ "acc_stderr,none": 0.038424985593952694
232
+ },
233
+ "mmlu_college_biology": {
234
+ "alias": " - college_biology",
235
+ "acc,none": 0.3402777777777778,
236
+ "acc_stderr,none": 0.03962135573486219
237
+ },
238
+ "mmlu_college_chemistry": {
239
+ "alias": " - college_chemistry",
240
+ "acc,none": 0.36,
241
+ "acc_stderr,none": 0.048241815132442176
242
+ },
243
+ "mmlu_college_computer_science": {
244
+ "alias": " - college_computer_science",
245
+ "acc,none": 0.3,
246
+ "acc_stderr,none": 0.046056618647183814
247
+ },
248
+ "mmlu_college_mathematics": {
249
+ "alias": " - college_mathematics",
250
+ "acc,none": 0.3,
251
+ "acc_stderr,none": 0.046056618647183814
252
+ },
253
+ "mmlu_college_physics": {
254
+ "alias": " - college_physics",
255
+ "acc,none": 0.23529411764705882,
256
+ "acc_stderr,none": 0.04220773659171452
257
+ },
258
+ "mmlu_computer_security": {
259
+ "alias": " - computer_security",
260
+ "acc,none": 0.28,
261
+ "acc_stderr,none": 0.045126085985421276
262
+ },
263
+ "mmlu_conceptual_physics": {
264
+ "alias": " - conceptual_physics",
265
+ "acc,none": 0.35319148936170214,
266
+ "acc_stderr,none": 0.031245325202761926
267
+ },
268
+ "mmlu_electrical_engineering": {
269
+ "alias": " - electrical_engineering",
270
+ "acc,none": 0.3586206896551724,
271
+ "acc_stderr,none": 0.03996629574876719
272
+ },
273
+ "mmlu_elementary_mathematics": {
274
+ "alias": " - elementary_mathematics",
275
+ "acc,none": 0.26455026455026454,
276
+ "acc_stderr,none": 0.022717467897708593
277
+ },
278
+ "mmlu_high_school_biology": {
279
+ "alias": " - high_school_biology",
280
+ "acc,none": 0.3419354838709677,
281
+ "acc_stderr,none": 0.026985289576552735
282
+ },
283
+ "mmlu_high_school_chemistry": {
284
+ "alias": " - high_school_chemistry",
285
+ "acc,none": 0.22660098522167488,
286
+ "acc_stderr,none": 0.02945486383529297
287
+ },
288
+ "mmlu_high_school_computer_science": {
289
+ "alias": " - high_school_computer_science",
290
+ "acc,none": 0.23,
291
+ "acc_stderr,none": 0.04229525846816508
292
+ },
293
+ "mmlu_high_school_mathematics": {
294
+ "alias": " - high_school_mathematics",
295
+ "acc,none": 0.24444444444444444,
296
+ "acc_stderr,none": 0.026202766534652148
297
+ },
298
+ "mmlu_high_school_physics": {
299
+ "alias": " - high_school_physics",
300
+ "acc,none": 0.24503311258278146,
301
+ "acc_stderr,none": 0.035118075718047245
302
+ },
303
+ "mmlu_high_school_statistics": {
304
+ "alias": " - high_school_statistics",
305
+ "acc,none": 0.24537037037037038,
306
+ "acc_stderr,none": 0.02934666509437294
307
+ },
308
+ "mmlu_machine_learning": {
309
+ "alias": " - machine_learning",
310
+ "acc,none": 0.32142857142857145,
311
+ "acc_stderr,none": 0.04432804055291519
312
+ }
313
+ },
314
+ "groups": {
315
+ "mmlu": {
316
+ "acc,none": 0.3064378293690358,
317
+ "acc_stderr,none": 0.04981928640245539,
318
+ "alias": "mmlu"
319
+ },
320
+ "mmlu_humanities": {
321
+ "alias": " - humanities",
322
+ "acc,none": 0.2913921360255048,
323
+ "acc_stderr,none": 0.04490801351337553
324
+ },
325
+ "mmlu_other": {
326
+ "alias": " - other",
327
+ "acc,none": 0.31992275506919854,
328
+ "acc_stderr,none": 0.038871837655311235
329
+ },
330
+ "mmlu_social_sciences": {
331
+ "alias": " - social_sciences",
332
+ "acc,none": 0.3340916477088073,
333
+ "acc_stderr,none": 0.05303756240020363
334
+ },
335
+ "mmlu_stem": {
336
+ "alias": " - stem",
337
+ "acc,none": 0.28861401839517925,
338
+ "acc_stderr,none": 0.055890566512636665
339
+ }
340
+ },
341
+ "configs": {
342
+ "mmlu_abstract_algebra": {
343
+ "task": "mmlu_abstract_algebra",
344
+ "task_alias": "abstract_algebra",
345
+ "group": "mmlu_stem",
346
+ "group_alias": "stem",
347
+ "dataset_path": "hails/mmlu_no_train",
348
+ "dataset_name": "abstract_algebra",
349
+ "test_split": "test",
350
+ "fewshot_split": "dev",
351
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
352
+ "doc_to_target": "answer",
353
+ "doc_to_choice": [
354
+ "A",
355
+ "B",
356
+ "C",
357
+ "D"
358
+ ],
359
+ "description": "The following are multiple choice questions (with answers) about abstract algebra.\n\n",
360
+ "target_delimiter": " ",
361
+ "fewshot_delimiter": "\n\n",
362
+ "fewshot_config": {
363
+ "sampler": "first_n"
364
+ },
365
+ "num_fewshot": 1,
366
+ "metric_list": [
367
+ {
368
+ "metric": "acc",
369
+ "aggregation": "mean",
370
+ "higher_is_better": true
371
+ }
372
+ ],
373
+ "output_type": "multiple_choice",
374
+ "repeats": 1,
375
+ "should_decontaminate": false,
376
+ "metadata": {
377
+ "version": 0.0
378
+ }
379
+ },
380
+ "mmlu_anatomy": {
381
+ "task": "mmlu_anatomy",
382
+ "task_alias": "anatomy",
383
+ "group": "mmlu_stem",
384
+ "group_alias": "stem",
385
+ "dataset_path": "hails/mmlu_no_train",
386
+ "dataset_name": "anatomy",
387
+ "test_split": "test",
388
+ "fewshot_split": "dev",
389
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
390
+ "doc_to_target": "answer",
391
+ "doc_to_choice": [
392
+ "A",
393
+ "B",
394
+ "C",
395
+ "D"
396
+ ],
397
+ "description": "The following are multiple choice questions (with answers) about anatomy.\n\n",
398
+ "target_delimiter": " ",
399
+ "fewshot_delimiter": "\n\n",
400
+ "fewshot_config": {
401
+ "sampler": "first_n"
402
+ },
403
+ "num_fewshot": 1,
404
+ "metric_list": [
405
+ {
406
+ "metric": "acc",
407
+ "aggregation": "mean",
408
+ "higher_is_better": true
409
+ }
410
+ ],
411
+ "output_type": "multiple_choice",
412
+ "repeats": 1,
413
+ "should_decontaminate": false,
414
+ "metadata": {
415
+ "version": 0.0
416
+ }
417
+ },
418
+ "mmlu_astronomy": {
419
+ "task": "mmlu_astronomy",
420
+ "task_alias": "astronomy",
421
+ "group": "mmlu_stem",
422
+ "group_alias": "stem",
423
+ "dataset_path": "hails/mmlu_no_train",
424
+ "dataset_name": "astronomy",
425
+ "test_split": "test",
426
+ "fewshot_split": "dev",
427
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
428
+ "doc_to_target": "answer",
429
+ "doc_to_choice": [
430
+ "A",
431
+ "B",
432
+ "C",
433
+ "D"
434
+ ],
435
+ "description": "The following are multiple choice questions (with answers) about astronomy.\n\n",
436
+ "target_delimiter": " ",
437
+ "fewshot_delimiter": "\n\n",
438
+ "fewshot_config": {
439
+ "sampler": "first_n"
440
+ },
441
+ "num_fewshot": 1,
442
+ "metric_list": [
443
+ {
444
+ "metric": "acc",
445
+ "aggregation": "mean",
446
+ "higher_is_better": true
447
+ }
448
+ ],
449
+ "output_type": "multiple_choice",
450
+ "repeats": 1,
451
+ "should_decontaminate": false,
452
+ "metadata": {
453
+ "version": 0.0
454
+ }
455
+ },
456
+ "mmlu_business_ethics": {
457
+ "task": "mmlu_business_ethics",
458
+ "task_alias": "business_ethics",
459
+ "group": "mmlu_other",
460
+ "group_alias": "other",
461
+ "dataset_path": "hails/mmlu_no_train",
462
+ "dataset_name": "business_ethics",
463
+ "test_split": "test",
464
+ "fewshot_split": "dev",
465
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
466
+ "doc_to_target": "answer",
467
+ "doc_to_choice": [
468
+ "A",
469
+ "B",
470
+ "C",
471
+ "D"
472
+ ],
473
+ "description": "The following are multiple choice questions (with answers) about business ethics.\n\n",
474
+ "target_delimiter": " ",
475
+ "fewshot_delimiter": "\n\n",
476
+ "fewshot_config": {
477
+ "sampler": "first_n"
478
+ },
479
+ "num_fewshot": 1,
480
+ "metric_list": [
481
+ {
482
+ "metric": "acc",
483
+ "aggregation": "mean",
484
+ "higher_is_better": true
485
+ }
486
+ ],
487
+ "output_type": "multiple_choice",
488
+ "repeats": 1,
489
+ "should_decontaminate": false,
490
+ "metadata": {
491
+ "version": 0.0
492
+ }
493
+ },
494
+ "mmlu_clinical_knowledge": {
495
+ "task": "mmlu_clinical_knowledge",
496
+ "task_alias": "clinical_knowledge",
497
+ "group": "mmlu_other",
498
+ "group_alias": "other",
499
+ "dataset_path": "hails/mmlu_no_train",
500
+ "dataset_name": "clinical_knowledge",
501
+ "test_split": "test",
502
+ "fewshot_split": "dev",
503
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
504
+ "doc_to_target": "answer",
505
+ "doc_to_choice": [
506
+ "A",
507
+ "B",
508
+ "C",
509
+ "D"
510
+ ],
511
+ "description": "The following are multiple choice questions (with answers) about clinical knowledge.\n\n",
512
+ "target_delimiter": " ",
513
+ "fewshot_delimiter": "\n\n",
514
+ "fewshot_config": {
515
+ "sampler": "first_n"
516
+ },
517
+ "num_fewshot": 1,
518
+ "metric_list": [
519
+ {
520
+ "metric": "acc",
521
+ "aggregation": "mean",
522
+ "higher_is_better": true
523
+ }
524
+ ],
525
+ "output_type": "multiple_choice",
526
+ "repeats": 1,
527
+ "should_decontaminate": false,
528
+ "metadata": {
529
+ "version": 0.0
530
+ }
531
+ },
532
+ "mmlu_college_biology": {
533
+ "task": "mmlu_college_biology",
534
+ "task_alias": "college_biology",
535
+ "group": "mmlu_stem",
536
+ "group_alias": "stem",
537
+ "dataset_path": "hails/mmlu_no_train",
538
+ "dataset_name": "college_biology",
539
+ "test_split": "test",
540
+ "fewshot_split": "dev",
541
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
542
+ "doc_to_target": "answer",
543
+ "doc_to_choice": [
544
+ "A",
545
+ "B",
546
+ "C",
547
+ "D"
548
+ ],
549
+ "description": "The following are multiple choice questions (with answers) about college biology.\n\n",
550
+ "target_delimiter": " ",
551
+ "fewshot_delimiter": "\n\n",
552
+ "fewshot_config": {
553
+ "sampler": "first_n"
554
+ },
555
+ "num_fewshot": 1,
556
+ "metric_list": [
557
+ {
558
+ "metric": "acc",
559
+ "aggregation": "mean",
560
+ "higher_is_better": true
561
+ }
562
+ ],
563
+ "output_type": "multiple_choice",
564
+ "repeats": 1,
565
+ "should_decontaminate": false,
566
+ "metadata": {
567
+ "version": 0.0
568
+ }
569
+ },
570
+ "mmlu_college_chemistry": {
571
+ "task": "mmlu_college_chemistry",
572
+ "task_alias": "college_chemistry",
573
+ "group": "mmlu_stem",
574
+ "group_alias": "stem",
575
+ "dataset_path": "hails/mmlu_no_train",
576
+ "dataset_name": "college_chemistry",
577
+ "test_split": "test",
578
+ "fewshot_split": "dev",
579
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
580
+ "doc_to_target": "answer",
581
+ "doc_to_choice": [
582
+ "A",
583
+ "B",
584
+ "C",
585
+ "D"
586
+ ],
587
+ "description": "The following are multiple choice questions (with answers) about college chemistry.\n\n",
588
+ "target_delimiter": " ",
589
+ "fewshot_delimiter": "\n\n",
590
+ "fewshot_config": {
591
+ "sampler": "first_n"
592
+ },
593
+ "num_fewshot": 1,
594
+ "metric_list": [
595
+ {
596
+ "metric": "acc",
597
+ "aggregation": "mean",
598
+ "higher_is_better": true
599
+ }
600
+ ],
601
+ "output_type": "multiple_choice",
602
+ "repeats": 1,
603
+ "should_decontaminate": false,
604
+ "metadata": {
605
+ "version": 0.0
606
+ }
607
+ },
608
+ "mmlu_college_computer_science": {
609
+ "task": "mmlu_college_computer_science",
610
+ "task_alias": "college_computer_science",
611
+ "group": "mmlu_stem",
612
+ "group_alias": "stem",
613
+ "dataset_path": "hails/mmlu_no_train",
614
+ "dataset_name": "college_computer_science",
615
+ "test_split": "test",
616
+ "fewshot_split": "dev",
617
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
618
+ "doc_to_target": "answer",
619
+ "doc_to_choice": [
620
+ "A",
621
+ "B",
622
+ "C",
623
+ "D"
624
+ ],
625
+ "description": "The following are multiple choice questions (with answers) about college computer science.\n\n",
626
+ "target_delimiter": " ",
627
+ "fewshot_delimiter": "\n\n",
628
+ "fewshot_config": {
629
+ "sampler": "first_n"
630
+ },
631
+ "num_fewshot": 1,
632
+ "metric_list": [
633
+ {
634
+ "metric": "acc",
635
+ "aggregation": "mean",
636
+ "higher_is_better": true
637
+ }
638
+ ],
639
+ "output_type": "multiple_choice",
640
+ "repeats": 1,
641
+ "should_decontaminate": false,
642
+ "metadata": {
643
+ "version": 0.0
644
+ }
645
+ },
646
+ "mmlu_college_mathematics": {
647
+ "task": "mmlu_college_mathematics",
648
+ "task_alias": "college_mathematics",
649
+ "group": "mmlu_stem",
650
+ "group_alias": "stem",
651
+ "dataset_path": "hails/mmlu_no_train",
652
+ "dataset_name": "college_mathematics",
653
+ "test_split": "test",
654
+ "fewshot_split": "dev",
655
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
656
+ "doc_to_target": "answer",
657
+ "doc_to_choice": [
658
+ "A",
659
+ "B",
660
+ "C",
661
+ "D"
662
+ ],
663
+ "description": "The following are multiple choice questions (with answers) about college mathematics.\n\n",
664
+ "target_delimiter": " ",
665
+ "fewshot_delimiter": "\n\n",
666
+ "fewshot_config": {
667
+ "sampler": "first_n"
668
+ },
669
+ "num_fewshot": 1,
670
+ "metric_list": [
671
+ {
672
+ "metric": "acc",
673
+ "aggregation": "mean",
674
+ "higher_is_better": true
675
+ }
676
+ ],
677
+ "output_type": "multiple_choice",
678
+ "repeats": 1,
679
+ "should_decontaminate": false,
680
+ "metadata": {
681
+ "version": 0.0
682
+ }
683
+ },
684
+ "mmlu_college_medicine": {
685
+ "task": "mmlu_college_medicine",
686
+ "task_alias": "college_medicine",
687
+ "group": "mmlu_other",
688
+ "group_alias": "other",
689
+ "dataset_path": "hails/mmlu_no_train",
690
+ "dataset_name": "college_medicine",
691
+ "test_split": "test",
692
+ "fewshot_split": "dev",
693
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
694
+ "doc_to_target": "answer",
695
+ "doc_to_choice": [
696
+ "A",
697
+ "B",
698
+ "C",
699
+ "D"
700
+ ],
701
+ "description": "The following are multiple choice questions (with answers) about college medicine.\n\n",
702
+ "target_delimiter": " ",
703
+ "fewshot_delimiter": "\n\n",
704
+ "fewshot_config": {
705
+ "sampler": "first_n"
706
+ },
707
+ "num_fewshot": 1,
708
+ "metric_list": [
709
+ {
710
+ "metric": "acc",
711
+ "aggregation": "mean",
712
+ "higher_is_better": true
713
+ }
714
+ ],
715
+ "output_type": "multiple_choice",
716
+ "repeats": 1,
717
+ "should_decontaminate": false,
718
+ "metadata": {
719
+ "version": 0.0
720
+ }
721
+ },
722
+ "mmlu_college_physics": {
723
+ "task": "mmlu_college_physics",
724
+ "task_alias": "college_physics",
725
+ "group": "mmlu_stem",
726
+ "group_alias": "stem",
727
+ "dataset_path": "hails/mmlu_no_train",
728
+ "dataset_name": "college_physics",
729
+ "test_split": "test",
730
+ "fewshot_split": "dev",
731
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
732
+ "doc_to_target": "answer",
733
+ "doc_to_choice": [
734
+ "A",
735
+ "B",
736
+ "C",
737
+ "D"
738
+ ],
739
+ "description": "The following are multiple choice questions (with answers) about college physics.\n\n",
740
+ "target_delimiter": " ",
741
+ "fewshot_delimiter": "\n\n",
742
+ "fewshot_config": {
743
+ "sampler": "first_n"
744
+ },
745
+ "num_fewshot": 1,
746
+ "metric_list": [
747
+ {
748
+ "metric": "acc",
749
+ "aggregation": "mean",
750
+ "higher_is_better": true
751
+ }
752
+ ],
753
+ "output_type": "multiple_choice",
754
+ "repeats": 1,
755
+ "should_decontaminate": false,
756
+ "metadata": {
757
+ "version": 0.0
758
+ }
759
+ },
760
+ "mmlu_computer_security": {
761
+ "task": "mmlu_computer_security",
762
+ "task_alias": "computer_security",
763
+ "group": "mmlu_stem",
764
+ "group_alias": "stem",
765
+ "dataset_path": "hails/mmlu_no_train",
766
+ "dataset_name": "computer_security",
767
+ "test_split": "test",
768
+ "fewshot_split": "dev",
769
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
770
+ "doc_to_target": "answer",
771
+ "doc_to_choice": [
772
+ "A",
773
+ "B",
774
+ "C",
775
+ "D"
776
+ ],
777
+ "description": "The following are multiple choice questions (with answers) about computer security.\n\n",
778
+ "target_delimiter": " ",
779
+ "fewshot_delimiter": "\n\n",
780
+ "fewshot_config": {
781
+ "sampler": "first_n"
782
+ },
783
+ "num_fewshot": 1,
784
+ "metric_list": [
785
+ {
786
+ "metric": "acc",
787
+ "aggregation": "mean",
788
+ "higher_is_better": true
789
+ }
790
+ ],
791
+ "output_type": "multiple_choice",
792
+ "repeats": 1,
793
+ "should_decontaminate": false,
794
+ "metadata": {
795
+ "version": 0.0
796
+ }
797
+ },
798
+ "mmlu_conceptual_physics": {
799
+ "task": "mmlu_conceptual_physics",
800
+ "task_alias": "conceptual_physics",
801
+ "group": "mmlu_stem",
802
+ "group_alias": "stem",
803
+ "dataset_path": "hails/mmlu_no_train",
804
+ "dataset_name": "conceptual_physics",
805
+ "test_split": "test",
806
+ "fewshot_split": "dev",
807
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
808
+ "doc_to_target": "answer",
809
+ "doc_to_choice": [
810
+ "A",
811
+ "B",
812
+ "C",
813
+ "D"
814
+ ],
815
+ "description": "The following are multiple choice questions (with answers) about conceptual physics.\n\n",
816
+ "target_delimiter": " ",
817
+ "fewshot_delimiter": "\n\n",
818
+ "fewshot_config": {
819
+ "sampler": "first_n"
820
+ },
821
+ "num_fewshot": 1,
822
+ "metric_list": [
823
+ {
824
+ "metric": "acc",
825
+ "aggregation": "mean",
826
+ "higher_is_better": true
827
+ }
828
+ ],
829
+ "output_type": "multiple_choice",
830
+ "repeats": 1,
831
+ "should_decontaminate": false,
832
+ "metadata": {
833
+ "version": 0.0
834
+ }
835
+ },
836
+ "mmlu_econometrics": {
837
+ "task": "mmlu_econometrics",
838
+ "task_alias": "econometrics",
839
+ "group": "mmlu_social_sciences",
840
+ "group_alias": "social_sciences",
841
+ "dataset_path": "hails/mmlu_no_train",
842
+ "dataset_name": "econometrics",
843
+ "test_split": "test",
844
+ "fewshot_split": "dev",
845
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
846
+ "doc_to_target": "answer",
847
+ "doc_to_choice": [
848
+ "A",
849
+ "B",
850
+ "C",
851
+ "D"
852
+ ],
853
+ "description": "The following are multiple choice questions (with answers) about econometrics.\n\n",
854
+ "target_delimiter": " ",
855
+ "fewshot_delimiter": "\n\n",
856
+ "fewshot_config": {
857
+ "sampler": "first_n"
858
+ },
859
+ "num_fewshot": 1,
860
+ "metric_list": [
861
+ {
862
+ "metric": "acc",
863
+ "aggregation": "mean",
864
+ "higher_is_better": true
865
+ }
866
+ ],
867
+ "output_type": "multiple_choice",
868
+ "repeats": 1,
869
+ "should_decontaminate": false,
870
+ "metadata": {
871
+ "version": 0.0
872
+ }
873
+ },
874
+ "mmlu_electrical_engineering": {
875
+ "task": "mmlu_electrical_engineering",
876
+ "task_alias": "electrical_engineering",
877
+ "group": "mmlu_stem",
878
+ "group_alias": "stem",
879
+ "dataset_path": "hails/mmlu_no_train",
880
+ "dataset_name": "electrical_engineering",
881
+ "test_split": "test",
882
+ "fewshot_split": "dev",
883
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
884
+ "doc_to_target": "answer",
885
+ "doc_to_choice": [
886
+ "A",
887
+ "B",
888
+ "C",
889
+ "D"
890
+ ],
891
+ "description": "The following are multiple choice questions (with answers) about electrical engineering.\n\n",
892
+ "target_delimiter": " ",
893
+ "fewshot_delimiter": "\n\n",
894
+ "fewshot_config": {
895
+ "sampler": "first_n"
896
+ },
897
+ "num_fewshot": 1,
898
+ "metric_list": [
899
+ {
900
+ "metric": "acc",
901
+ "aggregation": "mean",
902
+ "higher_is_better": true
903
+ }
904
+ ],
905
+ "output_type": "multiple_choice",
906
+ "repeats": 1,
907
+ "should_decontaminate": false,
908
+ "metadata": {
909
+ "version": 0.0
910
+ }
911
+ },
912
+ "mmlu_elementary_mathematics": {
913
+ "task": "mmlu_elementary_mathematics",
914
+ "task_alias": "elementary_mathematics",
915
+ "group": "mmlu_stem",
916
+ "group_alias": "stem",
917
+ "dataset_path": "hails/mmlu_no_train",
918
+ "dataset_name": "elementary_mathematics",
919
+ "test_split": "test",
920
+ "fewshot_split": "dev",
921
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
922
+ "doc_to_target": "answer",
923
+ "doc_to_choice": [
924
+ "A",
925
+ "B",
926
+ "C",
927
+ "D"
928
+ ],
929
+ "description": "The following are multiple choice questions (with answers) about elementary mathematics.\n\n",
930
+ "target_delimiter": " ",
931
+ "fewshot_delimiter": "\n\n",
932
+ "fewshot_config": {
933
+ "sampler": "first_n"
934
+ },
935
+ "num_fewshot": 1,
936
+ "metric_list": [
937
+ {
938
+ "metric": "acc",
939
+ "aggregation": "mean",
940
+ "higher_is_better": true
941
+ }
942
+ ],
943
+ "output_type": "multiple_choice",
944
+ "repeats": 1,
945
+ "should_decontaminate": false,
946
+ "metadata": {
947
+ "version": 0.0
948
+ }
949
+ },
950
+ "mmlu_formal_logic": {
951
+ "task": "mmlu_formal_logic",
952
+ "task_alias": "formal_logic",
953
+ "group": "mmlu_humanities",
954
+ "group_alias": "humanities",
955
+ "dataset_path": "hails/mmlu_no_train",
956
+ "dataset_name": "formal_logic",
957
+ "test_split": "test",
958
+ "fewshot_split": "dev",
959
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
960
+ "doc_to_target": "answer",
961
+ "doc_to_choice": [
962
+ "A",
963
+ "B",
964
+ "C",
965
+ "D"
966
+ ],
967
+ "description": "The following are multiple choice questions (with answers) about formal logic.\n\n",
968
+ "target_delimiter": " ",
969
+ "fewshot_delimiter": "\n\n",
970
+ "fewshot_config": {
971
+ "sampler": "first_n"
972
+ },
973
+ "num_fewshot": 1,
974
+ "metric_list": [
975
+ {
976
+ "metric": "acc",
977
+ "aggregation": "mean",
978
+ "higher_is_better": true
979
+ }
980
+ ],
981
+ "output_type": "multiple_choice",
982
+ "repeats": 1,
983
+ "should_decontaminate": false,
984
+ "metadata": {
985
+ "version": 0.0
986
+ }
987
+ },
988
+ "mmlu_global_facts": {
989
+ "task": "mmlu_global_facts",
990
+ "task_alias": "global_facts",
991
+ "group": "mmlu_other",
992
+ "group_alias": "other",
993
+ "dataset_path": "hails/mmlu_no_train",
994
+ "dataset_name": "global_facts",
995
+ "test_split": "test",
996
+ "fewshot_split": "dev",
997
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
998
+ "doc_to_target": "answer",
999
+ "doc_to_choice": [
1000
+ "A",
1001
+ "B",
1002
+ "C",
1003
+ "D"
1004
+ ],
1005
+ "description": "The following are multiple choice questions (with answers) about global facts.\n\n",
1006
+ "target_delimiter": " ",
1007
+ "fewshot_delimiter": "\n\n",
1008
+ "fewshot_config": {
1009
+ "sampler": "first_n"
1010
+ },
1011
+ "num_fewshot": 1,
1012
+ "metric_list": [
1013
+ {
1014
+ "metric": "acc",
1015
+ "aggregation": "mean",
1016
+ "higher_is_better": true
1017
+ }
1018
+ ],
1019
+ "output_type": "multiple_choice",
1020
+ "repeats": 1,
1021
+ "should_decontaminate": false,
1022
+ "metadata": {
1023
+ "version": 0.0
1024
+ }
1025
+ },
1026
+ "mmlu_high_school_biology": {
1027
+ "task": "mmlu_high_school_biology",
1028
+ "task_alias": "high_school_biology",
1029
+ "group": "mmlu_stem",
1030
+ "group_alias": "stem",
1031
+ "dataset_path": "hails/mmlu_no_train",
1032
+ "dataset_name": "high_school_biology",
1033
+ "test_split": "test",
1034
+ "fewshot_split": "dev",
1035
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1036
+ "doc_to_target": "answer",
1037
+ "doc_to_choice": [
1038
+ "A",
1039
+ "B",
1040
+ "C",
1041
+ "D"
1042
+ ],
1043
+ "description": "The following are multiple choice questions (with answers) about high school biology.\n\n",
1044
+ "target_delimiter": " ",
1045
+ "fewshot_delimiter": "\n\n",
1046
+ "fewshot_config": {
1047
+ "sampler": "first_n"
1048
+ },
1049
+ "num_fewshot": 1,
1050
+ "metric_list": [
1051
+ {
1052
+ "metric": "acc",
1053
+ "aggregation": "mean",
1054
+ "higher_is_better": true
1055
+ }
1056
+ ],
1057
+ "output_type": "multiple_choice",
1058
+ "repeats": 1,
1059
+ "should_decontaminate": false,
1060
+ "metadata": {
1061
+ "version": 0.0
1062
+ }
1063
+ },
1064
+ "mmlu_high_school_chemistry": {
1065
+ "task": "mmlu_high_school_chemistry",
1066
+ "task_alias": "high_school_chemistry",
1067
+ "group": "mmlu_stem",
1068
+ "group_alias": "stem",
1069
+ "dataset_path": "hails/mmlu_no_train",
1070
+ "dataset_name": "high_school_chemistry",
1071
+ "test_split": "test",
1072
+ "fewshot_split": "dev",
1073
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1074
+ "doc_to_target": "answer",
1075
+ "doc_to_choice": [
1076
+ "A",
1077
+ "B",
1078
+ "C",
1079
+ "D"
1080
+ ],
1081
+ "description": "The following are multiple choice questions (with answers) about high school chemistry.\n\n",
1082
+ "target_delimiter": " ",
1083
+ "fewshot_delimiter": "\n\n",
1084
+ "fewshot_config": {
1085
+ "sampler": "first_n"
1086
+ },
1087
+ "num_fewshot": 1,
1088
+ "metric_list": [
1089
+ {
1090
+ "metric": "acc",
1091
+ "aggregation": "mean",
1092
+ "higher_is_better": true
1093
+ }
1094
+ ],
1095
+ "output_type": "multiple_choice",
1096
+ "repeats": 1,
1097
+ "should_decontaminate": false,
1098
+ "metadata": {
1099
+ "version": 0.0
1100
+ }
1101
+ },
1102
+ "mmlu_high_school_computer_science": {
1103
+ "task": "mmlu_high_school_computer_science",
1104
+ "task_alias": "high_school_computer_science",
1105
+ "group": "mmlu_stem",
1106
+ "group_alias": "stem",
1107
+ "dataset_path": "hails/mmlu_no_train",
1108
+ "dataset_name": "high_school_computer_science",
1109
+ "test_split": "test",
1110
+ "fewshot_split": "dev",
1111
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1112
+ "doc_to_target": "answer",
1113
+ "doc_to_choice": [
1114
+ "A",
1115
+ "B",
1116
+ "C",
1117
+ "D"
1118
+ ],
1119
+ "description": "The following are multiple choice questions (with answers) about high school computer science.\n\n",
1120
+ "target_delimiter": " ",
1121
+ "fewshot_delimiter": "\n\n",
1122
+ "fewshot_config": {
1123
+ "sampler": "first_n"
1124
+ },
1125
+ "num_fewshot": 1,
1126
+ "metric_list": [
1127
+ {
1128
+ "metric": "acc",
1129
+ "aggregation": "mean",
1130
+ "higher_is_better": true
1131
+ }
1132
+ ],
1133
+ "output_type": "multiple_choice",
1134
+ "repeats": 1,
1135
+ "should_decontaminate": false,
1136
+ "metadata": {
1137
+ "version": 0.0
1138
+ }
1139
+ },
1140
+ "mmlu_high_school_european_history": {
1141
+ "task": "mmlu_high_school_european_history",
1142
+ "task_alias": "high_school_european_history",
1143
+ "group": "mmlu_humanities",
1144
+ "group_alias": "humanities",
1145
+ "dataset_path": "hails/mmlu_no_train",
1146
+ "dataset_name": "high_school_european_history",
1147
+ "test_split": "test",
1148
+ "fewshot_split": "dev",
1149
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1150
+ "doc_to_target": "answer",
1151
+ "doc_to_choice": [
1152
+ "A",
1153
+ "B",
1154
+ "C",
1155
+ "D"
1156
+ ],
1157
+ "description": "The following are multiple choice questions (with answers) about high school european history.\n\n",
1158
+ "target_delimiter": " ",
1159
+ "fewshot_delimiter": "\n\n",
1160
+ "fewshot_config": {
1161
+ "sampler": "first_n"
1162
+ },
1163
+ "num_fewshot": 1,
1164
+ "metric_list": [
1165
+ {
1166
+ "metric": "acc",
1167
+ "aggregation": "mean",
1168
+ "higher_is_better": true
1169
+ }
1170
+ ],
1171
+ "output_type": "multiple_choice",
1172
+ "repeats": 1,
1173
+ "should_decontaminate": false,
1174
+ "metadata": {
1175
+ "version": 0.0
1176
+ }
1177
+ },
1178
+ "mmlu_high_school_geography": {
1179
+ "task": "mmlu_high_school_geography",
1180
+ "task_alias": "high_school_geography",
1181
+ "group": "mmlu_social_sciences",
1182
+ "group_alias": "social_sciences",
1183
+ "dataset_path": "hails/mmlu_no_train",
1184
+ "dataset_name": "high_school_geography",
1185
+ "test_split": "test",
1186
+ "fewshot_split": "dev",
1187
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1188
+ "doc_to_target": "answer",
1189
+ "doc_to_choice": [
1190
+ "A",
1191
+ "B",
1192
+ "C",
1193
+ "D"
1194
+ ],
1195
+ "description": "The following are multiple choice questions (with answers) about high school geography.\n\n",
1196
+ "target_delimiter": " ",
1197
+ "fewshot_delimiter": "\n\n",
1198
+ "fewshot_config": {
1199
+ "sampler": "first_n"
1200
+ },
1201
+ "num_fewshot": 1,
1202
+ "metric_list": [
1203
+ {
1204
+ "metric": "acc",
1205
+ "aggregation": "mean",
1206
+ "higher_is_better": true
1207
+ }
1208
+ ],
1209
+ "output_type": "multiple_choice",
1210
+ "repeats": 1,
1211
+ "should_decontaminate": false,
1212
+ "metadata": {
1213
+ "version": 0.0
1214
+ }
1215
+ },
1216
+ "mmlu_high_school_government_and_politics": {
1217
+ "task": "mmlu_high_school_government_and_politics",
1218
+ "task_alias": "high_school_government_and_politics",
1219
+ "group": "mmlu_social_sciences",
1220
+ "group_alias": "social_sciences",
1221
+ "dataset_path": "hails/mmlu_no_train",
1222
+ "dataset_name": "high_school_government_and_politics",
1223
+ "test_split": "test",
1224
+ "fewshot_split": "dev",
1225
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1226
+ "doc_to_target": "answer",
1227
+ "doc_to_choice": [
1228
+ "A",
1229
+ "B",
1230
+ "C",
1231
+ "D"
1232
+ ],
1233
+ "description": "The following are multiple choice questions (with answers) about high school government and politics.\n\n",
1234
+ "target_delimiter": " ",
1235
+ "fewshot_delimiter": "\n\n",
1236
+ "fewshot_config": {
1237
+ "sampler": "first_n"
1238
+ },
1239
+ "num_fewshot": 1,
1240
+ "metric_list": [
1241
+ {
1242
+ "metric": "acc",
1243
+ "aggregation": "mean",
1244
+ "higher_is_better": true
1245
+ }
1246
+ ],
1247
+ "output_type": "multiple_choice",
1248
+ "repeats": 1,
1249
+ "should_decontaminate": false,
1250
+ "metadata": {
1251
+ "version": 0.0
1252
+ }
1253
+ },
1254
+ "mmlu_high_school_macroeconomics": {
1255
+ "task": "mmlu_high_school_macroeconomics",
1256
+ "task_alias": "high_school_macroeconomics",
1257
+ "group": "mmlu_social_sciences",
1258
+ "group_alias": "social_sciences",
1259
+ "dataset_path": "hails/mmlu_no_train",
1260
+ "dataset_name": "high_school_macroeconomics",
1261
+ "test_split": "test",
1262
+ "fewshot_split": "dev",
1263
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1264
+ "doc_to_target": "answer",
1265
+ "doc_to_choice": [
1266
+ "A",
1267
+ "B",
1268
+ "C",
1269
+ "D"
1270
+ ],
1271
+ "description": "The following are multiple choice questions (with answers) about high school macroeconomics.\n\n",
1272
+ "target_delimiter": " ",
1273
+ "fewshot_delimiter": "\n\n",
1274
+ "fewshot_config": {
1275
+ "sampler": "first_n"
1276
+ },
1277
+ "num_fewshot": 1,
1278
+ "metric_list": [
1279
+ {
1280
+ "metric": "acc",
1281
+ "aggregation": "mean",
1282
+ "higher_is_better": true
1283
+ }
1284
+ ],
1285
+ "output_type": "multiple_choice",
1286
+ "repeats": 1,
1287
+ "should_decontaminate": false,
1288
+ "metadata": {
1289
+ "version": 0.0
1290
+ }
1291
+ },
1292
+ "mmlu_high_school_mathematics": {
1293
+ "task": "mmlu_high_school_mathematics",
1294
+ "task_alias": "high_school_mathematics",
1295
+ "group": "mmlu_stem",
1296
+ "group_alias": "stem",
1297
+ "dataset_path": "hails/mmlu_no_train",
1298
+ "dataset_name": "high_school_mathematics",
1299
+ "test_split": "test",
1300
+ "fewshot_split": "dev",
1301
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1302
+ "doc_to_target": "answer",
1303
+ "doc_to_choice": [
1304
+ "A",
1305
+ "B",
1306
+ "C",
1307
+ "D"
1308
+ ],
1309
+ "description": "The following are multiple choice questions (with answers) about high school mathematics.\n\n",
1310
+ "target_delimiter": " ",
1311
+ "fewshot_delimiter": "\n\n",
1312
+ "fewshot_config": {
1313
+ "sampler": "first_n"
1314
+ },
1315
+ "num_fewshot": 1,
1316
+ "metric_list": [
1317
+ {
1318
+ "metric": "acc",
1319
+ "aggregation": "mean",
1320
+ "higher_is_better": true
1321
+ }
1322
+ ],
1323
+ "output_type": "multiple_choice",
1324
+ "repeats": 1,
1325
+ "should_decontaminate": false,
1326
+ "metadata": {
1327
+ "version": 0.0
1328
+ }
1329
+ },
1330
+ "mmlu_high_school_microeconomics": {
1331
+ "task": "mmlu_high_school_microeconomics",
1332
+ "task_alias": "high_school_microeconomics",
1333
+ "group": "mmlu_social_sciences",
1334
+ "group_alias": "social_sciences",
1335
+ "dataset_path": "hails/mmlu_no_train",
1336
+ "dataset_name": "high_school_microeconomics",
1337
+ "test_split": "test",
1338
+ "fewshot_split": "dev",
1339
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1340
+ "doc_to_target": "answer",
1341
+ "doc_to_choice": [
1342
+ "A",
1343
+ "B",
1344
+ "C",
1345
+ "D"
1346
+ ],
1347
+ "description": "The following are multiple choice questions (with answers) about high school microeconomics.\n\n",
1348
+ "target_delimiter": " ",
1349
+ "fewshot_delimiter": "\n\n",
1350
+ "fewshot_config": {
1351
+ "sampler": "first_n"
1352
+ },
1353
+ "num_fewshot": 1,
1354
+ "metric_list": [
1355
+ {
1356
+ "metric": "acc",
1357
+ "aggregation": "mean",
1358
+ "higher_is_better": true
1359
+ }
1360
+ ],
1361
+ "output_type": "multiple_choice",
1362
+ "repeats": 1,
1363
+ "should_decontaminate": false,
1364
+ "metadata": {
1365
+ "version": 0.0
1366
+ }
1367
+ },
1368
+ "mmlu_high_school_physics": {
1369
+ "task": "mmlu_high_school_physics",
1370
+ "task_alias": "high_school_physics",
1371
+ "group": "mmlu_stem",
1372
+ "group_alias": "stem",
1373
+ "dataset_path": "hails/mmlu_no_train",
1374
+ "dataset_name": "high_school_physics",
1375
+ "test_split": "test",
1376
+ "fewshot_split": "dev",
1377
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1378
+ "doc_to_target": "answer",
1379
+ "doc_to_choice": [
1380
+ "A",
1381
+ "B",
1382
+ "C",
1383
+ "D"
1384
+ ],
1385
+ "description": "The following are multiple choice questions (with answers) about high school physics.\n\n",
1386
+ "target_delimiter": " ",
1387
+ "fewshot_delimiter": "\n\n",
1388
+ "fewshot_config": {
1389
+ "sampler": "first_n"
1390
+ },
1391
+ "num_fewshot": 1,
1392
+ "metric_list": [
1393
+ {
1394
+ "metric": "acc",
1395
+ "aggregation": "mean",
1396
+ "higher_is_better": true
1397
+ }
1398
+ ],
1399
+ "output_type": "multiple_choice",
1400
+ "repeats": 1,
1401
+ "should_decontaminate": false,
1402
+ "metadata": {
1403
+ "version": 0.0
1404
+ }
1405
+ },
1406
+ "mmlu_high_school_psychology": {
1407
+ "task": "mmlu_high_school_psychology",
1408
+ "task_alias": "high_school_psychology",
1409
+ "group": "mmlu_social_sciences",
1410
+ "group_alias": "social_sciences",
1411
+ "dataset_path": "hails/mmlu_no_train",
1412
+ "dataset_name": "high_school_psychology",
1413
+ "test_split": "test",
1414
+ "fewshot_split": "dev",
1415
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1416
+ "doc_to_target": "answer",
1417
+ "doc_to_choice": [
1418
+ "A",
1419
+ "B",
1420
+ "C",
1421
+ "D"
1422
+ ],
1423
+ "description": "The following are multiple choice questions (with answers) about high school psychology.\n\n",
1424
+ "target_delimiter": " ",
1425
+ "fewshot_delimiter": "\n\n",
1426
+ "fewshot_config": {
1427
+ "sampler": "first_n"
1428
+ },
1429
+ "num_fewshot": 1,
1430
+ "metric_list": [
1431
+ {
1432
+ "metric": "acc",
1433
+ "aggregation": "mean",
1434
+ "higher_is_better": true
1435
+ }
1436
+ ],
1437
+ "output_type": "multiple_choice",
1438
+ "repeats": 1,
1439
+ "should_decontaminate": false,
1440
+ "metadata": {
1441
+ "version": 0.0
1442
+ }
1443
+ },
1444
+ "mmlu_high_school_statistics": {
1445
+ "task": "mmlu_high_school_statistics",
1446
+ "task_alias": "high_school_statistics",
1447
+ "group": "mmlu_stem",
1448
+ "group_alias": "stem",
1449
+ "dataset_path": "hails/mmlu_no_train",
1450
+ "dataset_name": "high_school_statistics",
1451
+ "test_split": "test",
1452
+ "fewshot_split": "dev",
1453
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1454
+ "doc_to_target": "answer",
1455
+ "doc_to_choice": [
1456
+ "A",
1457
+ "B",
1458
+ "C",
1459
+ "D"
1460
+ ],
1461
+ "description": "The following are multiple choice questions (with answers) about high school statistics.\n\n",
1462
+ "target_delimiter": " ",
1463
+ "fewshot_delimiter": "\n\n",
1464
+ "fewshot_config": {
1465
+ "sampler": "first_n"
1466
+ },
1467
+ "num_fewshot": 1,
1468
+ "metric_list": [
1469
+ {
1470
+ "metric": "acc",
1471
+ "aggregation": "mean",
1472
+ "higher_is_better": true
1473
+ }
1474
+ ],
1475
+ "output_type": "multiple_choice",
1476
+ "repeats": 1,
1477
+ "should_decontaminate": false,
1478
+ "metadata": {
1479
+ "version": 0.0
1480
+ }
1481
+ },
1482
+ "mmlu_high_school_us_history": {
1483
+ "task": "mmlu_high_school_us_history",
1484
+ "task_alias": "high_school_us_history",
1485
+ "group": "mmlu_humanities",
1486
+ "group_alias": "humanities",
1487
+ "dataset_path": "hails/mmlu_no_train",
1488
+ "dataset_name": "high_school_us_history",
1489
+ "test_split": "test",
1490
+ "fewshot_split": "dev",
1491
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1492
+ "doc_to_target": "answer",
1493
+ "doc_to_choice": [
1494
+ "A",
1495
+ "B",
1496
+ "C",
1497
+ "D"
1498
+ ],
1499
+ "description": "The following are multiple choice questions (with answers) about high school us history.\n\n",
1500
+ "target_delimiter": " ",
1501
+ "fewshot_delimiter": "\n\n",
1502
+ "fewshot_config": {
1503
+ "sampler": "first_n"
1504
+ },
1505
+ "num_fewshot": 1,
1506
+ "metric_list": [
1507
+ {
1508
+ "metric": "acc",
1509
+ "aggregation": "mean",
1510
+ "higher_is_better": true
1511
+ }
1512
+ ],
1513
+ "output_type": "multiple_choice",
1514
+ "repeats": 1,
1515
+ "should_decontaminate": false,
1516
+ "metadata": {
1517
+ "version": 0.0
1518
+ }
1519
+ },
1520
+ "mmlu_high_school_world_history": {
1521
+ "task": "mmlu_high_school_world_history",
1522
+ "task_alias": "high_school_world_history",
1523
+ "group": "mmlu_humanities",
1524
+ "group_alias": "humanities",
1525
+ "dataset_path": "hails/mmlu_no_train",
1526
+ "dataset_name": "high_school_world_history",
1527
+ "test_split": "test",
1528
+ "fewshot_split": "dev",
1529
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1530
+ "doc_to_target": "answer",
1531
+ "doc_to_choice": [
1532
+ "A",
1533
+ "B",
1534
+ "C",
1535
+ "D"
1536
+ ],
1537
+ "description": "The following are multiple choice questions (with answers) about high school world history.\n\n",
1538
+ "target_delimiter": " ",
1539
+ "fewshot_delimiter": "\n\n",
1540
+ "fewshot_config": {
1541
+ "sampler": "first_n"
1542
+ },
1543
+ "num_fewshot": 1,
1544
+ "metric_list": [
1545
+ {
1546
+ "metric": "acc",
1547
+ "aggregation": "mean",
1548
+ "higher_is_better": true
1549
+ }
1550
+ ],
1551
+ "output_type": "multiple_choice",
1552
+ "repeats": 1,
1553
+ "should_decontaminate": false,
1554
+ "metadata": {
1555
+ "version": 0.0
1556
+ }
1557
+ },
1558
+ "mmlu_human_aging": {
1559
+ "task": "mmlu_human_aging",
1560
+ "task_alias": "human_aging",
1561
+ "group": "mmlu_other",
1562
+ "group_alias": "other",
1563
+ "dataset_path": "hails/mmlu_no_train",
1564
+ "dataset_name": "human_aging",
1565
+ "test_split": "test",
1566
+ "fewshot_split": "dev",
1567
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1568
+ "doc_to_target": "answer",
1569
+ "doc_to_choice": [
1570
+ "A",
1571
+ "B",
1572
+ "C",
1573
+ "D"
1574
+ ],
1575
+ "description": "The following are multiple choice questions (with answers) about human aging.\n\n",
1576
+ "target_delimiter": " ",
1577
+ "fewshot_delimiter": "\n\n",
1578
+ "fewshot_config": {
1579
+ "sampler": "first_n"
1580
+ },
1581
+ "num_fewshot": 1,
1582
+ "metric_list": [
1583
+ {
1584
+ "metric": "acc",
1585
+ "aggregation": "mean",
1586
+ "higher_is_better": true
1587
+ }
1588
+ ],
1589
+ "output_type": "multiple_choice",
1590
+ "repeats": 1,
1591
+ "should_decontaminate": false,
1592
+ "metadata": {
1593
+ "version": 0.0
1594
+ }
1595
+ },
1596
+ "mmlu_human_sexuality": {
1597
+ "task": "mmlu_human_sexuality",
1598
+ "task_alias": "human_sexuality",
1599
+ "group": "mmlu_social_sciences",
1600
+ "group_alias": "social_sciences",
1601
+ "dataset_path": "hails/mmlu_no_train",
1602
+ "dataset_name": "human_sexuality",
1603
+ "test_split": "test",
1604
+ "fewshot_split": "dev",
1605
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1606
+ "doc_to_target": "answer",
1607
+ "doc_to_choice": [
1608
+ "A",
1609
+ "B",
1610
+ "C",
1611
+ "D"
1612
+ ],
1613
+ "description": "The following are multiple choice questions (with answers) about human sexuality.\n\n",
1614
+ "target_delimiter": " ",
1615
+ "fewshot_delimiter": "\n\n",
1616
+ "fewshot_config": {
1617
+ "sampler": "first_n"
1618
+ },
1619
+ "num_fewshot": 1,
1620
+ "metric_list": [
1621
+ {
1622
+ "metric": "acc",
1623
+ "aggregation": "mean",
1624
+ "higher_is_better": true
1625
+ }
1626
+ ],
1627
+ "output_type": "multiple_choice",
1628
+ "repeats": 1,
1629
+ "should_decontaminate": false,
1630
+ "metadata": {
1631
+ "version": 0.0
1632
+ }
1633
+ },
1634
+ "mmlu_international_law": {
1635
+ "task": "mmlu_international_law",
1636
+ "task_alias": "international_law",
1637
+ "group": "mmlu_humanities",
1638
+ "group_alias": "humanities",
1639
+ "dataset_path": "hails/mmlu_no_train",
1640
+ "dataset_name": "international_law",
1641
+ "test_split": "test",
1642
+ "fewshot_split": "dev",
1643
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1644
+ "doc_to_target": "answer",
1645
+ "doc_to_choice": [
1646
+ "A",
1647
+ "B",
1648
+ "C",
1649
+ "D"
1650
+ ],
1651
+ "description": "The following are multiple choice questions (with answers) about international law.\n\n",
1652
+ "target_delimiter": " ",
1653
+ "fewshot_delimiter": "\n\n",
1654
+ "fewshot_config": {
1655
+ "sampler": "first_n"
1656
+ },
1657
+ "num_fewshot": 1,
1658
+ "metric_list": [
1659
+ {
1660
+ "metric": "acc",
1661
+ "aggregation": "mean",
1662
+ "higher_is_better": true
1663
+ }
1664
+ ],
1665
+ "output_type": "multiple_choice",
1666
+ "repeats": 1,
1667
+ "should_decontaminate": false,
1668
+ "metadata": {
1669
+ "version": 0.0
1670
+ }
1671
+ },
1672
+ "mmlu_jurisprudence": {
1673
+ "task": "mmlu_jurisprudence",
1674
+ "task_alias": "jurisprudence",
1675
+ "group": "mmlu_humanities",
1676
+ "group_alias": "humanities",
1677
+ "dataset_path": "hails/mmlu_no_train",
1678
+ "dataset_name": "jurisprudence",
1679
+ "test_split": "test",
1680
+ "fewshot_split": "dev",
1681
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1682
+ "doc_to_target": "answer",
1683
+ "doc_to_choice": [
1684
+ "A",
1685
+ "B",
1686
+ "C",
1687
+ "D"
1688
+ ],
1689
+ "description": "The following are multiple choice questions (with answers) about jurisprudence.\n\n",
1690
+ "target_delimiter": " ",
1691
+ "fewshot_delimiter": "\n\n",
1692
+ "fewshot_config": {
1693
+ "sampler": "first_n"
1694
+ },
1695
+ "num_fewshot": 1,
1696
+ "metric_list": [
1697
+ {
1698
+ "metric": "acc",
1699
+ "aggregation": "mean",
1700
+ "higher_is_better": true
1701
+ }
1702
+ ],
1703
+ "output_type": "multiple_choice",
1704
+ "repeats": 1,
1705
+ "should_decontaminate": false,
1706
+ "metadata": {
1707
+ "version": 0.0
1708
+ }
1709
+ },
1710
+ "mmlu_logical_fallacies": {
1711
+ "task": "mmlu_logical_fallacies",
1712
+ "task_alias": "logical_fallacies",
1713
+ "group": "mmlu_humanities",
1714
+ "group_alias": "humanities",
1715
+ "dataset_path": "hails/mmlu_no_train",
1716
+ "dataset_name": "logical_fallacies",
1717
+ "test_split": "test",
1718
+ "fewshot_split": "dev",
1719
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1720
+ "doc_to_target": "answer",
1721
+ "doc_to_choice": [
1722
+ "A",
1723
+ "B",
1724
+ "C",
1725
+ "D"
1726
+ ],
1727
+ "description": "The following are multiple choice questions (with answers) about logical fallacies.\n\n",
1728
+ "target_delimiter": " ",
1729
+ "fewshot_delimiter": "\n\n",
1730
+ "fewshot_config": {
1731
+ "sampler": "first_n"
1732
+ },
1733
+ "num_fewshot": 1,
1734
+ "metric_list": [
1735
+ {
1736
+ "metric": "acc",
1737
+ "aggregation": "mean",
1738
+ "higher_is_better": true
1739
+ }
1740
+ ],
1741
+ "output_type": "multiple_choice",
1742
+ "repeats": 1,
1743
+ "should_decontaminate": false,
1744
+ "metadata": {
1745
+ "version": 0.0
1746
+ }
1747
+ },
1748
+ "mmlu_machine_learning": {
1749
+ "task": "mmlu_machine_learning",
1750
+ "task_alias": "machine_learning",
1751
+ "group": "mmlu_stem",
1752
+ "group_alias": "stem",
1753
+ "dataset_path": "hails/mmlu_no_train",
1754
+ "dataset_name": "machine_learning",
1755
+ "test_split": "test",
1756
+ "fewshot_split": "dev",
1757
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1758
+ "doc_to_target": "answer",
1759
+ "doc_to_choice": [
1760
+ "A",
1761
+ "B",
1762
+ "C",
1763
+ "D"
1764
+ ],
1765
+ "description": "The following are multiple choice questions (with answers) about machine learning.\n\n",
1766
+ "target_delimiter": " ",
1767
+ "fewshot_delimiter": "\n\n",
1768
+ "fewshot_config": {
1769
+ "sampler": "first_n"
1770
+ },
1771
+ "num_fewshot": 1,
1772
+ "metric_list": [
1773
+ {
1774
+ "metric": "acc",
1775
+ "aggregation": "mean",
1776
+ "higher_is_better": true
1777
+ }
1778
+ ],
1779
+ "output_type": "multiple_choice",
1780
+ "repeats": 1,
1781
+ "should_decontaminate": false,
1782
+ "metadata": {
1783
+ "version": 0.0
1784
+ }
1785
+ },
1786
+ "mmlu_management": {
1787
+ "task": "mmlu_management",
1788
+ "task_alias": "management",
1789
+ "group": "mmlu_other",
1790
+ "group_alias": "other",
1791
+ "dataset_path": "hails/mmlu_no_train",
1792
+ "dataset_name": "management",
1793
+ "test_split": "test",
1794
+ "fewshot_split": "dev",
1795
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1796
+ "doc_to_target": "answer",
1797
+ "doc_to_choice": [
1798
+ "A",
1799
+ "B",
1800
+ "C",
1801
+ "D"
1802
+ ],
1803
+ "description": "The following are multiple choice questions (with answers) about management.\n\n",
1804
+ "target_delimiter": " ",
1805
+ "fewshot_delimiter": "\n\n",
1806
+ "fewshot_config": {
1807
+ "sampler": "first_n"
1808
+ },
1809
+ "num_fewshot": 1,
1810
+ "metric_list": [
1811
+ {
1812
+ "metric": "acc",
1813
+ "aggregation": "mean",
1814
+ "higher_is_better": true
1815
+ }
1816
+ ],
1817
+ "output_type": "multiple_choice",
1818
+ "repeats": 1,
1819
+ "should_decontaminate": false,
1820
+ "metadata": {
1821
+ "version": 0.0
1822
+ }
1823
+ },
1824
+ "mmlu_marketing": {
1825
+ "task": "mmlu_marketing",
1826
+ "task_alias": "marketing",
1827
+ "group": "mmlu_other",
1828
+ "group_alias": "other",
1829
+ "dataset_path": "hails/mmlu_no_train",
1830
+ "dataset_name": "marketing",
1831
+ "test_split": "test",
1832
+ "fewshot_split": "dev",
1833
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1834
+ "doc_to_target": "answer",
1835
+ "doc_to_choice": [
1836
+ "A",
1837
+ "B",
1838
+ "C",
1839
+ "D"
1840
+ ],
1841
+ "description": "The following are multiple choice questions (with answers) about marketing.\n\n",
1842
+ "target_delimiter": " ",
1843
+ "fewshot_delimiter": "\n\n",
1844
+ "fewshot_config": {
1845
+ "sampler": "first_n"
1846
+ },
1847
+ "num_fewshot": 1,
1848
+ "metric_list": [
1849
+ {
1850
+ "metric": "acc",
1851
+ "aggregation": "mean",
1852
+ "higher_is_better": true
1853
+ }
1854
+ ],
1855
+ "output_type": "multiple_choice",
1856
+ "repeats": 1,
1857
+ "should_decontaminate": false,
1858
+ "metadata": {
1859
+ "version": 0.0
1860
+ }
1861
+ },
1862
+ "mmlu_medical_genetics": {
1863
+ "task": "mmlu_medical_genetics",
1864
+ "task_alias": "medical_genetics",
1865
+ "group": "mmlu_other",
1866
+ "group_alias": "other",
1867
+ "dataset_path": "hails/mmlu_no_train",
1868
+ "dataset_name": "medical_genetics",
1869
+ "test_split": "test",
1870
+ "fewshot_split": "dev",
1871
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1872
+ "doc_to_target": "answer",
1873
+ "doc_to_choice": [
1874
+ "A",
1875
+ "B",
1876
+ "C",
1877
+ "D"
1878
+ ],
1879
+ "description": "The following are multiple choice questions (with answers) about medical genetics.\n\n",
1880
+ "target_delimiter": " ",
1881
+ "fewshot_delimiter": "\n\n",
1882
+ "fewshot_config": {
1883
+ "sampler": "first_n"
1884
+ },
1885
+ "num_fewshot": 1,
1886
+ "metric_list": [
1887
+ {
1888
+ "metric": "acc",
1889
+ "aggregation": "mean",
1890
+ "higher_is_better": true
1891
+ }
1892
+ ],
1893
+ "output_type": "multiple_choice",
1894
+ "repeats": 1,
1895
+ "should_decontaminate": false,
1896
+ "metadata": {
1897
+ "version": 0.0
1898
+ }
1899
+ },
1900
+ "mmlu_miscellaneous": {
1901
+ "task": "mmlu_miscellaneous",
1902
+ "task_alias": "miscellaneous",
1903
+ "group": "mmlu_other",
1904
+ "group_alias": "other",
1905
+ "dataset_path": "hails/mmlu_no_train",
1906
+ "dataset_name": "miscellaneous",
1907
+ "test_split": "test",
1908
+ "fewshot_split": "dev",
1909
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1910
+ "doc_to_target": "answer",
1911
+ "doc_to_choice": [
1912
+ "A",
1913
+ "B",
1914
+ "C",
1915
+ "D"
1916
+ ],
1917
+ "description": "The following are multiple choice questions (with answers) about miscellaneous.\n\n",
1918
+ "target_delimiter": " ",
1919
+ "fewshot_delimiter": "\n\n",
1920
+ "fewshot_config": {
1921
+ "sampler": "first_n"
1922
+ },
1923
+ "num_fewshot": 1,
1924
+ "metric_list": [
1925
+ {
1926
+ "metric": "acc",
1927
+ "aggregation": "mean",
1928
+ "higher_is_better": true
1929
+ }
1930
+ ],
1931
+ "output_type": "multiple_choice",
1932
+ "repeats": 1,
1933
+ "should_decontaminate": false,
1934
+ "metadata": {
1935
+ "version": 0.0
1936
+ }
1937
+ },
1938
+ "mmlu_moral_disputes": {
1939
+ "task": "mmlu_moral_disputes",
1940
+ "task_alias": "moral_disputes",
1941
+ "group": "mmlu_humanities",
1942
+ "group_alias": "humanities",
1943
+ "dataset_path": "hails/mmlu_no_train",
1944
+ "dataset_name": "moral_disputes",
1945
+ "test_split": "test",
1946
+ "fewshot_split": "dev",
1947
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1948
+ "doc_to_target": "answer",
1949
+ "doc_to_choice": [
1950
+ "A",
1951
+ "B",
1952
+ "C",
1953
+ "D"
1954
+ ],
1955
+ "description": "The following are multiple choice questions (with answers) about moral disputes.\n\n",
1956
+ "target_delimiter": " ",
1957
+ "fewshot_delimiter": "\n\n",
1958
+ "fewshot_config": {
1959
+ "sampler": "first_n"
1960
+ },
1961
+ "num_fewshot": 1,
1962
+ "metric_list": [
1963
+ {
1964
+ "metric": "acc",
1965
+ "aggregation": "mean",
1966
+ "higher_is_better": true
1967
+ }
1968
+ ],
1969
+ "output_type": "multiple_choice",
1970
+ "repeats": 1,
1971
+ "should_decontaminate": false,
1972
+ "metadata": {
1973
+ "version": 0.0
1974
+ }
1975
+ },
1976
+ "mmlu_moral_scenarios": {
1977
+ "task": "mmlu_moral_scenarios",
1978
+ "task_alias": "moral_scenarios",
1979
+ "group": "mmlu_humanities",
1980
+ "group_alias": "humanities",
1981
+ "dataset_path": "hails/mmlu_no_train",
1982
+ "dataset_name": "moral_scenarios",
1983
+ "test_split": "test",
1984
+ "fewshot_split": "dev",
1985
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1986
+ "doc_to_target": "answer",
1987
+ "doc_to_choice": [
1988
+ "A",
1989
+ "B",
1990
+ "C",
1991
+ "D"
1992
+ ],
1993
+ "description": "The following are multiple choice questions (with answers) about moral scenarios.\n\n",
1994
+ "target_delimiter": " ",
1995
+ "fewshot_delimiter": "\n\n",
1996
+ "fewshot_config": {
1997
+ "sampler": "first_n"
1998
+ },
1999
+ "num_fewshot": 1,
2000
+ "metric_list": [
2001
+ {
2002
+ "metric": "acc",
2003
+ "aggregation": "mean",
2004
+ "higher_is_better": true
2005
+ }
2006
+ ],
2007
+ "output_type": "multiple_choice",
2008
+ "repeats": 1,
2009
+ "should_decontaminate": false,
2010
+ "metadata": {
2011
+ "version": 0.0
2012
+ }
2013
+ },
2014
+ "mmlu_nutrition": {
2015
+ "task": "mmlu_nutrition",
2016
+ "task_alias": "nutrition",
2017
+ "group": "mmlu_other",
2018
+ "group_alias": "other",
2019
+ "dataset_path": "hails/mmlu_no_train",
2020
+ "dataset_name": "nutrition",
2021
+ "test_split": "test",
2022
+ "fewshot_split": "dev",
2023
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
2024
+ "doc_to_target": "answer",
2025
+ "doc_to_choice": [
2026
+ "A",
2027
+ "B",
2028
+ "C",
2029
+ "D"
2030
+ ],
2031
+ "description": "The following are multiple choice questions (with answers) about nutrition.\n\n",
2032
+ "target_delimiter": " ",
2033
+ "fewshot_delimiter": "\n\n",
2034
+ "fewshot_config": {
2035
+ "sampler": "first_n"
2036
+ },
2037
+ "num_fewshot": 1,
2038
+ "metric_list": [
2039
+ {
2040
+ "metric": "acc",
2041
+ "aggregation": "mean",
2042
+ "higher_is_better": true
2043
+ }
2044
+ ],
2045
+ "output_type": "multiple_choice",
2046
+ "repeats": 1,
2047
+ "should_decontaminate": false,
2048
+ "metadata": {
2049
+ "version": 0.0
2050
+ }
2051
+ },
2052
+ "mmlu_philosophy": {
2053
+ "task": "mmlu_philosophy",
2054
+ "task_alias": "philosophy",
2055
+ "group": "mmlu_humanities",
2056
+ "group_alias": "humanities",
2057
+ "dataset_path": "hails/mmlu_no_train",
2058
+ "dataset_name": "philosophy",
2059
+ "test_split": "test",
2060
+ "fewshot_split": "dev",
2061
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
2062
+ "doc_to_target": "answer",
2063
+ "doc_to_choice": [
2064
+ "A",
2065
+ "B",
2066
+ "C",
2067
+ "D"
2068
+ ],
2069
+ "description": "The following are multiple choice questions (with answers) about philosophy.\n\n",
2070
+ "target_delimiter": " ",
2071
+ "fewshot_delimiter": "\n\n",
2072
+ "fewshot_config": {
2073
+ "sampler": "first_n"
2074
+ },
2075
+ "num_fewshot": 1,
2076
+ "metric_list": [
2077
+ {
2078
+ "metric": "acc",
2079
+ "aggregation": "mean",
2080
+ "higher_is_better": true
2081
+ }
2082
+ ],
2083
+ "output_type": "multiple_choice",
2084
+ "repeats": 1,
2085
+ "should_decontaminate": false,
2086
+ "metadata": {
2087
+ "version": 0.0
2088
+ }
2089
+ },
2090
+ "mmlu_prehistory": {
2091
+ "task": "mmlu_prehistory",
2092
+ "task_alias": "prehistory",
2093
+ "group": "mmlu_humanities",
2094
+ "group_alias": "humanities",
2095
+ "dataset_path": "hails/mmlu_no_train",
2096
+ "dataset_name": "prehistory",
2097
+ "test_split": "test",
2098
+ "fewshot_split": "dev",
2099
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
2100
+ "doc_to_target": "answer",
2101
+ "doc_to_choice": [
2102
+ "A",
2103
+ "B",
2104
+ "C",
2105
+ "D"
2106
+ ],
2107
+ "description": "The following are multiple choice questions (with answers) about prehistory.\n\n",
2108
+ "target_delimiter": " ",
2109
+ "fewshot_delimiter": "\n\n",
2110
+ "fewshot_config": {
2111
+ "sampler": "first_n"
2112
+ },
2113
+ "num_fewshot": 1,
2114
+ "metric_list": [
2115
+ {
2116
+ "metric": "acc",
2117
+ "aggregation": "mean",
2118
+ "higher_is_better": true
2119
+ }
2120
+ ],
2121
+ "output_type": "multiple_choice",
2122
+ "repeats": 1,
2123
+ "should_decontaminate": false,
2124
+ "metadata": {
2125
+ "version": 0.0
2126
+ }
2127
+ },
2128
+ "mmlu_professional_accounting": {
2129
+ "task": "mmlu_professional_accounting",
2130
+ "task_alias": "professional_accounting",
2131
+ "group": "mmlu_other",
2132
+ "group_alias": "other",
2133
+ "dataset_path": "hails/mmlu_no_train",
2134
+ "dataset_name": "professional_accounting",
2135
+ "test_split": "test",
2136
+ "fewshot_split": "dev",
2137
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
2138
+ "doc_to_target": "answer",
2139
+ "doc_to_choice": [
2140
+ "A",
2141
+ "B",
2142
+ "C",
2143
+ "D"
2144
+ ],
2145
+ "description": "The following are multiple choice questions (with answers) about professional accounting.\n\n",
2146
+ "target_delimiter": " ",
2147
+ "fewshot_delimiter": "\n\n",
2148
+ "fewshot_config": {
2149
+ "sampler": "first_n"
2150
+ },
2151
+ "num_fewshot": 1,
2152
+ "metric_list": [
2153
+ {
2154
+ "metric": "acc",
2155
+ "aggregation": "mean",
2156
+ "higher_is_better": true
2157
+ }
2158
+ ],
2159
+ "output_type": "multiple_choice",
2160
+ "repeats": 1,
2161
+ "should_decontaminate": false,
2162
+ "metadata": {
2163
+ "version": 0.0
2164
+ }
2165
+ },
2166
+ "mmlu_professional_law": {
2167
+ "task": "mmlu_professional_law",
2168
+ "task_alias": "professional_law",
2169
+ "group": "mmlu_humanities",
2170
+ "group_alias": "humanities",
2171
+ "dataset_path": "hails/mmlu_no_train",
2172
+ "dataset_name": "professional_law",
2173
+ "test_split": "test",
2174
+ "fewshot_split": "dev",
2175
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
2176
+ "doc_to_target": "answer",
2177
+ "doc_to_choice": [
2178
+ "A",
2179
+ "B",
2180
+ "C",
2181
+ "D"
2182
+ ],
2183
+ "description": "The following are multiple choice questions (with answers) about professional law.\n\n",
2184
+ "target_delimiter": " ",
2185
+ "fewshot_delimiter": "\n\n",
2186
+ "fewshot_config": {
2187
+ "sampler": "first_n"
2188
+ },
2189
+ "num_fewshot": 1,
2190
+ "metric_list": [
2191
+ {
2192
+ "metric": "acc",
2193
+ "aggregation": "mean",
2194
+ "higher_is_better": true
2195
+ }
2196
+ ],
2197
+ "output_type": "multiple_choice",
2198
+ "repeats": 1,
2199
+ "should_decontaminate": false,
2200
+ "metadata": {
2201
+ "version": 0.0
2202
+ }
2203
+ },
2204
+ "mmlu_professional_medicine": {
2205
+ "task": "mmlu_professional_medicine",
2206
+ "task_alias": "professional_medicine",
2207
+ "group": "mmlu_other",
2208
+ "group_alias": "other",
2209
+ "dataset_path": "hails/mmlu_no_train",
2210
+ "dataset_name": "professional_medicine",
2211
+ "test_split": "test",
2212
+ "fewshot_split": "dev",
2213
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
2214
+ "doc_to_target": "answer",
2215
+ "doc_to_choice": [
2216
+ "A",
2217
+ "B",
2218
+ "C",
2219
+ "D"
2220
+ ],
2221
+ "description": "The following are multiple choice questions (with answers) about professional medicine.\n\n",
2222
+ "target_delimiter": " ",
2223
+ "fewshot_delimiter": "\n\n",
2224
+ "fewshot_config": {
2225
+ "sampler": "first_n"
2226
+ },
2227
+ "num_fewshot": 1,
2228
+ "metric_list": [
2229
+ {
2230
+ "metric": "acc",
2231
+ "aggregation": "mean",
2232
+ "higher_is_better": true
2233
+ }
2234
+ ],
2235
+ "output_type": "multiple_choice",
2236
+ "repeats": 1,
2237
+ "should_decontaminate": false,
2238
+ "metadata": {
2239
+ "version": 0.0
2240
+ }
2241
+ },
2242
+ "mmlu_professional_psychology": {
2243
+ "task": "mmlu_professional_psychology",
2244
+ "task_alias": "professional_psychology",
2245
+ "group": "mmlu_social_sciences",
2246
+ "group_alias": "social_sciences",
2247
+ "dataset_path": "hails/mmlu_no_train",
2248
+ "dataset_name": "professional_psychology",
2249
+ "test_split": "test",
2250
+ "fewshot_split": "dev",
2251
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
2252
+ "doc_to_target": "answer",
2253
+ "doc_to_choice": [
2254
+ "A",
2255
+ "B",
2256
+ "C",
2257
+ "D"
2258
+ ],
2259
+ "description": "The following are multiple choice questions (with answers) about professional psychology.\n\n",
2260
+ "target_delimiter": " ",
2261
+ "fewshot_delimiter": "\n\n",
2262
+ "fewshot_config": {
2263
+ "sampler": "first_n"
2264
+ },
2265
+ "num_fewshot": 1,
2266
+ "metric_list": [
2267
+ {
2268
+ "metric": "acc",
2269
+ "aggregation": "mean",
2270
+ "higher_is_better": true
2271
+ }
2272
+ ],
2273
+ "output_type": "multiple_choice",
2274
+ "repeats": 1,
2275
+ "should_decontaminate": false,
2276
+ "metadata": {
2277
+ "version": 0.0
2278
+ }
2279
+ },
2280
+ "mmlu_public_relations": {
2281
+ "task": "mmlu_public_relations",
2282
+ "task_alias": "public_relations",
2283
+ "group": "mmlu_social_sciences",
2284
+ "group_alias": "social_sciences",
2285
+ "dataset_path": "hails/mmlu_no_train",
2286
+ "dataset_name": "public_relations",
2287
+ "test_split": "test",
2288
+ "fewshot_split": "dev",
2289
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
2290
+ "doc_to_target": "answer",
2291
+ "doc_to_choice": [
2292
+ "A",
2293
+ "B",
2294
+ "C",
2295
+ "D"
2296
+ ],
2297
+ "description": "The following are multiple choice questions (with answers) about public relations.\n\n",
2298
+ "target_delimiter": " ",
2299
+ "fewshot_delimiter": "\n\n",
2300
+ "fewshot_config": {
2301
+ "sampler": "first_n"
2302
+ },
2303
+ "num_fewshot": 1,
2304
+ "metric_list": [
2305
+ {
2306
+ "metric": "acc",
2307
+ "aggregation": "mean",
2308
+ "higher_is_better": true
2309
+ }
2310
+ ],
2311
+ "output_type": "multiple_choice",
2312
+ "repeats": 1,
2313
+ "should_decontaminate": false,
2314
+ "metadata": {
2315
+ "version": 0.0
2316
+ }
2317
+ },
2318
+ "mmlu_security_studies": {
2319
+ "task": "mmlu_security_studies",
2320
+ "task_alias": "security_studies",
2321
+ "group": "mmlu_social_sciences",
2322
+ "group_alias": "social_sciences",
2323
+ "dataset_path": "hails/mmlu_no_train",
2324
+ "dataset_name": "security_studies",
2325
+ "test_split": "test",
2326
+ "fewshot_split": "dev",
2327
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
2328
+ "doc_to_target": "answer",
2329
+ "doc_to_choice": [
2330
+ "A",
2331
+ "B",
2332
+ "C",
2333
+ "D"
2334
+ ],
2335
+ "description": "The following are multiple choice questions (with answers) about security studies.\n\n",
2336
+ "target_delimiter": " ",
2337
+ "fewshot_delimiter": "\n\n",
2338
+ "fewshot_config": {
2339
+ "sampler": "first_n"
2340
+ },
2341
+ "num_fewshot": 1,
2342
+ "metric_list": [
2343
+ {
2344
+ "metric": "acc",
2345
+ "aggregation": "mean",
2346
+ "higher_is_better": true
2347
+ }
2348
+ ],
2349
+ "output_type": "multiple_choice",
2350
+ "repeats": 1,
2351
+ "should_decontaminate": false,
2352
+ "metadata": {
2353
+ "version": 0.0
2354
+ }
2355
+ },
2356
+ "mmlu_sociology": {
2357
+ "task": "mmlu_sociology",
2358
+ "task_alias": "sociology",
2359
+ "group": "mmlu_social_sciences",
2360
+ "group_alias": "social_sciences",
2361
+ "dataset_path": "hails/mmlu_no_train",
2362
+ "dataset_name": "sociology",
2363
+ "test_split": "test",
2364
+ "fewshot_split": "dev",
2365
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
2366
+ "doc_to_target": "answer",
2367
+ "doc_to_choice": [
2368
+ "A",
2369
+ "B",
2370
+ "C",
2371
+ "D"
2372
+ ],
2373
+ "description": "The following are multiple choice questions (with answers) about sociology.\n\n",
2374
+ "target_delimiter": " ",
2375
+ "fewshot_delimiter": "\n\n",
2376
+ "fewshot_config": {
2377
+ "sampler": "first_n"
2378
+ },
2379
+ "num_fewshot": 1,
2380
+ "metric_list": [
2381
+ {
2382
+ "metric": "acc",
2383
+ "aggregation": "mean",
2384
+ "higher_is_better": true
2385
+ }
2386
+ ],
2387
+ "output_type": "multiple_choice",
2388
+ "repeats": 1,
2389
+ "should_decontaminate": false,
2390
+ "metadata": {
2391
+ "version": 0.0
2392
+ }
2393
+ },
2394
+ "mmlu_us_foreign_policy": {
2395
+ "task": "mmlu_us_foreign_policy",
2396
+ "task_alias": "us_foreign_policy",
2397
+ "group": "mmlu_social_sciences",
2398
+ "group_alias": "social_sciences",
2399
+ "dataset_path": "hails/mmlu_no_train",
2400
+ "dataset_name": "us_foreign_policy",
2401
+ "test_split": "test",
2402
+ "fewshot_split": "dev",
2403
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
2404
+ "doc_to_target": "answer",
2405
+ "doc_to_choice": [
2406
+ "A",
2407
+ "B",
2408
+ "C",
2409
+ "D"
2410
+ ],
2411
+ "description": "The following are multiple choice questions (with answers) about us foreign policy.\n\n",
2412
+ "target_delimiter": " ",
2413
+ "fewshot_delimiter": "\n\n",
2414
+ "fewshot_config": {
2415
+ "sampler": "first_n"
2416
+ },
2417
+ "num_fewshot": 1,
2418
+ "metric_list": [
2419
+ {
2420
+ "metric": "acc",
2421
+ "aggregation": "mean",
2422
+ "higher_is_better": true
2423
+ }
2424
+ ],
2425
+ "output_type": "multiple_choice",
2426
+ "repeats": 1,
2427
+ "should_decontaminate": false,
2428
+ "metadata": {
2429
+ "version": 0.0
2430
+ }
2431
+ },
2432
+ "mmlu_virology": {
2433
+ "task": "mmlu_virology",
2434
+ "task_alias": "virology",
2435
+ "group": "mmlu_other",
2436
+ "group_alias": "other",
2437
+ "dataset_path": "hails/mmlu_no_train",
2438
+ "dataset_name": "virology",
2439
+ "test_split": "test",
2440
+ "fewshot_split": "dev",
2441
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
2442
+ "doc_to_target": "answer",
2443
+ "doc_to_choice": [
2444
+ "A",
2445
+ "B",
2446
+ "C",
2447
+ "D"
2448
+ ],
2449
+ "description": "The following are multiple choice questions (with answers) about virology.\n\n",
2450
+ "target_delimiter": " ",
2451
+ "fewshot_delimiter": "\n\n",
2452
+ "fewshot_config": {
2453
+ "sampler": "first_n"
2454
+ },
2455
+ "num_fewshot": 1,
2456
+ "metric_list": [
2457
+ {
2458
+ "metric": "acc",
2459
+ "aggregation": "mean",
2460
+ "higher_is_better": true
2461
+ }
2462
+ ],
2463
+ "output_type": "multiple_choice",
2464
+ "repeats": 1,
2465
+ "should_decontaminate": false,
2466
+ "metadata": {
2467
+ "version": 0.0
2468
+ }
2469
+ },
2470
+ "mmlu_world_religions": {
2471
+ "task": "mmlu_world_religions",
2472
+ "task_alias": "world_religions",
2473
+ "group": "mmlu_humanities",
2474
+ "group_alias": "humanities",
2475
+ "dataset_path": "hails/mmlu_no_train",
2476
+ "dataset_name": "world_religions",
2477
+ "test_split": "test",
2478
+ "fewshot_split": "dev",
2479
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
2480
+ "doc_to_target": "answer",
2481
+ "doc_to_choice": [
2482
+ "A",
2483
+ "B",
2484
+ "C",
2485
+ "D"
2486
+ ],
2487
+ "description": "The following are multiple choice questions (with answers) about world religions.\n\n",
2488
+ "target_delimiter": " ",
2489
+ "fewshot_delimiter": "\n\n",
2490
+ "fewshot_config": {
2491
+ "sampler": "first_n"
2492
+ },
2493
+ "num_fewshot": 1,
2494
+ "metric_list": [
2495
+ {
2496
+ "metric": "acc",
2497
+ "aggregation": "mean",
2498
+ "higher_is_better": true
2499
+ }
2500
+ ],
2501
+ "output_type": "multiple_choice",
2502
+ "repeats": 1,
2503
+ "should_decontaminate": false,
2504
+ "metadata": {
2505
+ "version": 0.0
2506
+ }
2507
+ }
2508
+ },
2509
+ "versions": {
2510
+ "mmlu": "N/A",
2511
+ "mmlu_abstract_algebra": 0.0,
2512
+ "mmlu_anatomy": 0.0,
2513
+ "mmlu_astronomy": 0.0,
2514
+ "mmlu_business_ethics": 0.0,
2515
+ "mmlu_clinical_knowledge": 0.0,
2516
+ "mmlu_college_biology": 0.0,
2517
+ "mmlu_college_chemistry": 0.0,
2518
+ "mmlu_college_computer_science": 0.0,
2519
+ "mmlu_college_mathematics": 0.0,
2520
+ "mmlu_college_medicine": 0.0,
2521
+ "mmlu_college_physics": 0.0,
2522
+ "mmlu_computer_security": 0.0,
2523
+ "mmlu_conceptual_physics": 0.0,
2524
+ "mmlu_econometrics": 0.0,
2525
+ "mmlu_electrical_engineering": 0.0,
2526
+ "mmlu_elementary_mathematics": 0.0,
2527
+ "mmlu_formal_logic": 0.0,
2528
+ "mmlu_global_facts": 0.0,
2529
+ "mmlu_high_school_biology": 0.0,
2530
+ "mmlu_high_school_chemistry": 0.0,
2531
+ "mmlu_high_school_computer_science": 0.0,
2532
+ "mmlu_high_school_european_history": 0.0,
2533
+ "mmlu_high_school_geography": 0.0,
2534
+ "mmlu_high_school_government_and_politics": 0.0,
2535
+ "mmlu_high_school_macroeconomics": 0.0,
2536
+ "mmlu_high_school_mathematics": 0.0,
2537
+ "mmlu_high_school_microeconomics": 0.0,
2538
+ "mmlu_high_school_physics": 0.0,
2539
+ "mmlu_high_school_psychology": 0.0,
2540
+ "mmlu_high_school_statistics": 0.0,
2541
+ "mmlu_high_school_us_history": 0.0,
2542
+ "mmlu_high_school_world_history": 0.0,
2543
+ "mmlu_human_aging": 0.0,
2544
+ "mmlu_human_sexuality": 0.0,
2545
+ "mmlu_humanities": "N/A",
2546
+ "mmlu_international_law": 0.0,
2547
+ "mmlu_jurisprudence": 0.0,
2548
+ "mmlu_logical_fallacies": 0.0,
2549
+ "mmlu_machine_learning": 0.0,
2550
+ "mmlu_management": 0.0,
2551
+ "mmlu_marketing": 0.0,
2552
+ "mmlu_medical_genetics": 0.0,
2553
+ "mmlu_miscellaneous": 0.0,
2554
+ "mmlu_moral_disputes": 0.0,
2555
+ "mmlu_moral_scenarios": 0.0,
2556
+ "mmlu_nutrition": 0.0,
2557
+ "mmlu_other": "N/A",
2558
+ "mmlu_philosophy": 0.0,
2559
+ "mmlu_prehistory": 0.0,
2560
+ "mmlu_professional_accounting": 0.0,
2561
+ "mmlu_professional_law": 0.0,
2562
+ "mmlu_professional_medicine": 0.0,
2563
+ "mmlu_professional_psychology": 0.0,
2564
+ "mmlu_public_relations": 0.0,
2565
+ "mmlu_security_studies": 0.0,
2566
+ "mmlu_social_sciences": "N/A",
2567
+ "mmlu_sociology": 0.0,
2568
+ "mmlu_stem": "N/A",
2569
+ "mmlu_us_foreign_policy": 0.0,
2570
+ "mmlu_virology": 0.0,
2571
+ "mmlu_world_religions": 0.0
2572
+ },
2573
+ "n-shot": {
2574
+ "mmlu": 0,
2575
+ "mmlu_abstract_algebra": 1,
2576
+ "mmlu_anatomy": 1,
2577
+ "mmlu_astronomy": 1,
2578
+ "mmlu_business_ethics": 1,
2579
+ "mmlu_clinical_knowledge": 1,
2580
+ "mmlu_college_biology": 1,
2581
+ "mmlu_college_chemistry": 1,
2582
+ "mmlu_college_computer_science": 1,
2583
+ "mmlu_college_mathematics": 1,
2584
+ "mmlu_college_medicine": 1,
2585
+ "mmlu_college_physics": 1,
2586
+ "mmlu_computer_security": 1,
2587
+ "mmlu_conceptual_physics": 1,
2588
+ "mmlu_econometrics": 1,
2589
+ "mmlu_electrical_engineering": 1,
2590
+ "mmlu_elementary_mathematics": 1,
2591
+ "mmlu_formal_logic": 1,
2592
+ "mmlu_global_facts": 1,
2593
+ "mmlu_high_school_biology": 1,
2594
+ "mmlu_high_school_chemistry": 1,
2595
+ "mmlu_high_school_computer_science": 1,
2596
+ "mmlu_high_school_european_history": 1,
2597
+ "mmlu_high_school_geography": 1,
2598
+ "mmlu_high_school_government_and_politics": 1,
2599
+ "mmlu_high_school_macroeconomics": 1,
2600
+ "mmlu_high_school_mathematics": 1,
2601
+ "mmlu_high_school_microeconomics": 1,
2602
+ "mmlu_high_school_physics": 1,
2603
+ "mmlu_high_school_psychology": 1,
2604
+ "mmlu_high_school_statistics": 1,
2605
+ "mmlu_high_school_us_history": 1,
2606
+ "mmlu_high_school_world_history": 1,
2607
+ "mmlu_human_aging": 1,
2608
+ "mmlu_human_sexuality": 1,
2609
+ "mmlu_humanities": 1,
2610
+ "mmlu_international_law": 1,
2611
+ "mmlu_jurisprudence": 1,
2612
+ "mmlu_logical_fallacies": 1,
2613
+ "mmlu_machine_learning": 1,
2614
+ "mmlu_management": 1,
2615
+ "mmlu_marketing": 1,
2616
+ "mmlu_medical_genetics": 1,
2617
+ "mmlu_miscellaneous": 1,
2618
+ "mmlu_moral_disputes": 1,
2619
+ "mmlu_moral_scenarios": 1,
2620
+ "mmlu_nutrition": 1,
2621
+ "mmlu_other": 1,
2622
+ "mmlu_philosophy": 1,
2623
+ "mmlu_prehistory": 1,
2624
+ "mmlu_professional_accounting": 1,
2625
+ "mmlu_professional_law": 1,
2626
+ "mmlu_professional_medicine": 1,
2627
+ "mmlu_professional_psychology": 1,
2628
+ "mmlu_public_relations": 1,
2629
+ "mmlu_security_studies": 1,
2630
+ "mmlu_social_sciences": 1,
2631
+ "mmlu_sociology": 1,
2632
+ "mmlu_stem": 1,
2633
+ "mmlu_us_foreign_policy": 1,
2634
+ "mmlu_virology": 1,
2635
+ "mmlu_world_religions": 1
2636
+ },
2637
+ "config": {
2638
+ "model": "hf",
2639
+ "model_args": "pretrained=RWKV/HF_v5-Eagle-7B,dtype=bfloat16,trust_remote_code=True",
2640
+ "batch_size": "auto",
2641
+ "batch_sizes": [
2642
+ 8
2643
+ ],
2644
+ "device": null,
2645
+ "use_cache": null,
2646
+ "limit": null,
2647
+ "bootstrap_iters": 100000,
2648
+ "gen_kwargs": null
2649
+ },
2650
+ "git_hash": "99f5004"
2651
+ }
lm-eval-output/RWKV/HF_v5-Eagle-7B/mmlu/dtype=bfloat16,trust_remote_code=True-num_fewshot=1-nvidia-gpu/taskrun.log ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:768cc781ddadfc2facadcf85ce04baf47884a6afe7a9cef096723cbc2f33ec79
3
+ size 202406
lm-eval-output/RWKV/HF_v5-Eagle-7B/mmlu/dtype=bfloat16,trust_remote_code=True-num_fewshot=2-nvidia-gpu/result-jsonl.tar.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fc6c38be49f0b3b4a03fedc0a1410bfeaf269992fc95176221e69320d9cafbc0
3
+ size 4479812
lm-eval-output/RWKV/HF_v5-Eagle-7B/mmlu/dtype=bfloat16,trust_remote_code=True-num_fewshot=2-nvidia-gpu/results.json ADDED
@@ -0,0 +1,2651 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "mmlu": {
4
+ "acc,none": 0.30558325024925226,
5
+ "acc_stderr,none": 0.05316561692035,
6
+ "alias": "mmlu"
7
+ },
8
+ "mmlu_humanities": {
9
+ "alias": " - humanities",
10
+ "acc,none": 0.2945802337938363,
11
+ "acc_stderr,none": 0.052104989652710335
12
+ },
13
+ "mmlu_formal_logic": {
14
+ "alias": " - formal_logic",
15
+ "acc,none": 0.29365079365079366,
16
+ "acc_stderr,none": 0.04073524322147126
17
+ },
18
+ "mmlu_high_school_european_history": {
19
+ "alias": " - high_school_european_history",
20
+ "acc,none": 0.41818181818181815,
21
+ "acc_stderr,none": 0.03851716319398395
22
+ },
23
+ "mmlu_high_school_us_history": {
24
+ "alias": " - high_school_us_history",
25
+ "acc,none": 0.3382352941176471,
26
+ "acc_stderr,none": 0.03320574612945432
27
+ },
28
+ "mmlu_high_school_world_history": {
29
+ "alias": " - high_school_world_history",
30
+ "acc,none": 0.3924050632911392,
31
+ "acc_stderr,none": 0.03178471874564729
32
+ },
33
+ "mmlu_international_law": {
34
+ "alias": " - international_law",
35
+ "acc,none": 0.2809917355371901,
36
+ "acc_stderr,none": 0.04103203830514512
37
+ },
38
+ "mmlu_jurisprudence": {
39
+ "alias": " - jurisprudence",
40
+ "acc,none": 0.3425925925925926,
41
+ "acc_stderr,none": 0.045879047413018105
42
+ },
43
+ "mmlu_logical_fallacies": {
44
+ "alias": " - logical_fallacies",
45
+ "acc,none": 0.25766871165644173,
46
+ "acc_stderr,none": 0.03436150827846917
47
+ },
48
+ "mmlu_moral_disputes": {
49
+ "alias": " - moral_disputes",
50
+ "acc,none": 0.3236994219653179,
51
+ "acc_stderr,none": 0.025190181327608422
52
+ },
53
+ "mmlu_moral_scenarios": {
54
+ "alias": " - moral_scenarios",
55
+ "acc,none": 0.23575418994413408,
56
+ "acc_stderr,none": 0.014196375686290804
57
+ },
58
+ "mmlu_philosophy": {
59
+ "alias": " - philosophy",
60
+ "acc,none": 0.28938906752411575,
61
+ "acc_stderr,none": 0.025755865922632924
62
+ },
63
+ "mmlu_prehistory": {
64
+ "alias": " - prehistory",
65
+ "acc,none": 0.36419753086419754,
66
+ "acc_stderr,none": 0.026774929899722334
67
+ },
68
+ "mmlu_professional_law": {
69
+ "alias": " - professional_law",
70
+ "acc,none": 0.26597131681877445,
71
+ "acc_stderr,none": 0.011285033165551276
72
+ },
73
+ "mmlu_world_religions": {
74
+ "alias": " - world_religions",
75
+ "acc,none": 0.38596491228070173,
76
+ "acc_stderr,none": 0.03733756969066164
77
+ },
78
+ "mmlu_other": {
79
+ "alias": " - other",
80
+ "acc,none": 0.3118764081107178,
81
+ "acc_stderr,none": 0.036246652839496706
82
+ },
83
+ "mmlu_business_ethics": {
84
+ "alias": " - business_ethics",
85
+ "acc,none": 0.31,
86
+ "acc_stderr,none": 0.046482319871173156
87
+ },
88
+ "mmlu_clinical_knowledge": {
89
+ "alias": " - clinical_knowledge",
90
+ "acc,none": 0.30943396226415093,
91
+ "acc_stderr,none": 0.028450154794118627
92
+ },
93
+ "mmlu_college_medicine": {
94
+ "alias": " - college_medicine",
95
+ "acc,none": 0.24855491329479767,
96
+ "acc_stderr,none": 0.03295304696818318
97
+ },
98
+ "mmlu_global_facts": {
99
+ "alias": " - global_facts",
100
+ "acc,none": 0.32,
101
+ "acc_stderr,none": 0.046882617226215034
102
+ },
103
+ "mmlu_human_aging": {
104
+ "alias": " - human_aging",
105
+ "acc,none": 0.3004484304932735,
106
+ "acc_stderr,none": 0.030769352008229136
107
+ },
108
+ "mmlu_management": {
109
+ "alias": " - management",
110
+ "acc,none": 0.3300970873786408,
111
+ "acc_stderr,none": 0.0465614711001235
112
+ },
113
+ "mmlu_marketing": {
114
+ "alias": " - marketing",
115
+ "acc,none": 0.36324786324786323,
116
+ "acc_stderr,none": 0.03150712523091264
117
+ },
118
+ "mmlu_medical_genetics": {
119
+ "alias": " - medical_genetics",
120
+ "acc,none": 0.3,
121
+ "acc_stderr,none": 0.046056618647183814
122
+ },
123
+ "mmlu_miscellaneous": {
124
+ "alias": " - miscellaneous",
125
+ "acc,none": 0.31800766283524906,
126
+ "acc_stderr,none": 0.016653486275615394
127
+ },
128
+ "mmlu_nutrition": {
129
+ "alias": " - nutrition",
130
+ "acc,none": 0.3300653594771242,
131
+ "acc_stderr,none": 0.02692565465361569
132
+ },
133
+ "mmlu_professional_accounting": {
134
+ "alias": " - professional_accounting",
135
+ "acc,none": 0.25886524822695034,
136
+ "acc_stderr,none": 0.026129572527180848
137
+ },
138
+ "mmlu_professional_medicine": {
139
+ "alias": " - professional_medicine",
140
+ "acc,none": 0.3125,
141
+ "acc_stderr,none": 0.02815637344037142
142
+ },
143
+ "mmlu_virology": {
144
+ "alias": " - virology",
145
+ "acc,none": 0.3433734939759036,
146
+ "acc_stderr,none": 0.03696584317010601
147
+ },
148
+ "mmlu_social_sciences": {
149
+ "alias": " - social_sciences",
150
+ "acc,none": 0.31979200519987006,
151
+ "acc_stderr,none": 0.0561340687383002
152
+ },
153
+ "mmlu_econometrics": {
154
+ "alias": " - econometrics",
155
+ "acc,none": 0.2543859649122807,
156
+ "acc_stderr,none": 0.040969851398436716
157
+ },
158
+ "mmlu_high_school_geography": {
159
+ "alias": " - high_school_geography",
160
+ "acc,none": 0.36363636363636365,
161
+ "acc_stderr,none": 0.03427308652999936
162
+ },
163
+ "mmlu_high_school_government_and_politics": {
164
+ "alias": " - high_school_government_and_politics",
165
+ "acc,none": 0.29533678756476683,
166
+ "acc_stderr,none": 0.03292296639155139
167
+ },
168
+ "mmlu_high_school_macroeconomics": {
169
+ "alias": " - high_school_macroeconomics",
170
+ "acc,none": 0.3128205128205128,
171
+ "acc_stderr,none": 0.023507579020645365
172
+ },
173
+ "mmlu_high_school_microeconomics": {
174
+ "alias": " - high_school_microeconomics",
175
+ "acc,none": 0.25210084033613445,
176
+ "acc_stderr,none": 0.02820554503327773
177
+ },
178
+ "mmlu_high_school_psychology": {
179
+ "alias": " - high_school_psychology",
180
+ "acc,none": 0.29357798165137616,
181
+ "acc_stderr,none": 0.01952515112263966
182
+ },
183
+ "mmlu_human_sexuality": {
184
+ "alias": " - human_sexuality",
185
+ "acc,none": 0.4198473282442748,
186
+ "acc_stderr,none": 0.04328577215262972
187
+ },
188
+ "mmlu_professional_psychology": {
189
+ "alias": " - professional_psychology",
190
+ "acc,none": 0.28431372549019607,
191
+ "acc_stderr,none": 0.01824902441120767
192
+ },
193
+ "mmlu_public_relations": {
194
+ "alias": " - public_relations",
195
+ "acc,none": 0.35454545454545455,
196
+ "acc_stderr,none": 0.045820048415054174
197
+ },
198
+ "mmlu_security_studies": {
199
+ "alias": " - security_studies",
200
+ "acc,none": 0.4489795918367347,
201
+ "acc_stderr,none": 0.03184213866687579
202
+ },
203
+ "mmlu_sociology": {
204
+ "alias": " - sociology",
205
+ "acc,none": 0.34328358208955223,
206
+ "acc_stderr,none": 0.03357379665433431
207
+ },
208
+ "mmlu_us_foreign_policy": {
209
+ "alias": " - us_foreign_policy",
210
+ "acc,none": 0.37,
211
+ "acc_stderr,none": 0.048523658709391
212
+ },
213
+ "mmlu_stem": {
214
+ "alias": " - stem",
215
+ "acc,none": 0.30193466539803365,
216
+ "acc_stderr,none": 0.06327068110464068
217
+ },
218
+ "mmlu_abstract_algebra": {
219
+ "alias": " - abstract_algebra",
220
+ "acc,none": 0.24,
221
+ "acc_stderr,none": 0.04292346959909283
222
+ },
223
+ "mmlu_anatomy": {
224
+ "alias": " - anatomy",
225
+ "acc,none": 0.3333333333333333,
226
+ "acc_stderr,none": 0.04072314811876837
227
+ },
228
+ "mmlu_astronomy": {
229
+ "alias": " - astronomy",
230
+ "acc,none": 0.3618421052631579,
231
+ "acc_stderr,none": 0.03910525752849725
232
+ },
233
+ "mmlu_college_biology": {
234
+ "alias": " - college_biology",
235
+ "acc,none": 0.3680555555555556,
236
+ "acc_stderr,none": 0.04032999053960719
237
+ },
238
+ "mmlu_college_chemistry": {
239
+ "alias": " - college_chemistry",
240
+ "acc,none": 0.41,
241
+ "acc_stderr,none": 0.04943110704237102
242
+ },
243
+ "mmlu_college_computer_science": {
244
+ "alias": " - college_computer_science",
245
+ "acc,none": 0.35,
246
+ "acc_stderr,none": 0.04793724854411018
247
+ },
248
+ "mmlu_college_mathematics": {
249
+ "alias": " - college_mathematics",
250
+ "acc,none": 0.28,
251
+ "acc_stderr,none": 0.04512608598542127
252
+ },
253
+ "mmlu_college_physics": {
254
+ "alias": " - college_physics",
255
+ "acc,none": 0.22549019607843138,
256
+ "acc_stderr,none": 0.041583075330832865
257
+ },
258
+ "mmlu_computer_security": {
259
+ "alias": " - computer_security",
260
+ "acc,none": 0.35,
261
+ "acc_stderr,none": 0.0479372485441102
262
+ },
263
+ "mmlu_conceptual_physics": {
264
+ "alias": " - conceptual_physics",
265
+ "acc,none": 0.3574468085106383,
266
+ "acc_stderr,none": 0.03132941789476425
267
+ },
268
+ "mmlu_electrical_engineering": {
269
+ "alias": " - electrical_engineering",
270
+ "acc,none": 0.32413793103448274,
271
+ "acc_stderr,none": 0.03900432069185554
272
+ },
273
+ "mmlu_elementary_mathematics": {
274
+ "alias": " - elementary_mathematics",
275
+ "acc,none": 0.2751322751322751,
276
+ "acc_stderr,none": 0.023000086859068646
277
+ },
278
+ "mmlu_high_school_biology": {
279
+ "alias": " - high_school_biology",
280
+ "acc,none": 0.3741935483870968,
281
+ "acc_stderr,none": 0.02752890429984578
282
+ },
283
+ "mmlu_high_school_chemistry": {
284
+ "alias": " - high_school_chemistry",
285
+ "acc,none": 0.29064039408866993,
286
+ "acc_stderr,none": 0.0319474007226554
287
+ },
288
+ "mmlu_high_school_computer_science": {
289
+ "alias": " - high_school_computer_science",
290
+ "acc,none": 0.28,
291
+ "acc_stderr,none": 0.04512608598542128
292
+ },
293
+ "mmlu_high_school_mathematics": {
294
+ "alias": " - high_school_mathematics",
295
+ "acc,none": 0.26296296296296295,
296
+ "acc_stderr,none": 0.026842057873833706
297
+ },
298
+ "mmlu_high_school_physics": {
299
+ "alias": " - high_school_physics",
300
+ "acc,none": 0.2119205298013245,
301
+ "acc_stderr,none": 0.03336767086567977
302
+ },
303
+ "mmlu_high_school_statistics": {
304
+ "alias": " - high_school_statistics",
305
+ "acc,none": 0.2175925925925926,
306
+ "acc_stderr,none": 0.028139689444859683
307
+ },
308
+ "mmlu_machine_learning": {
309
+ "alias": " - machine_learning",
310
+ "acc,none": 0.22321428571428573,
311
+ "acc_stderr,none": 0.039523019677025116
312
+ }
313
+ },
314
+ "groups": {
315
+ "mmlu": {
316
+ "acc,none": 0.30558325024925226,
317
+ "acc_stderr,none": 0.05316561692035,
318
+ "alias": "mmlu"
319
+ },
320
+ "mmlu_humanities": {
321
+ "alias": " - humanities",
322
+ "acc,none": 0.2945802337938363,
323
+ "acc_stderr,none": 0.052104989652710335
324
+ },
325
+ "mmlu_other": {
326
+ "alias": " - other",
327
+ "acc,none": 0.3118764081107178,
328
+ "acc_stderr,none": 0.036246652839496706
329
+ },
330
+ "mmlu_social_sciences": {
331
+ "alias": " - social_sciences",
332
+ "acc,none": 0.31979200519987006,
333
+ "acc_stderr,none": 0.0561340687383002
334
+ },
335
+ "mmlu_stem": {
336
+ "alias": " - stem",
337
+ "acc,none": 0.30193466539803365,
338
+ "acc_stderr,none": 0.06327068110464068
339
+ }
340
+ },
341
+ "configs": {
342
+ "mmlu_abstract_algebra": {
343
+ "task": "mmlu_abstract_algebra",
344
+ "task_alias": "abstract_algebra",
345
+ "group": "mmlu_stem",
346
+ "group_alias": "stem",
347
+ "dataset_path": "hails/mmlu_no_train",
348
+ "dataset_name": "abstract_algebra",
349
+ "test_split": "test",
350
+ "fewshot_split": "dev",
351
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
352
+ "doc_to_target": "answer",
353
+ "doc_to_choice": [
354
+ "A",
355
+ "B",
356
+ "C",
357
+ "D"
358
+ ],
359
+ "description": "The following are multiple choice questions (with answers) about abstract algebra.\n\n",
360
+ "target_delimiter": " ",
361
+ "fewshot_delimiter": "\n\n",
362
+ "fewshot_config": {
363
+ "sampler": "first_n"
364
+ },
365
+ "num_fewshot": 2,
366
+ "metric_list": [
367
+ {
368
+ "metric": "acc",
369
+ "aggregation": "mean",
370
+ "higher_is_better": true
371
+ }
372
+ ],
373
+ "output_type": "multiple_choice",
374
+ "repeats": 1,
375
+ "should_decontaminate": false,
376
+ "metadata": {
377
+ "version": 0.0
378
+ }
379
+ },
380
+ "mmlu_anatomy": {
381
+ "task": "mmlu_anatomy",
382
+ "task_alias": "anatomy",
383
+ "group": "mmlu_stem",
384
+ "group_alias": "stem",
385
+ "dataset_path": "hails/mmlu_no_train",
386
+ "dataset_name": "anatomy",
387
+ "test_split": "test",
388
+ "fewshot_split": "dev",
389
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
390
+ "doc_to_target": "answer",
391
+ "doc_to_choice": [
392
+ "A",
393
+ "B",
394
+ "C",
395
+ "D"
396
+ ],
397
+ "description": "The following are multiple choice questions (with answers) about anatomy.\n\n",
398
+ "target_delimiter": " ",
399
+ "fewshot_delimiter": "\n\n",
400
+ "fewshot_config": {
401
+ "sampler": "first_n"
402
+ },
403
+ "num_fewshot": 2,
404
+ "metric_list": [
405
+ {
406
+ "metric": "acc",
407
+ "aggregation": "mean",
408
+ "higher_is_better": true
409
+ }
410
+ ],
411
+ "output_type": "multiple_choice",
412
+ "repeats": 1,
413
+ "should_decontaminate": false,
414
+ "metadata": {
415
+ "version": 0.0
416
+ }
417
+ },
418
+ "mmlu_astronomy": {
419
+ "task": "mmlu_astronomy",
420
+ "task_alias": "astronomy",
421
+ "group": "mmlu_stem",
422
+ "group_alias": "stem",
423
+ "dataset_path": "hails/mmlu_no_train",
424
+ "dataset_name": "astronomy",
425
+ "test_split": "test",
426
+ "fewshot_split": "dev",
427
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
428
+ "doc_to_target": "answer",
429
+ "doc_to_choice": [
430
+ "A",
431
+ "B",
432
+ "C",
433
+ "D"
434
+ ],
435
+ "description": "The following are multiple choice questions (with answers) about astronomy.\n\n",
436
+ "target_delimiter": " ",
437
+ "fewshot_delimiter": "\n\n",
438
+ "fewshot_config": {
439
+ "sampler": "first_n"
440
+ },
441
+ "num_fewshot": 2,
442
+ "metric_list": [
443
+ {
444
+ "metric": "acc",
445
+ "aggregation": "mean",
446
+ "higher_is_better": true
447
+ }
448
+ ],
449
+ "output_type": "multiple_choice",
450
+ "repeats": 1,
451
+ "should_decontaminate": false,
452
+ "metadata": {
453
+ "version": 0.0
454
+ }
455
+ },
456
+ "mmlu_business_ethics": {
457
+ "task": "mmlu_business_ethics",
458
+ "task_alias": "business_ethics",
459
+ "group": "mmlu_other",
460
+ "group_alias": "other",
461
+ "dataset_path": "hails/mmlu_no_train",
462
+ "dataset_name": "business_ethics",
463
+ "test_split": "test",
464
+ "fewshot_split": "dev",
465
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
466
+ "doc_to_target": "answer",
467
+ "doc_to_choice": [
468
+ "A",
469
+ "B",
470
+ "C",
471
+ "D"
472
+ ],
473
+ "description": "The following are multiple choice questions (with answers) about business ethics.\n\n",
474
+ "target_delimiter": " ",
475
+ "fewshot_delimiter": "\n\n",
476
+ "fewshot_config": {
477
+ "sampler": "first_n"
478
+ },
479
+ "num_fewshot": 2,
480
+ "metric_list": [
481
+ {
482
+ "metric": "acc",
483
+ "aggregation": "mean",
484
+ "higher_is_better": true
485
+ }
486
+ ],
487
+ "output_type": "multiple_choice",
488
+ "repeats": 1,
489
+ "should_decontaminate": false,
490
+ "metadata": {
491
+ "version": 0.0
492
+ }
493
+ },
494
+ "mmlu_clinical_knowledge": {
495
+ "task": "mmlu_clinical_knowledge",
496
+ "task_alias": "clinical_knowledge",
497
+ "group": "mmlu_other",
498
+ "group_alias": "other",
499
+ "dataset_path": "hails/mmlu_no_train",
500
+ "dataset_name": "clinical_knowledge",
501
+ "test_split": "test",
502
+ "fewshot_split": "dev",
503
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
504
+ "doc_to_target": "answer",
505
+ "doc_to_choice": [
506
+ "A",
507
+ "B",
508
+ "C",
509
+ "D"
510
+ ],
511
+ "description": "The following are multiple choice questions (with answers) about clinical knowledge.\n\n",
512
+ "target_delimiter": " ",
513
+ "fewshot_delimiter": "\n\n",
514
+ "fewshot_config": {
515
+ "sampler": "first_n"
516
+ },
517
+ "num_fewshot": 2,
518
+ "metric_list": [
519
+ {
520
+ "metric": "acc",
521
+ "aggregation": "mean",
522
+ "higher_is_better": true
523
+ }
524
+ ],
525
+ "output_type": "multiple_choice",
526
+ "repeats": 1,
527
+ "should_decontaminate": false,
528
+ "metadata": {
529
+ "version": 0.0
530
+ }
531
+ },
532
+ "mmlu_college_biology": {
533
+ "task": "mmlu_college_biology",
534
+ "task_alias": "college_biology",
535
+ "group": "mmlu_stem",
536
+ "group_alias": "stem",
537
+ "dataset_path": "hails/mmlu_no_train",
538
+ "dataset_name": "college_biology",
539
+ "test_split": "test",
540
+ "fewshot_split": "dev",
541
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
542
+ "doc_to_target": "answer",
543
+ "doc_to_choice": [
544
+ "A",
545
+ "B",
546
+ "C",
547
+ "D"
548
+ ],
549
+ "description": "The following are multiple choice questions (with answers) about college biology.\n\n",
550
+ "target_delimiter": " ",
551
+ "fewshot_delimiter": "\n\n",
552
+ "fewshot_config": {
553
+ "sampler": "first_n"
554
+ },
555
+ "num_fewshot": 2,
556
+ "metric_list": [
557
+ {
558
+ "metric": "acc",
559
+ "aggregation": "mean",
560
+ "higher_is_better": true
561
+ }
562
+ ],
563
+ "output_type": "multiple_choice",
564
+ "repeats": 1,
565
+ "should_decontaminate": false,
566
+ "metadata": {
567
+ "version": 0.0
568
+ }
569
+ },
570
+ "mmlu_college_chemistry": {
571
+ "task": "mmlu_college_chemistry",
572
+ "task_alias": "college_chemistry",
573
+ "group": "mmlu_stem",
574
+ "group_alias": "stem",
575
+ "dataset_path": "hails/mmlu_no_train",
576
+ "dataset_name": "college_chemistry",
577
+ "test_split": "test",
578
+ "fewshot_split": "dev",
579
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
580
+ "doc_to_target": "answer",
581
+ "doc_to_choice": [
582
+ "A",
583
+ "B",
584
+ "C",
585
+ "D"
586
+ ],
587
+ "description": "The following are multiple choice questions (with answers) about college chemistry.\n\n",
588
+ "target_delimiter": " ",
589
+ "fewshot_delimiter": "\n\n",
590
+ "fewshot_config": {
591
+ "sampler": "first_n"
592
+ },
593
+ "num_fewshot": 2,
594
+ "metric_list": [
595
+ {
596
+ "metric": "acc",
597
+ "aggregation": "mean",
598
+ "higher_is_better": true
599
+ }
600
+ ],
601
+ "output_type": "multiple_choice",
602
+ "repeats": 1,
603
+ "should_decontaminate": false,
604
+ "metadata": {
605
+ "version": 0.0
606
+ }
607
+ },
608
+ "mmlu_college_computer_science": {
609
+ "task": "mmlu_college_computer_science",
610
+ "task_alias": "college_computer_science",
611
+ "group": "mmlu_stem",
612
+ "group_alias": "stem",
613
+ "dataset_path": "hails/mmlu_no_train",
614
+ "dataset_name": "college_computer_science",
615
+ "test_split": "test",
616
+ "fewshot_split": "dev",
617
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
618
+ "doc_to_target": "answer",
619
+ "doc_to_choice": [
620
+ "A",
621
+ "B",
622
+ "C",
623
+ "D"
624
+ ],
625
+ "description": "The following are multiple choice questions (with answers) about college computer science.\n\n",
626
+ "target_delimiter": " ",
627
+ "fewshot_delimiter": "\n\n",
628
+ "fewshot_config": {
629
+ "sampler": "first_n"
630
+ },
631
+ "num_fewshot": 2,
632
+ "metric_list": [
633
+ {
634
+ "metric": "acc",
635
+ "aggregation": "mean",
636
+ "higher_is_better": true
637
+ }
638
+ ],
639
+ "output_type": "multiple_choice",
640
+ "repeats": 1,
641
+ "should_decontaminate": false,
642
+ "metadata": {
643
+ "version": 0.0
644
+ }
645
+ },
646
+ "mmlu_college_mathematics": {
647
+ "task": "mmlu_college_mathematics",
648
+ "task_alias": "college_mathematics",
649
+ "group": "mmlu_stem",
650
+ "group_alias": "stem",
651
+ "dataset_path": "hails/mmlu_no_train",
652
+ "dataset_name": "college_mathematics",
653
+ "test_split": "test",
654
+ "fewshot_split": "dev",
655
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
656
+ "doc_to_target": "answer",
657
+ "doc_to_choice": [
658
+ "A",
659
+ "B",
660
+ "C",
661
+ "D"
662
+ ],
663
+ "description": "The following are multiple choice questions (with answers) about college mathematics.\n\n",
664
+ "target_delimiter": " ",
665
+ "fewshot_delimiter": "\n\n",
666
+ "fewshot_config": {
667
+ "sampler": "first_n"
668
+ },
669
+ "num_fewshot": 2,
670
+ "metric_list": [
671
+ {
672
+ "metric": "acc",
673
+ "aggregation": "mean",
674
+ "higher_is_better": true
675
+ }
676
+ ],
677
+ "output_type": "multiple_choice",
678
+ "repeats": 1,
679
+ "should_decontaminate": false,
680
+ "metadata": {
681
+ "version": 0.0
682
+ }
683
+ },
684
+ "mmlu_college_medicine": {
685
+ "task": "mmlu_college_medicine",
686
+ "task_alias": "college_medicine",
687
+ "group": "mmlu_other",
688
+ "group_alias": "other",
689
+ "dataset_path": "hails/mmlu_no_train",
690
+ "dataset_name": "college_medicine",
691
+ "test_split": "test",
692
+ "fewshot_split": "dev",
693
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
694
+ "doc_to_target": "answer",
695
+ "doc_to_choice": [
696
+ "A",
697
+ "B",
698
+ "C",
699
+ "D"
700
+ ],
701
+ "description": "The following are multiple choice questions (with answers) about college medicine.\n\n",
702
+ "target_delimiter": " ",
703
+ "fewshot_delimiter": "\n\n",
704
+ "fewshot_config": {
705
+ "sampler": "first_n"
706
+ },
707
+ "num_fewshot": 2,
708
+ "metric_list": [
709
+ {
710
+ "metric": "acc",
711
+ "aggregation": "mean",
712
+ "higher_is_better": true
713
+ }
714
+ ],
715
+ "output_type": "multiple_choice",
716
+ "repeats": 1,
717
+ "should_decontaminate": false,
718
+ "metadata": {
719
+ "version": 0.0
720
+ }
721
+ },
722
+ "mmlu_college_physics": {
723
+ "task": "mmlu_college_physics",
724
+ "task_alias": "college_physics",
725
+ "group": "mmlu_stem",
726
+ "group_alias": "stem",
727
+ "dataset_path": "hails/mmlu_no_train",
728
+ "dataset_name": "college_physics",
729
+ "test_split": "test",
730
+ "fewshot_split": "dev",
731
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
732
+ "doc_to_target": "answer",
733
+ "doc_to_choice": [
734
+ "A",
735
+ "B",
736
+ "C",
737
+ "D"
738
+ ],
739
+ "description": "The following are multiple choice questions (with answers) about college physics.\n\n",
740
+ "target_delimiter": " ",
741
+ "fewshot_delimiter": "\n\n",
742
+ "fewshot_config": {
743
+ "sampler": "first_n"
744
+ },
745
+ "num_fewshot": 2,
746
+ "metric_list": [
747
+ {
748
+ "metric": "acc",
749
+ "aggregation": "mean",
750
+ "higher_is_better": true
751
+ }
752
+ ],
753
+ "output_type": "multiple_choice",
754
+ "repeats": 1,
755
+ "should_decontaminate": false,
756
+ "metadata": {
757
+ "version": 0.0
758
+ }
759
+ },
760
+ "mmlu_computer_security": {
761
+ "task": "mmlu_computer_security",
762
+ "task_alias": "computer_security",
763
+ "group": "mmlu_stem",
764
+ "group_alias": "stem",
765
+ "dataset_path": "hails/mmlu_no_train",
766
+ "dataset_name": "computer_security",
767
+ "test_split": "test",
768
+ "fewshot_split": "dev",
769
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
770
+ "doc_to_target": "answer",
771
+ "doc_to_choice": [
772
+ "A",
773
+ "B",
774
+ "C",
775
+ "D"
776
+ ],
777
+ "description": "The following are multiple choice questions (with answers) about computer security.\n\n",
778
+ "target_delimiter": " ",
779
+ "fewshot_delimiter": "\n\n",
780
+ "fewshot_config": {
781
+ "sampler": "first_n"
782
+ },
783
+ "num_fewshot": 2,
784
+ "metric_list": [
785
+ {
786
+ "metric": "acc",
787
+ "aggregation": "mean",
788
+ "higher_is_better": true
789
+ }
790
+ ],
791
+ "output_type": "multiple_choice",
792
+ "repeats": 1,
793
+ "should_decontaminate": false,
794
+ "metadata": {
795
+ "version": 0.0
796
+ }
797
+ },
798
+ "mmlu_conceptual_physics": {
799
+ "task": "mmlu_conceptual_physics",
800
+ "task_alias": "conceptual_physics",
801
+ "group": "mmlu_stem",
802
+ "group_alias": "stem",
803
+ "dataset_path": "hails/mmlu_no_train",
804
+ "dataset_name": "conceptual_physics",
805
+ "test_split": "test",
806
+ "fewshot_split": "dev",
807
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
808
+ "doc_to_target": "answer",
809
+ "doc_to_choice": [
810
+ "A",
811
+ "B",
812
+ "C",
813
+ "D"
814
+ ],
815
+ "description": "The following are multiple choice questions (with answers) about conceptual physics.\n\n",
816
+ "target_delimiter": " ",
817
+ "fewshot_delimiter": "\n\n",
818
+ "fewshot_config": {
819
+ "sampler": "first_n"
820
+ },
821
+ "num_fewshot": 2,
822
+ "metric_list": [
823
+ {
824
+ "metric": "acc",
825
+ "aggregation": "mean",
826
+ "higher_is_better": true
827
+ }
828
+ ],
829
+ "output_type": "multiple_choice",
830
+ "repeats": 1,
831
+ "should_decontaminate": false,
832
+ "metadata": {
833
+ "version": 0.0
834
+ }
835
+ },
836
+ "mmlu_econometrics": {
837
+ "task": "mmlu_econometrics",
838
+ "task_alias": "econometrics",
839
+ "group": "mmlu_social_sciences",
840
+ "group_alias": "social_sciences",
841
+ "dataset_path": "hails/mmlu_no_train",
842
+ "dataset_name": "econometrics",
843
+ "test_split": "test",
844
+ "fewshot_split": "dev",
845
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
846
+ "doc_to_target": "answer",
847
+ "doc_to_choice": [
848
+ "A",
849
+ "B",
850
+ "C",
851
+ "D"
852
+ ],
853
+ "description": "The following are multiple choice questions (with answers) about econometrics.\n\n",
854
+ "target_delimiter": " ",
855
+ "fewshot_delimiter": "\n\n",
856
+ "fewshot_config": {
857
+ "sampler": "first_n"
858
+ },
859
+ "num_fewshot": 2,
860
+ "metric_list": [
861
+ {
862
+ "metric": "acc",
863
+ "aggregation": "mean",
864
+ "higher_is_better": true
865
+ }
866
+ ],
867
+ "output_type": "multiple_choice",
868
+ "repeats": 1,
869
+ "should_decontaminate": false,
870
+ "metadata": {
871
+ "version": 0.0
872
+ }
873
+ },
874
+ "mmlu_electrical_engineering": {
875
+ "task": "mmlu_electrical_engineering",
876
+ "task_alias": "electrical_engineering",
877
+ "group": "mmlu_stem",
878
+ "group_alias": "stem",
879
+ "dataset_path": "hails/mmlu_no_train",
880
+ "dataset_name": "electrical_engineering",
881
+ "test_split": "test",
882
+ "fewshot_split": "dev",
883
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
884
+ "doc_to_target": "answer",
885
+ "doc_to_choice": [
886
+ "A",
887
+ "B",
888
+ "C",
889
+ "D"
890
+ ],
891
+ "description": "The following are multiple choice questions (with answers) about electrical engineering.\n\n",
892
+ "target_delimiter": " ",
893
+ "fewshot_delimiter": "\n\n",
894
+ "fewshot_config": {
895
+ "sampler": "first_n"
896
+ },
897
+ "num_fewshot": 2,
898
+ "metric_list": [
899
+ {
900
+ "metric": "acc",
901
+ "aggregation": "mean",
902
+ "higher_is_better": true
903
+ }
904
+ ],
905
+ "output_type": "multiple_choice",
906
+ "repeats": 1,
907
+ "should_decontaminate": false,
908
+ "metadata": {
909
+ "version": 0.0
910
+ }
911
+ },
912
+ "mmlu_elementary_mathematics": {
913
+ "task": "mmlu_elementary_mathematics",
914
+ "task_alias": "elementary_mathematics",
915
+ "group": "mmlu_stem",
916
+ "group_alias": "stem",
917
+ "dataset_path": "hails/mmlu_no_train",
918
+ "dataset_name": "elementary_mathematics",
919
+ "test_split": "test",
920
+ "fewshot_split": "dev",
921
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
922
+ "doc_to_target": "answer",
923
+ "doc_to_choice": [
924
+ "A",
925
+ "B",
926
+ "C",
927
+ "D"
928
+ ],
929
+ "description": "The following are multiple choice questions (with answers) about elementary mathematics.\n\n",
930
+ "target_delimiter": " ",
931
+ "fewshot_delimiter": "\n\n",
932
+ "fewshot_config": {
933
+ "sampler": "first_n"
934
+ },
935
+ "num_fewshot": 2,
936
+ "metric_list": [
937
+ {
938
+ "metric": "acc",
939
+ "aggregation": "mean",
940
+ "higher_is_better": true
941
+ }
942
+ ],
943
+ "output_type": "multiple_choice",
944
+ "repeats": 1,
945
+ "should_decontaminate": false,
946
+ "metadata": {
947
+ "version": 0.0
948
+ }
949
+ },
950
+ "mmlu_formal_logic": {
951
+ "task": "mmlu_formal_logic",
952
+ "task_alias": "formal_logic",
953
+ "group": "mmlu_humanities",
954
+ "group_alias": "humanities",
955
+ "dataset_path": "hails/mmlu_no_train",
956
+ "dataset_name": "formal_logic",
957
+ "test_split": "test",
958
+ "fewshot_split": "dev",
959
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
960
+ "doc_to_target": "answer",
961
+ "doc_to_choice": [
962
+ "A",
963
+ "B",
964
+ "C",
965
+ "D"
966
+ ],
967
+ "description": "The following are multiple choice questions (with answers) about formal logic.\n\n",
968
+ "target_delimiter": " ",
969
+ "fewshot_delimiter": "\n\n",
970
+ "fewshot_config": {
971
+ "sampler": "first_n"
972
+ },
973
+ "num_fewshot": 2,
974
+ "metric_list": [
975
+ {
976
+ "metric": "acc",
977
+ "aggregation": "mean",
978
+ "higher_is_better": true
979
+ }
980
+ ],
981
+ "output_type": "multiple_choice",
982
+ "repeats": 1,
983
+ "should_decontaminate": false,
984
+ "metadata": {
985
+ "version": 0.0
986
+ }
987
+ },
988
+ "mmlu_global_facts": {
989
+ "task": "mmlu_global_facts",
990
+ "task_alias": "global_facts",
991
+ "group": "mmlu_other",
992
+ "group_alias": "other",
993
+ "dataset_path": "hails/mmlu_no_train",
994
+ "dataset_name": "global_facts",
995
+ "test_split": "test",
996
+ "fewshot_split": "dev",
997
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
998
+ "doc_to_target": "answer",
999
+ "doc_to_choice": [
1000
+ "A",
1001
+ "B",
1002
+ "C",
1003
+ "D"
1004
+ ],
1005
+ "description": "The following are multiple choice questions (with answers) about global facts.\n\n",
1006
+ "target_delimiter": " ",
1007
+ "fewshot_delimiter": "\n\n",
1008
+ "fewshot_config": {
1009
+ "sampler": "first_n"
1010
+ },
1011
+ "num_fewshot": 2,
1012
+ "metric_list": [
1013
+ {
1014
+ "metric": "acc",
1015
+ "aggregation": "mean",
1016
+ "higher_is_better": true
1017
+ }
1018
+ ],
1019
+ "output_type": "multiple_choice",
1020
+ "repeats": 1,
1021
+ "should_decontaminate": false,
1022
+ "metadata": {
1023
+ "version": 0.0
1024
+ }
1025
+ },
1026
+ "mmlu_high_school_biology": {
1027
+ "task": "mmlu_high_school_biology",
1028
+ "task_alias": "high_school_biology",
1029
+ "group": "mmlu_stem",
1030
+ "group_alias": "stem",
1031
+ "dataset_path": "hails/mmlu_no_train",
1032
+ "dataset_name": "high_school_biology",
1033
+ "test_split": "test",
1034
+ "fewshot_split": "dev",
1035
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1036
+ "doc_to_target": "answer",
1037
+ "doc_to_choice": [
1038
+ "A",
1039
+ "B",
1040
+ "C",
1041
+ "D"
1042
+ ],
1043
+ "description": "The following are multiple choice questions (with answers) about high school biology.\n\n",
1044
+ "target_delimiter": " ",
1045
+ "fewshot_delimiter": "\n\n",
1046
+ "fewshot_config": {
1047
+ "sampler": "first_n"
1048
+ },
1049
+ "num_fewshot": 2,
1050
+ "metric_list": [
1051
+ {
1052
+ "metric": "acc",
1053
+ "aggregation": "mean",
1054
+ "higher_is_better": true
1055
+ }
1056
+ ],
1057
+ "output_type": "multiple_choice",
1058
+ "repeats": 1,
1059
+ "should_decontaminate": false,
1060
+ "metadata": {
1061
+ "version": 0.0
1062
+ }
1063
+ },
1064
+ "mmlu_high_school_chemistry": {
1065
+ "task": "mmlu_high_school_chemistry",
1066
+ "task_alias": "high_school_chemistry",
1067
+ "group": "mmlu_stem",
1068
+ "group_alias": "stem",
1069
+ "dataset_path": "hails/mmlu_no_train",
1070
+ "dataset_name": "high_school_chemistry",
1071
+ "test_split": "test",
1072
+ "fewshot_split": "dev",
1073
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1074
+ "doc_to_target": "answer",
1075
+ "doc_to_choice": [
1076
+ "A",
1077
+ "B",
1078
+ "C",
1079
+ "D"
1080
+ ],
1081
+ "description": "The following are multiple choice questions (with answers) about high school chemistry.\n\n",
1082
+ "target_delimiter": " ",
1083
+ "fewshot_delimiter": "\n\n",
1084
+ "fewshot_config": {
1085
+ "sampler": "first_n"
1086
+ },
1087
+ "num_fewshot": 2,
1088
+ "metric_list": [
1089
+ {
1090
+ "metric": "acc",
1091
+ "aggregation": "mean",
1092
+ "higher_is_better": true
1093
+ }
1094
+ ],
1095
+ "output_type": "multiple_choice",
1096
+ "repeats": 1,
1097
+ "should_decontaminate": false,
1098
+ "metadata": {
1099
+ "version": 0.0
1100
+ }
1101
+ },
1102
+ "mmlu_high_school_computer_science": {
1103
+ "task": "mmlu_high_school_computer_science",
1104
+ "task_alias": "high_school_computer_science",
1105
+ "group": "mmlu_stem",
1106
+ "group_alias": "stem",
1107
+ "dataset_path": "hails/mmlu_no_train",
1108
+ "dataset_name": "high_school_computer_science",
1109
+ "test_split": "test",
1110
+ "fewshot_split": "dev",
1111
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1112
+ "doc_to_target": "answer",
1113
+ "doc_to_choice": [
1114
+ "A",
1115
+ "B",
1116
+ "C",
1117
+ "D"
1118
+ ],
1119
+ "description": "The following are multiple choice questions (with answers) about high school computer science.\n\n",
1120
+ "target_delimiter": " ",
1121
+ "fewshot_delimiter": "\n\n",
1122
+ "fewshot_config": {
1123
+ "sampler": "first_n"
1124
+ },
1125
+ "num_fewshot": 2,
1126
+ "metric_list": [
1127
+ {
1128
+ "metric": "acc",
1129
+ "aggregation": "mean",
1130
+ "higher_is_better": true
1131
+ }
1132
+ ],
1133
+ "output_type": "multiple_choice",
1134
+ "repeats": 1,
1135
+ "should_decontaminate": false,
1136
+ "metadata": {
1137
+ "version": 0.0
1138
+ }
1139
+ },
1140
+ "mmlu_high_school_european_history": {
1141
+ "task": "mmlu_high_school_european_history",
1142
+ "task_alias": "high_school_european_history",
1143
+ "group": "mmlu_humanities",
1144
+ "group_alias": "humanities",
1145
+ "dataset_path": "hails/mmlu_no_train",
1146
+ "dataset_name": "high_school_european_history",
1147
+ "test_split": "test",
1148
+ "fewshot_split": "dev",
1149
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1150
+ "doc_to_target": "answer",
1151
+ "doc_to_choice": [
1152
+ "A",
1153
+ "B",
1154
+ "C",
1155
+ "D"
1156
+ ],
1157
+ "description": "The following are multiple choice questions (with answers) about high school european history.\n\n",
1158
+ "target_delimiter": " ",
1159
+ "fewshot_delimiter": "\n\n",
1160
+ "fewshot_config": {
1161
+ "sampler": "first_n"
1162
+ },
1163
+ "num_fewshot": 2,
1164
+ "metric_list": [
1165
+ {
1166
+ "metric": "acc",
1167
+ "aggregation": "mean",
1168
+ "higher_is_better": true
1169
+ }
1170
+ ],
1171
+ "output_type": "multiple_choice",
1172
+ "repeats": 1,
1173
+ "should_decontaminate": false,
1174
+ "metadata": {
1175
+ "version": 0.0
1176
+ }
1177
+ },
1178
+ "mmlu_high_school_geography": {
1179
+ "task": "mmlu_high_school_geography",
1180
+ "task_alias": "high_school_geography",
1181
+ "group": "mmlu_social_sciences",
1182
+ "group_alias": "social_sciences",
1183
+ "dataset_path": "hails/mmlu_no_train",
1184
+ "dataset_name": "high_school_geography",
1185
+ "test_split": "test",
1186
+ "fewshot_split": "dev",
1187
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1188
+ "doc_to_target": "answer",
1189
+ "doc_to_choice": [
1190
+ "A",
1191
+ "B",
1192
+ "C",
1193
+ "D"
1194
+ ],
1195
+ "description": "The following are multiple choice questions (with answers) about high school geography.\n\n",
1196
+ "target_delimiter": " ",
1197
+ "fewshot_delimiter": "\n\n",
1198
+ "fewshot_config": {
1199
+ "sampler": "first_n"
1200
+ },
1201
+ "num_fewshot": 2,
1202
+ "metric_list": [
1203
+ {
1204
+ "metric": "acc",
1205
+ "aggregation": "mean",
1206
+ "higher_is_better": true
1207
+ }
1208
+ ],
1209
+ "output_type": "multiple_choice",
1210
+ "repeats": 1,
1211
+ "should_decontaminate": false,
1212
+ "metadata": {
1213
+ "version": 0.0
1214
+ }
1215
+ },
1216
+ "mmlu_high_school_government_and_politics": {
1217
+ "task": "mmlu_high_school_government_and_politics",
1218
+ "task_alias": "high_school_government_and_politics",
1219
+ "group": "mmlu_social_sciences",
1220
+ "group_alias": "social_sciences",
1221
+ "dataset_path": "hails/mmlu_no_train",
1222
+ "dataset_name": "high_school_government_and_politics",
1223
+ "test_split": "test",
1224
+ "fewshot_split": "dev",
1225
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1226
+ "doc_to_target": "answer",
1227
+ "doc_to_choice": [
1228
+ "A",
1229
+ "B",
1230
+ "C",
1231
+ "D"
1232
+ ],
1233
+ "description": "The following are multiple choice questions (with answers) about high school government and politics.\n\n",
1234
+ "target_delimiter": " ",
1235
+ "fewshot_delimiter": "\n\n",
1236
+ "fewshot_config": {
1237
+ "sampler": "first_n"
1238
+ },
1239
+ "num_fewshot": 2,
1240
+ "metric_list": [
1241
+ {
1242
+ "metric": "acc",
1243
+ "aggregation": "mean",
1244
+ "higher_is_better": true
1245
+ }
1246
+ ],
1247
+ "output_type": "multiple_choice",
1248
+ "repeats": 1,
1249
+ "should_decontaminate": false,
1250
+ "metadata": {
1251
+ "version": 0.0
1252
+ }
1253
+ },
1254
+ "mmlu_high_school_macroeconomics": {
1255
+ "task": "mmlu_high_school_macroeconomics",
1256
+ "task_alias": "high_school_macroeconomics",
1257
+ "group": "mmlu_social_sciences",
1258
+ "group_alias": "social_sciences",
1259
+ "dataset_path": "hails/mmlu_no_train",
1260
+ "dataset_name": "high_school_macroeconomics",
1261
+ "test_split": "test",
1262
+ "fewshot_split": "dev",
1263
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1264
+ "doc_to_target": "answer",
1265
+ "doc_to_choice": [
1266
+ "A",
1267
+ "B",
1268
+ "C",
1269
+ "D"
1270
+ ],
1271
+ "description": "The following are multiple choice questions (with answers) about high school macroeconomics.\n\n",
1272
+ "target_delimiter": " ",
1273
+ "fewshot_delimiter": "\n\n",
1274
+ "fewshot_config": {
1275
+ "sampler": "first_n"
1276
+ },
1277
+ "num_fewshot": 2,
1278
+ "metric_list": [
1279
+ {
1280
+ "metric": "acc",
1281
+ "aggregation": "mean",
1282
+ "higher_is_better": true
1283
+ }
1284
+ ],
1285
+ "output_type": "multiple_choice",
1286
+ "repeats": 1,
1287
+ "should_decontaminate": false,
1288
+ "metadata": {
1289
+ "version": 0.0
1290
+ }
1291
+ },
1292
+ "mmlu_high_school_mathematics": {
1293
+ "task": "mmlu_high_school_mathematics",
1294
+ "task_alias": "high_school_mathematics",
1295
+ "group": "mmlu_stem",
1296
+ "group_alias": "stem",
1297
+ "dataset_path": "hails/mmlu_no_train",
1298
+ "dataset_name": "high_school_mathematics",
1299
+ "test_split": "test",
1300
+ "fewshot_split": "dev",
1301
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1302
+ "doc_to_target": "answer",
1303
+ "doc_to_choice": [
1304
+ "A",
1305
+ "B",
1306
+ "C",
1307
+ "D"
1308
+ ],
1309
+ "description": "The following are multiple choice questions (with answers) about high school mathematics.\n\n",
1310
+ "target_delimiter": " ",
1311
+ "fewshot_delimiter": "\n\n",
1312
+ "fewshot_config": {
1313
+ "sampler": "first_n"
1314
+ },
1315
+ "num_fewshot": 2,
1316
+ "metric_list": [
1317
+ {
1318
+ "metric": "acc",
1319
+ "aggregation": "mean",
1320
+ "higher_is_better": true
1321
+ }
1322
+ ],
1323
+ "output_type": "multiple_choice",
1324
+ "repeats": 1,
1325
+ "should_decontaminate": false,
1326
+ "metadata": {
1327
+ "version": 0.0
1328
+ }
1329
+ },
1330
+ "mmlu_high_school_microeconomics": {
1331
+ "task": "mmlu_high_school_microeconomics",
1332
+ "task_alias": "high_school_microeconomics",
1333
+ "group": "mmlu_social_sciences",
1334
+ "group_alias": "social_sciences",
1335
+ "dataset_path": "hails/mmlu_no_train",
1336
+ "dataset_name": "high_school_microeconomics",
1337
+ "test_split": "test",
1338
+ "fewshot_split": "dev",
1339
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1340
+ "doc_to_target": "answer",
1341
+ "doc_to_choice": [
1342
+ "A",
1343
+ "B",
1344
+ "C",
1345
+ "D"
1346
+ ],
1347
+ "description": "The following are multiple choice questions (with answers) about high school microeconomics.\n\n",
1348
+ "target_delimiter": " ",
1349
+ "fewshot_delimiter": "\n\n",
1350
+ "fewshot_config": {
1351
+ "sampler": "first_n"
1352
+ },
1353
+ "num_fewshot": 2,
1354
+ "metric_list": [
1355
+ {
1356
+ "metric": "acc",
1357
+ "aggregation": "mean",
1358
+ "higher_is_better": true
1359
+ }
1360
+ ],
1361
+ "output_type": "multiple_choice",
1362
+ "repeats": 1,
1363
+ "should_decontaminate": false,
1364
+ "metadata": {
1365
+ "version": 0.0
1366
+ }
1367
+ },
1368
+ "mmlu_high_school_physics": {
1369
+ "task": "mmlu_high_school_physics",
1370
+ "task_alias": "high_school_physics",
1371
+ "group": "mmlu_stem",
1372
+ "group_alias": "stem",
1373
+ "dataset_path": "hails/mmlu_no_train",
1374
+ "dataset_name": "high_school_physics",
1375
+ "test_split": "test",
1376
+ "fewshot_split": "dev",
1377
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1378
+ "doc_to_target": "answer",
1379
+ "doc_to_choice": [
1380
+ "A",
1381
+ "B",
1382
+ "C",
1383
+ "D"
1384
+ ],
1385
+ "description": "The following are multiple choice questions (with answers) about high school physics.\n\n",
1386
+ "target_delimiter": " ",
1387
+ "fewshot_delimiter": "\n\n",
1388
+ "fewshot_config": {
1389
+ "sampler": "first_n"
1390
+ },
1391
+ "num_fewshot": 2,
1392
+ "metric_list": [
1393
+ {
1394
+ "metric": "acc",
1395
+ "aggregation": "mean",
1396
+ "higher_is_better": true
1397
+ }
1398
+ ],
1399
+ "output_type": "multiple_choice",
1400
+ "repeats": 1,
1401
+ "should_decontaminate": false,
1402
+ "metadata": {
1403
+ "version": 0.0
1404
+ }
1405
+ },
1406
+ "mmlu_high_school_psychology": {
1407
+ "task": "mmlu_high_school_psychology",
1408
+ "task_alias": "high_school_psychology",
1409
+ "group": "mmlu_social_sciences",
1410
+ "group_alias": "social_sciences",
1411
+ "dataset_path": "hails/mmlu_no_train",
1412
+ "dataset_name": "high_school_psychology",
1413
+ "test_split": "test",
1414
+ "fewshot_split": "dev",
1415
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1416
+ "doc_to_target": "answer",
1417
+ "doc_to_choice": [
1418
+ "A",
1419
+ "B",
1420
+ "C",
1421
+ "D"
1422
+ ],
1423
+ "description": "The following are multiple choice questions (with answers) about high school psychology.\n\n",
1424
+ "target_delimiter": " ",
1425
+ "fewshot_delimiter": "\n\n",
1426
+ "fewshot_config": {
1427
+ "sampler": "first_n"
1428
+ },
1429
+ "num_fewshot": 2,
1430
+ "metric_list": [
1431
+ {
1432
+ "metric": "acc",
1433
+ "aggregation": "mean",
1434
+ "higher_is_better": true
1435
+ }
1436
+ ],
1437
+ "output_type": "multiple_choice",
1438
+ "repeats": 1,
1439
+ "should_decontaminate": false,
1440
+ "metadata": {
1441
+ "version": 0.0
1442
+ }
1443
+ },
1444
+ "mmlu_high_school_statistics": {
1445
+ "task": "mmlu_high_school_statistics",
1446
+ "task_alias": "high_school_statistics",
1447
+ "group": "mmlu_stem",
1448
+ "group_alias": "stem",
1449
+ "dataset_path": "hails/mmlu_no_train",
1450
+ "dataset_name": "high_school_statistics",
1451
+ "test_split": "test",
1452
+ "fewshot_split": "dev",
1453
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1454
+ "doc_to_target": "answer",
1455
+ "doc_to_choice": [
1456
+ "A",
1457
+ "B",
1458
+ "C",
1459
+ "D"
1460
+ ],
1461
+ "description": "The following are multiple choice questions (with answers) about high school statistics.\n\n",
1462
+ "target_delimiter": " ",
1463
+ "fewshot_delimiter": "\n\n",
1464
+ "fewshot_config": {
1465
+ "sampler": "first_n"
1466
+ },
1467
+ "num_fewshot": 2,
1468
+ "metric_list": [
1469
+ {
1470
+ "metric": "acc",
1471
+ "aggregation": "mean",
1472
+ "higher_is_better": true
1473
+ }
1474
+ ],
1475
+ "output_type": "multiple_choice",
1476
+ "repeats": 1,
1477
+ "should_decontaminate": false,
1478
+ "metadata": {
1479
+ "version": 0.0
1480
+ }
1481
+ },
1482
+ "mmlu_high_school_us_history": {
1483
+ "task": "mmlu_high_school_us_history",
1484
+ "task_alias": "high_school_us_history",
1485
+ "group": "mmlu_humanities",
1486
+ "group_alias": "humanities",
1487
+ "dataset_path": "hails/mmlu_no_train",
1488
+ "dataset_name": "high_school_us_history",
1489
+ "test_split": "test",
1490
+ "fewshot_split": "dev",
1491
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1492
+ "doc_to_target": "answer",
1493
+ "doc_to_choice": [
1494
+ "A",
1495
+ "B",
1496
+ "C",
1497
+ "D"
1498
+ ],
1499
+ "description": "The following are multiple choice questions (with answers) about high school us history.\n\n",
1500
+ "target_delimiter": " ",
1501
+ "fewshot_delimiter": "\n\n",
1502
+ "fewshot_config": {
1503
+ "sampler": "first_n"
1504
+ },
1505
+ "num_fewshot": 2,
1506
+ "metric_list": [
1507
+ {
1508
+ "metric": "acc",
1509
+ "aggregation": "mean",
1510
+ "higher_is_better": true
1511
+ }
1512
+ ],
1513
+ "output_type": "multiple_choice",
1514
+ "repeats": 1,
1515
+ "should_decontaminate": false,
1516
+ "metadata": {
1517
+ "version": 0.0
1518
+ }
1519
+ },
1520
+ "mmlu_high_school_world_history": {
1521
+ "task": "mmlu_high_school_world_history",
1522
+ "task_alias": "high_school_world_history",
1523
+ "group": "mmlu_humanities",
1524
+ "group_alias": "humanities",
1525
+ "dataset_path": "hails/mmlu_no_train",
1526
+ "dataset_name": "high_school_world_history",
1527
+ "test_split": "test",
1528
+ "fewshot_split": "dev",
1529
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1530
+ "doc_to_target": "answer",
1531
+ "doc_to_choice": [
1532
+ "A",
1533
+ "B",
1534
+ "C",
1535
+ "D"
1536
+ ],
1537
+ "description": "The following are multiple choice questions (with answers) about high school world history.\n\n",
1538
+ "target_delimiter": " ",
1539
+ "fewshot_delimiter": "\n\n",
1540
+ "fewshot_config": {
1541
+ "sampler": "first_n"
1542
+ },
1543
+ "num_fewshot": 2,
1544
+ "metric_list": [
1545
+ {
1546
+ "metric": "acc",
1547
+ "aggregation": "mean",
1548
+ "higher_is_better": true
1549
+ }
1550
+ ],
1551
+ "output_type": "multiple_choice",
1552
+ "repeats": 1,
1553
+ "should_decontaminate": false,
1554
+ "metadata": {
1555
+ "version": 0.0
1556
+ }
1557
+ },
1558
+ "mmlu_human_aging": {
1559
+ "task": "mmlu_human_aging",
1560
+ "task_alias": "human_aging",
1561
+ "group": "mmlu_other",
1562
+ "group_alias": "other",
1563
+ "dataset_path": "hails/mmlu_no_train",
1564
+ "dataset_name": "human_aging",
1565
+ "test_split": "test",
1566
+ "fewshot_split": "dev",
1567
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1568
+ "doc_to_target": "answer",
1569
+ "doc_to_choice": [
1570
+ "A",
1571
+ "B",
1572
+ "C",
1573
+ "D"
1574
+ ],
1575
+ "description": "The following are multiple choice questions (with answers) about human aging.\n\n",
1576
+ "target_delimiter": " ",
1577
+ "fewshot_delimiter": "\n\n",
1578
+ "fewshot_config": {
1579
+ "sampler": "first_n"
1580
+ },
1581
+ "num_fewshot": 2,
1582
+ "metric_list": [
1583
+ {
1584
+ "metric": "acc",
1585
+ "aggregation": "mean",
1586
+ "higher_is_better": true
1587
+ }
1588
+ ],
1589
+ "output_type": "multiple_choice",
1590
+ "repeats": 1,
1591
+ "should_decontaminate": false,
1592
+ "metadata": {
1593
+ "version": 0.0
1594
+ }
1595
+ },
1596
+ "mmlu_human_sexuality": {
1597
+ "task": "mmlu_human_sexuality",
1598
+ "task_alias": "human_sexuality",
1599
+ "group": "mmlu_social_sciences",
1600
+ "group_alias": "social_sciences",
1601
+ "dataset_path": "hails/mmlu_no_train",
1602
+ "dataset_name": "human_sexuality",
1603
+ "test_split": "test",
1604
+ "fewshot_split": "dev",
1605
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1606
+ "doc_to_target": "answer",
1607
+ "doc_to_choice": [
1608
+ "A",
1609
+ "B",
1610
+ "C",
1611
+ "D"
1612
+ ],
1613
+ "description": "The following are multiple choice questions (with answers) about human sexuality.\n\n",
1614
+ "target_delimiter": " ",
1615
+ "fewshot_delimiter": "\n\n",
1616
+ "fewshot_config": {
1617
+ "sampler": "first_n"
1618
+ },
1619
+ "num_fewshot": 2,
1620
+ "metric_list": [
1621
+ {
1622
+ "metric": "acc",
1623
+ "aggregation": "mean",
1624
+ "higher_is_better": true
1625
+ }
1626
+ ],
1627
+ "output_type": "multiple_choice",
1628
+ "repeats": 1,
1629
+ "should_decontaminate": false,
1630
+ "metadata": {
1631
+ "version": 0.0
1632
+ }
1633
+ },
1634
+ "mmlu_international_law": {
1635
+ "task": "mmlu_international_law",
1636
+ "task_alias": "international_law",
1637
+ "group": "mmlu_humanities",
1638
+ "group_alias": "humanities",
1639
+ "dataset_path": "hails/mmlu_no_train",
1640
+ "dataset_name": "international_law",
1641
+ "test_split": "test",
1642
+ "fewshot_split": "dev",
1643
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1644
+ "doc_to_target": "answer",
1645
+ "doc_to_choice": [
1646
+ "A",
1647
+ "B",
1648
+ "C",
1649
+ "D"
1650
+ ],
1651
+ "description": "The following are multiple choice questions (with answers) about international law.\n\n",
1652
+ "target_delimiter": " ",
1653
+ "fewshot_delimiter": "\n\n",
1654
+ "fewshot_config": {
1655
+ "sampler": "first_n"
1656
+ },
1657
+ "num_fewshot": 2,
1658
+ "metric_list": [
1659
+ {
1660
+ "metric": "acc",
1661
+ "aggregation": "mean",
1662
+ "higher_is_better": true
1663
+ }
1664
+ ],
1665
+ "output_type": "multiple_choice",
1666
+ "repeats": 1,
1667
+ "should_decontaminate": false,
1668
+ "metadata": {
1669
+ "version": 0.0
1670
+ }
1671
+ },
1672
+ "mmlu_jurisprudence": {
1673
+ "task": "mmlu_jurisprudence",
1674
+ "task_alias": "jurisprudence",
1675
+ "group": "mmlu_humanities",
1676
+ "group_alias": "humanities",
1677
+ "dataset_path": "hails/mmlu_no_train",
1678
+ "dataset_name": "jurisprudence",
1679
+ "test_split": "test",
1680
+ "fewshot_split": "dev",
1681
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1682
+ "doc_to_target": "answer",
1683
+ "doc_to_choice": [
1684
+ "A",
1685
+ "B",
1686
+ "C",
1687
+ "D"
1688
+ ],
1689
+ "description": "The following are multiple choice questions (with answers) about jurisprudence.\n\n",
1690
+ "target_delimiter": " ",
1691
+ "fewshot_delimiter": "\n\n",
1692
+ "fewshot_config": {
1693
+ "sampler": "first_n"
1694
+ },
1695
+ "num_fewshot": 2,
1696
+ "metric_list": [
1697
+ {
1698
+ "metric": "acc",
1699
+ "aggregation": "mean",
1700
+ "higher_is_better": true
1701
+ }
1702
+ ],
1703
+ "output_type": "multiple_choice",
1704
+ "repeats": 1,
1705
+ "should_decontaminate": false,
1706
+ "metadata": {
1707
+ "version": 0.0
1708
+ }
1709
+ },
1710
+ "mmlu_logical_fallacies": {
1711
+ "task": "mmlu_logical_fallacies",
1712
+ "task_alias": "logical_fallacies",
1713
+ "group": "mmlu_humanities",
1714
+ "group_alias": "humanities",
1715
+ "dataset_path": "hails/mmlu_no_train",
1716
+ "dataset_name": "logical_fallacies",
1717
+ "test_split": "test",
1718
+ "fewshot_split": "dev",
1719
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1720
+ "doc_to_target": "answer",
1721
+ "doc_to_choice": [
1722
+ "A",
1723
+ "B",
1724
+ "C",
1725
+ "D"
1726
+ ],
1727
+ "description": "The following are multiple choice questions (with answers) about logical fallacies.\n\n",
1728
+ "target_delimiter": " ",
1729
+ "fewshot_delimiter": "\n\n",
1730
+ "fewshot_config": {
1731
+ "sampler": "first_n"
1732
+ },
1733
+ "num_fewshot": 2,
1734
+ "metric_list": [
1735
+ {
1736
+ "metric": "acc",
1737
+ "aggregation": "mean",
1738
+ "higher_is_better": true
1739
+ }
1740
+ ],
1741
+ "output_type": "multiple_choice",
1742
+ "repeats": 1,
1743
+ "should_decontaminate": false,
1744
+ "metadata": {
1745
+ "version": 0.0
1746
+ }
1747
+ },
1748
+ "mmlu_machine_learning": {
1749
+ "task": "mmlu_machine_learning",
1750
+ "task_alias": "machine_learning",
1751
+ "group": "mmlu_stem",
1752
+ "group_alias": "stem",
1753
+ "dataset_path": "hails/mmlu_no_train",
1754
+ "dataset_name": "machine_learning",
1755
+ "test_split": "test",
1756
+ "fewshot_split": "dev",
1757
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1758
+ "doc_to_target": "answer",
1759
+ "doc_to_choice": [
1760
+ "A",
1761
+ "B",
1762
+ "C",
1763
+ "D"
1764
+ ],
1765
+ "description": "The following are multiple choice questions (with answers) about machine learning.\n\n",
1766
+ "target_delimiter": " ",
1767
+ "fewshot_delimiter": "\n\n",
1768
+ "fewshot_config": {
1769
+ "sampler": "first_n"
1770
+ },
1771
+ "num_fewshot": 2,
1772
+ "metric_list": [
1773
+ {
1774
+ "metric": "acc",
1775
+ "aggregation": "mean",
1776
+ "higher_is_better": true
1777
+ }
1778
+ ],
1779
+ "output_type": "multiple_choice",
1780
+ "repeats": 1,
1781
+ "should_decontaminate": false,
1782
+ "metadata": {
1783
+ "version": 0.0
1784
+ }
1785
+ },
1786
+ "mmlu_management": {
1787
+ "task": "mmlu_management",
1788
+ "task_alias": "management",
1789
+ "group": "mmlu_other",
1790
+ "group_alias": "other",
1791
+ "dataset_path": "hails/mmlu_no_train",
1792
+ "dataset_name": "management",
1793
+ "test_split": "test",
1794
+ "fewshot_split": "dev",
1795
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1796
+ "doc_to_target": "answer",
1797
+ "doc_to_choice": [
1798
+ "A",
1799
+ "B",
1800
+ "C",
1801
+ "D"
1802
+ ],
1803
+ "description": "The following are multiple choice questions (with answers) about management.\n\n",
1804
+ "target_delimiter": " ",
1805
+ "fewshot_delimiter": "\n\n",
1806
+ "fewshot_config": {
1807
+ "sampler": "first_n"
1808
+ },
1809
+ "num_fewshot": 2,
1810
+ "metric_list": [
1811
+ {
1812
+ "metric": "acc",
1813
+ "aggregation": "mean",
1814
+ "higher_is_better": true
1815
+ }
1816
+ ],
1817
+ "output_type": "multiple_choice",
1818
+ "repeats": 1,
1819
+ "should_decontaminate": false,
1820
+ "metadata": {
1821
+ "version": 0.0
1822
+ }
1823
+ },
1824
+ "mmlu_marketing": {
1825
+ "task": "mmlu_marketing",
1826
+ "task_alias": "marketing",
1827
+ "group": "mmlu_other",
1828
+ "group_alias": "other",
1829
+ "dataset_path": "hails/mmlu_no_train",
1830
+ "dataset_name": "marketing",
1831
+ "test_split": "test",
1832
+ "fewshot_split": "dev",
1833
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1834
+ "doc_to_target": "answer",
1835
+ "doc_to_choice": [
1836
+ "A",
1837
+ "B",
1838
+ "C",
1839
+ "D"
1840
+ ],
1841
+ "description": "The following are multiple choice questions (with answers) about marketing.\n\n",
1842
+ "target_delimiter": " ",
1843
+ "fewshot_delimiter": "\n\n",
1844
+ "fewshot_config": {
1845
+ "sampler": "first_n"
1846
+ },
1847
+ "num_fewshot": 2,
1848
+ "metric_list": [
1849
+ {
1850
+ "metric": "acc",
1851
+ "aggregation": "mean",
1852
+ "higher_is_better": true
1853
+ }
1854
+ ],
1855
+ "output_type": "multiple_choice",
1856
+ "repeats": 1,
1857
+ "should_decontaminate": false,
1858
+ "metadata": {
1859
+ "version": 0.0
1860
+ }
1861
+ },
1862
+ "mmlu_medical_genetics": {
1863
+ "task": "mmlu_medical_genetics",
1864
+ "task_alias": "medical_genetics",
1865
+ "group": "mmlu_other",
1866
+ "group_alias": "other",
1867
+ "dataset_path": "hails/mmlu_no_train",
1868
+ "dataset_name": "medical_genetics",
1869
+ "test_split": "test",
1870
+ "fewshot_split": "dev",
1871
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1872
+ "doc_to_target": "answer",
1873
+ "doc_to_choice": [
1874
+ "A",
1875
+ "B",
1876
+ "C",
1877
+ "D"
1878
+ ],
1879
+ "description": "The following are multiple choice questions (with answers) about medical genetics.\n\n",
1880
+ "target_delimiter": " ",
1881
+ "fewshot_delimiter": "\n\n",
1882
+ "fewshot_config": {
1883
+ "sampler": "first_n"
1884
+ },
1885
+ "num_fewshot": 2,
1886
+ "metric_list": [
1887
+ {
1888
+ "metric": "acc",
1889
+ "aggregation": "mean",
1890
+ "higher_is_better": true
1891
+ }
1892
+ ],
1893
+ "output_type": "multiple_choice",
1894
+ "repeats": 1,
1895
+ "should_decontaminate": false,
1896
+ "metadata": {
1897
+ "version": 0.0
1898
+ }
1899
+ },
1900
+ "mmlu_miscellaneous": {
1901
+ "task": "mmlu_miscellaneous",
1902
+ "task_alias": "miscellaneous",
1903
+ "group": "mmlu_other",
1904
+ "group_alias": "other",
1905
+ "dataset_path": "hails/mmlu_no_train",
1906
+ "dataset_name": "miscellaneous",
1907
+ "test_split": "test",
1908
+ "fewshot_split": "dev",
1909
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1910
+ "doc_to_target": "answer",
1911
+ "doc_to_choice": [
1912
+ "A",
1913
+ "B",
1914
+ "C",
1915
+ "D"
1916
+ ],
1917
+ "description": "The following are multiple choice questions (with answers) about miscellaneous.\n\n",
1918
+ "target_delimiter": " ",
1919
+ "fewshot_delimiter": "\n\n",
1920
+ "fewshot_config": {
1921
+ "sampler": "first_n"
1922
+ },
1923
+ "num_fewshot": 2,
1924
+ "metric_list": [
1925
+ {
1926
+ "metric": "acc",
1927
+ "aggregation": "mean",
1928
+ "higher_is_better": true
1929
+ }
1930
+ ],
1931
+ "output_type": "multiple_choice",
1932
+ "repeats": 1,
1933
+ "should_decontaminate": false,
1934
+ "metadata": {
1935
+ "version": 0.0
1936
+ }
1937
+ },
1938
+ "mmlu_moral_disputes": {
1939
+ "task": "mmlu_moral_disputes",
1940
+ "task_alias": "moral_disputes",
1941
+ "group": "mmlu_humanities",
1942
+ "group_alias": "humanities",
1943
+ "dataset_path": "hails/mmlu_no_train",
1944
+ "dataset_name": "moral_disputes",
1945
+ "test_split": "test",
1946
+ "fewshot_split": "dev",
1947
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1948
+ "doc_to_target": "answer",
1949
+ "doc_to_choice": [
1950
+ "A",
1951
+ "B",
1952
+ "C",
1953
+ "D"
1954
+ ],
1955
+ "description": "The following are multiple choice questions (with answers) about moral disputes.\n\n",
1956
+ "target_delimiter": " ",
1957
+ "fewshot_delimiter": "\n\n",
1958
+ "fewshot_config": {
1959
+ "sampler": "first_n"
1960
+ },
1961
+ "num_fewshot": 2,
1962
+ "metric_list": [
1963
+ {
1964
+ "metric": "acc",
1965
+ "aggregation": "mean",
1966
+ "higher_is_better": true
1967
+ }
1968
+ ],
1969
+ "output_type": "multiple_choice",
1970
+ "repeats": 1,
1971
+ "should_decontaminate": false,
1972
+ "metadata": {
1973
+ "version": 0.0
1974
+ }
1975
+ },
1976
+ "mmlu_moral_scenarios": {
1977
+ "task": "mmlu_moral_scenarios",
1978
+ "task_alias": "moral_scenarios",
1979
+ "group": "mmlu_humanities",
1980
+ "group_alias": "humanities",
1981
+ "dataset_path": "hails/mmlu_no_train",
1982
+ "dataset_name": "moral_scenarios",
1983
+ "test_split": "test",
1984
+ "fewshot_split": "dev",
1985
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1986
+ "doc_to_target": "answer",
1987
+ "doc_to_choice": [
1988
+ "A",
1989
+ "B",
1990
+ "C",
1991
+ "D"
1992
+ ],
1993
+ "description": "The following are multiple choice questions (with answers) about moral scenarios.\n\n",
1994
+ "target_delimiter": " ",
1995
+ "fewshot_delimiter": "\n\n",
1996
+ "fewshot_config": {
1997
+ "sampler": "first_n"
1998
+ },
1999
+ "num_fewshot": 2,
2000
+ "metric_list": [
2001
+ {
2002
+ "metric": "acc",
2003
+ "aggregation": "mean",
2004
+ "higher_is_better": true
2005
+ }
2006
+ ],
2007
+ "output_type": "multiple_choice",
2008
+ "repeats": 1,
2009
+ "should_decontaminate": false,
2010
+ "metadata": {
2011
+ "version": 0.0
2012
+ }
2013
+ },
2014
+ "mmlu_nutrition": {
2015
+ "task": "mmlu_nutrition",
2016
+ "task_alias": "nutrition",
2017
+ "group": "mmlu_other",
2018
+ "group_alias": "other",
2019
+ "dataset_path": "hails/mmlu_no_train",
2020
+ "dataset_name": "nutrition",
2021
+ "test_split": "test",
2022
+ "fewshot_split": "dev",
2023
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
2024
+ "doc_to_target": "answer",
2025
+ "doc_to_choice": [
2026
+ "A",
2027
+ "B",
2028
+ "C",
2029
+ "D"
2030
+ ],
2031
+ "description": "The following are multiple choice questions (with answers) about nutrition.\n\n",
2032
+ "target_delimiter": " ",
2033
+ "fewshot_delimiter": "\n\n",
2034
+ "fewshot_config": {
2035
+ "sampler": "first_n"
2036
+ },
2037
+ "num_fewshot": 2,
2038
+ "metric_list": [
2039
+ {
2040
+ "metric": "acc",
2041
+ "aggregation": "mean",
2042
+ "higher_is_better": true
2043
+ }
2044
+ ],
2045
+ "output_type": "multiple_choice",
2046
+ "repeats": 1,
2047
+ "should_decontaminate": false,
2048
+ "metadata": {
2049
+ "version": 0.0
2050
+ }
2051
+ },
2052
+ "mmlu_philosophy": {
2053
+ "task": "mmlu_philosophy",
2054
+ "task_alias": "philosophy",
2055
+ "group": "mmlu_humanities",
2056
+ "group_alias": "humanities",
2057
+ "dataset_path": "hails/mmlu_no_train",
2058
+ "dataset_name": "philosophy",
2059
+ "test_split": "test",
2060
+ "fewshot_split": "dev",
2061
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
2062
+ "doc_to_target": "answer",
2063
+ "doc_to_choice": [
2064
+ "A",
2065
+ "B",
2066
+ "C",
2067
+ "D"
2068
+ ],
2069
+ "description": "The following are multiple choice questions (with answers) about philosophy.\n\n",
2070
+ "target_delimiter": " ",
2071
+ "fewshot_delimiter": "\n\n",
2072
+ "fewshot_config": {
2073
+ "sampler": "first_n"
2074
+ },
2075
+ "num_fewshot": 2,
2076
+ "metric_list": [
2077
+ {
2078
+ "metric": "acc",
2079
+ "aggregation": "mean",
2080
+ "higher_is_better": true
2081
+ }
2082
+ ],
2083
+ "output_type": "multiple_choice",
2084
+ "repeats": 1,
2085
+ "should_decontaminate": false,
2086
+ "metadata": {
2087
+ "version": 0.0
2088
+ }
2089
+ },
2090
+ "mmlu_prehistory": {
2091
+ "task": "mmlu_prehistory",
2092
+ "task_alias": "prehistory",
2093
+ "group": "mmlu_humanities",
2094
+ "group_alias": "humanities",
2095
+ "dataset_path": "hails/mmlu_no_train",
2096
+ "dataset_name": "prehistory",
2097
+ "test_split": "test",
2098
+ "fewshot_split": "dev",
2099
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
2100
+ "doc_to_target": "answer",
2101
+ "doc_to_choice": [
2102
+ "A",
2103
+ "B",
2104
+ "C",
2105
+ "D"
2106
+ ],
2107
+ "description": "The following are multiple choice questions (with answers) about prehistory.\n\n",
2108
+ "target_delimiter": " ",
2109
+ "fewshot_delimiter": "\n\n",
2110
+ "fewshot_config": {
2111
+ "sampler": "first_n"
2112
+ },
2113
+ "num_fewshot": 2,
2114
+ "metric_list": [
2115
+ {
2116
+ "metric": "acc",
2117
+ "aggregation": "mean",
2118
+ "higher_is_better": true
2119
+ }
2120
+ ],
2121
+ "output_type": "multiple_choice",
2122
+ "repeats": 1,
2123
+ "should_decontaminate": false,
2124
+ "metadata": {
2125
+ "version": 0.0
2126
+ }
2127
+ },
2128
+ "mmlu_professional_accounting": {
2129
+ "task": "mmlu_professional_accounting",
2130
+ "task_alias": "professional_accounting",
2131
+ "group": "mmlu_other",
2132
+ "group_alias": "other",
2133
+ "dataset_path": "hails/mmlu_no_train",
2134
+ "dataset_name": "professional_accounting",
2135
+ "test_split": "test",
2136
+ "fewshot_split": "dev",
2137
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
2138
+ "doc_to_target": "answer",
2139
+ "doc_to_choice": [
2140
+ "A",
2141
+ "B",
2142
+ "C",
2143
+ "D"
2144
+ ],
2145
+ "description": "The following are multiple choice questions (with answers) about professional accounting.\n\n",
2146
+ "target_delimiter": " ",
2147
+ "fewshot_delimiter": "\n\n",
2148
+ "fewshot_config": {
2149
+ "sampler": "first_n"
2150
+ },
2151
+ "num_fewshot": 2,
2152
+ "metric_list": [
2153
+ {
2154
+ "metric": "acc",
2155
+ "aggregation": "mean",
2156
+ "higher_is_better": true
2157
+ }
2158
+ ],
2159
+ "output_type": "multiple_choice",
2160
+ "repeats": 1,
2161
+ "should_decontaminate": false,
2162
+ "metadata": {
2163
+ "version": 0.0
2164
+ }
2165
+ },
2166
+ "mmlu_professional_law": {
2167
+ "task": "mmlu_professional_law",
2168
+ "task_alias": "professional_law",
2169
+ "group": "mmlu_humanities",
2170
+ "group_alias": "humanities",
2171
+ "dataset_path": "hails/mmlu_no_train",
2172
+ "dataset_name": "professional_law",
2173
+ "test_split": "test",
2174
+ "fewshot_split": "dev",
2175
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
2176
+ "doc_to_target": "answer",
2177
+ "doc_to_choice": [
2178
+ "A",
2179
+ "B",
2180
+ "C",
2181
+ "D"
2182
+ ],
2183
+ "description": "The following are multiple choice questions (with answers) about professional law.\n\n",
2184
+ "target_delimiter": " ",
2185
+ "fewshot_delimiter": "\n\n",
2186
+ "fewshot_config": {
2187
+ "sampler": "first_n"
2188
+ },
2189
+ "num_fewshot": 2,
2190
+ "metric_list": [
2191
+ {
2192
+ "metric": "acc",
2193
+ "aggregation": "mean",
2194
+ "higher_is_better": true
2195
+ }
2196
+ ],
2197
+ "output_type": "multiple_choice",
2198
+ "repeats": 1,
2199
+ "should_decontaminate": false,
2200
+ "metadata": {
2201
+ "version": 0.0
2202
+ }
2203
+ },
2204
+ "mmlu_professional_medicine": {
2205
+ "task": "mmlu_professional_medicine",
2206
+ "task_alias": "professional_medicine",
2207
+ "group": "mmlu_other",
2208
+ "group_alias": "other",
2209
+ "dataset_path": "hails/mmlu_no_train",
2210
+ "dataset_name": "professional_medicine",
2211
+ "test_split": "test",
2212
+ "fewshot_split": "dev",
2213
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
2214
+ "doc_to_target": "answer",
2215
+ "doc_to_choice": [
2216
+ "A",
2217
+ "B",
2218
+ "C",
2219
+ "D"
2220
+ ],
2221
+ "description": "The following are multiple choice questions (with answers) about professional medicine.\n\n",
2222
+ "target_delimiter": " ",
2223
+ "fewshot_delimiter": "\n\n",
2224
+ "fewshot_config": {
2225
+ "sampler": "first_n"
2226
+ },
2227
+ "num_fewshot": 2,
2228
+ "metric_list": [
2229
+ {
2230
+ "metric": "acc",
2231
+ "aggregation": "mean",
2232
+ "higher_is_better": true
2233
+ }
2234
+ ],
2235
+ "output_type": "multiple_choice",
2236
+ "repeats": 1,
2237
+ "should_decontaminate": false,
2238
+ "metadata": {
2239
+ "version": 0.0
2240
+ }
2241
+ },
2242
+ "mmlu_professional_psychology": {
2243
+ "task": "mmlu_professional_psychology",
2244
+ "task_alias": "professional_psychology",
2245
+ "group": "mmlu_social_sciences",
2246
+ "group_alias": "social_sciences",
2247
+ "dataset_path": "hails/mmlu_no_train",
2248
+ "dataset_name": "professional_psychology",
2249
+ "test_split": "test",
2250
+ "fewshot_split": "dev",
2251
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
2252
+ "doc_to_target": "answer",
2253
+ "doc_to_choice": [
2254
+ "A",
2255
+ "B",
2256
+ "C",
2257
+ "D"
2258
+ ],
2259
+ "description": "The following are multiple choice questions (with answers) about professional psychology.\n\n",
2260
+ "target_delimiter": " ",
2261
+ "fewshot_delimiter": "\n\n",
2262
+ "fewshot_config": {
2263
+ "sampler": "first_n"
2264
+ },
2265
+ "num_fewshot": 2,
2266
+ "metric_list": [
2267
+ {
2268
+ "metric": "acc",
2269
+ "aggregation": "mean",
2270
+ "higher_is_better": true
2271
+ }
2272
+ ],
2273
+ "output_type": "multiple_choice",
2274
+ "repeats": 1,
2275
+ "should_decontaminate": false,
2276
+ "metadata": {
2277
+ "version": 0.0
2278
+ }
2279
+ },
2280
+ "mmlu_public_relations": {
2281
+ "task": "mmlu_public_relations",
2282
+ "task_alias": "public_relations",
2283
+ "group": "mmlu_social_sciences",
2284
+ "group_alias": "social_sciences",
2285
+ "dataset_path": "hails/mmlu_no_train",
2286
+ "dataset_name": "public_relations",
2287
+ "test_split": "test",
2288
+ "fewshot_split": "dev",
2289
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
2290
+ "doc_to_target": "answer",
2291
+ "doc_to_choice": [
2292
+ "A",
2293
+ "B",
2294
+ "C",
2295
+ "D"
2296
+ ],
2297
+ "description": "The following are multiple choice questions (with answers) about public relations.\n\n",
2298
+ "target_delimiter": " ",
2299
+ "fewshot_delimiter": "\n\n",
2300
+ "fewshot_config": {
2301
+ "sampler": "first_n"
2302
+ },
2303
+ "num_fewshot": 2,
2304
+ "metric_list": [
2305
+ {
2306
+ "metric": "acc",
2307
+ "aggregation": "mean",
2308
+ "higher_is_better": true
2309
+ }
2310
+ ],
2311
+ "output_type": "multiple_choice",
2312
+ "repeats": 1,
2313
+ "should_decontaminate": false,
2314
+ "metadata": {
2315
+ "version": 0.0
2316
+ }
2317
+ },
2318
+ "mmlu_security_studies": {
2319
+ "task": "mmlu_security_studies",
2320
+ "task_alias": "security_studies",
2321
+ "group": "mmlu_social_sciences",
2322
+ "group_alias": "social_sciences",
2323
+ "dataset_path": "hails/mmlu_no_train",
2324
+ "dataset_name": "security_studies",
2325
+ "test_split": "test",
2326
+ "fewshot_split": "dev",
2327
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
2328
+ "doc_to_target": "answer",
2329
+ "doc_to_choice": [
2330
+ "A",
2331
+ "B",
2332
+ "C",
2333
+ "D"
2334
+ ],
2335
+ "description": "The following are multiple choice questions (with answers) about security studies.\n\n",
2336
+ "target_delimiter": " ",
2337
+ "fewshot_delimiter": "\n\n",
2338
+ "fewshot_config": {
2339
+ "sampler": "first_n"
2340
+ },
2341
+ "num_fewshot": 2,
2342
+ "metric_list": [
2343
+ {
2344
+ "metric": "acc",
2345
+ "aggregation": "mean",
2346
+ "higher_is_better": true
2347
+ }
2348
+ ],
2349
+ "output_type": "multiple_choice",
2350
+ "repeats": 1,
2351
+ "should_decontaminate": false,
2352
+ "metadata": {
2353
+ "version": 0.0
2354
+ }
2355
+ },
2356
+ "mmlu_sociology": {
2357
+ "task": "mmlu_sociology",
2358
+ "task_alias": "sociology",
2359
+ "group": "mmlu_social_sciences",
2360
+ "group_alias": "social_sciences",
2361
+ "dataset_path": "hails/mmlu_no_train",
2362
+ "dataset_name": "sociology",
2363
+ "test_split": "test",
2364
+ "fewshot_split": "dev",
2365
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
2366
+ "doc_to_target": "answer",
2367
+ "doc_to_choice": [
2368
+ "A",
2369
+ "B",
2370
+ "C",
2371
+ "D"
2372
+ ],
2373
+ "description": "The following are multiple choice questions (with answers) about sociology.\n\n",
2374
+ "target_delimiter": " ",
2375
+ "fewshot_delimiter": "\n\n",
2376
+ "fewshot_config": {
2377
+ "sampler": "first_n"
2378
+ },
2379
+ "num_fewshot": 2,
2380
+ "metric_list": [
2381
+ {
2382
+ "metric": "acc",
2383
+ "aggregation": "mean",
2384
+ "higher_is_better": true
2385
+ }
2386
+ ],
2387
+ "output_type": "multiple_choice",
2388
+ "repeats": 1,
2389
+ "should_decontaminate": false,
2390
+ "metadata": {
2391
+ "version": 0.0
2392
+ }
2393
+ },
2394
+ "mmlu_us_foreign_policy": {
2395
+ "task": "mmlu_us_foreign_policy",
2396
+ "task_alias": "us_foreign_policy",
2397
+ "group": "mmlu_social_sciences",
2398
+ "group_alias": "social_sciences",
2399
+ "dataset_path": "hails/mmlu_no_train",
2400
+ "dataset_name": "us_foreign_policy",
2401
+ "test_split": "test",
2402
+ "fewshot_split": "dev",
2403
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
2404
+ "doc_to_target": "answer",
2405
+ "doc_to_choice": [
2406
+ "A",
2407
+ "B",
2408
+ "C",
2409
+ "D"
2410
+ ],
2411
+ "description": "The following are multiple choice questions (with answers) about us foreign policy.\n\n",
2412
+ "target_delimiter": " ",
2413
+ "fewshot_delimiter": "\n\n",
2414
+ "fewshot_config": {
2415
+ "sampler": "first_n"
2416
+ },
2417
+ "num_fewshot": 2,
2418
+ "metric_list": [
2419
+ {
2420
+ "metric": "acc",
2421
+ "aggregation": "mean",
2422
+ "higher_is_better": true
2423
+ }
2424
+ ],
2425
+ "output_type": "multiple_choice",
2426
+ "repeats": 1,
2427
+ "should_decontaminate": false,
2428
+ "metadata": {
2429
+ "version": 0.0
2430
+ }
2431
+ },
2432
+ "mmlu_virology": {
2433
+ "task": "mmlu_virology",
2434
+ "task_alias": "virology",
2435
+ "group": "mmlu_other",
2436
+ "group_alias": "other",
2437
+ "dataset_path": "hails/mmlu_no_train",
2438
+ "dataset_name": "virology",
2439
+ "test_split": "test",
2440
+ "fewshot_split": "dev",
2441
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
2442
+ "doc_to_target": "answer",
2443
+ "doc_to_choice": [
2444
+ "A",
2445
+ "B",
2446
+ "C",
2447
+ "D"
2448
+ ],
2449
+ "description": "The following are multiple choice questions (with answers) about virology.\n\n",
2450
+ "target_delimiter": " ",
2451
+ "fewshot_delimiter": "\n\n",
2452
+ "fewshot_config": {
2453
+ "sampler": "first_n"
2454
+ },
2455
+ "num_fewshot": 2,
2456
+ "metric_list": [
2457
+ {
2458
+ "metric": "acc",
2459
+ "aggregation": "mean",
2460
+ "higher_is_better": true
2461
+ }
2462
+ ],
2463
+ "output_type": "multiple_choice",
2464
+ "repeats": 1,
2465
+ "should_decontaminate": false,
2466
+ "metadata": {
2467
+ "version": 0.0
2468
+ }
2469
+ },
2470
+ "mmlu_world_religions": {
2471
+ "task": "mmlu_world_religions",
2472
+ "task_alias": "world_religions",
2473
+ "group": "mmlu_humanities",
2474
+ "group_alias": "humanities",
2475
+ "dataset_path": "hails/mmlu_no_train",
2476
+ "dataset_name": "world_religions",
2477
+ "test_split": "test",
2478
+ "fewshot_split": "dev",
2479
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
2480
+ "doc_to_target": "answer",
2481
+ "doc_to_choice": [
2482
+ "A",
2483
+ "B",
2484
+ "C",
2485
+ "D"
2486
+ ],
2487
+ "description": "The following are multiple choice questions (with answers) about world religions.\n\n",
2488
+ "target_delimiter": " ",
2489
+ "fewshot_delimiter": "\n\n",
2490
+ "fewshot_config": {
2491
+ "sampler": "first_n"
2492
+ },
2493
+ "num_fewshot": 2,
2494
+ "metric_list": [
2495
+ {
2496
+ "metric": "acc",
2497
+ "aggregation": "mean",
2498
+ "higher_is_better": true
2499
+ }
2500
+ ],
2501
+ "output_type": "multiple_choice",
2502
+ "repeats": 1,
2503
+ "should_decontaminate": false,
2504
+ "metadata": {
2505
+ "version": 0.0
2506
+ }
2507
+ }
2508
+ },
2509
+ "versions": {
2510
+ "mmlu": "N/A",
2511
+ "mmlu_abstract_algebra": 0.0,
2512
+ "mmlu_anatomy": 0.0,
2513
+ "mmlu_astronomy": 0.0,
2514
+ "mmlu_business_ethics": 0.0,
2515
+ "mmlu_clinical_knowledge": 0.0,
2516
+ "mmlu_college_biology": 0.0,
2517
+ "mmlu_college_chemistry": 0.0,
2518
+ "mmlu_college_computer_science": 0.0,
2519
+ "mmlu_college_mathematics": 0.0,
2520
+ "mmlu_college_medicine": 0.0,
2521
+ "mmlu_college_physics": 0.0,
2522
+ "mmlu_computer_security": 0.0,
2523
+ "mmlu_conceptual_physics": 0.0,
2524
+ "mmlu_econometrics": 0.0,
2525
+ "mmlu_electrical_engineering": 0.0,
2526
+ "mmlu_elementary_mathematics": 0.0,
2527
+ "mmlu_formal_logic": 0.0,
2528
+ "mmlu_global_facts": 0.0,
2529
+ "mmlu_high_school_biology": 0.0,
2530
+ "mmlu_high_school_chemistry": 0.0,
2531
+ "mmlu_high_school_computer_science": 0.0,
2532
+ "mmlu_high_school_european_history": 0.0,
2533
+ "mmlu_high_school_geography": 0.0,
2534
+ "mmlu_high_school_government_and_politics": 0.0,
2535
+ "mmlu_high_school_macroeconomics": 0.0,
2536
+ "mmlu_high_school_mathematics": 0.0,
2537
+ "mmlu_high_school_microeconomics": 0.0,
2538
+ "mmlu_high_school_physics": 0.0,
2539
+ "mmlu_high_school_psychology": 0.0,
2540
+ "mmlu_high_school_statistics": 0.0,
2541
+ "mmlu_high_school_us_history": 0.0,
2542
+ "mmlu_high_school_world_history": 0.0,
2543
+ "mmlu_human_aging": 0.0,
2544
+ "mmlu_human_sexuality": 0.0,
2545
+ "mmlu_humanities": "N/A",
2546
+ "mmlu_international_law": 0.0,
2547
+ "mmlu_jurisprudence": 0.0,
2548
+ "mmlu_logical_fallacies": 0.0,
2549
+ "mmlu_machine_learning": 0.0,
2550
+ "mmlu_management": 0.0,
2551
+ "mmlu_marketing": 0.0,
2552
+ "mmlu_medical_genetics": 0.0,
2553
+ "mmlu_miscellaneous": 0.0,
2554
+ "mmlu_moral_disputes": 0.0,
2555
+ "mmlu_moral_scenarios": 0.0,
2556
+ "mmlu_nutrition": 0.0,
2557
+ "mmlu_other": "N/A",
2558
+ "mmlu_philosophy": 0.0,
2559
+ "mmlu_prehistory": 0.0,
2560
+ "mmlu_professional_accounting": 0.0,
2561
+ "mmlu_professional_law": 0.0,
2562
+ "mmlu_professional_medicine": 0.0,
2563
+ "mmlu_professional_psychology": 0.0,
2564
+ "mmlu_public_relations": 0.0,
2565
+ "mmlu_security_studies": 0.0,
2566
+ "mmlu_social_sciences": "N/A",
2567
+ "mmlu_sociology": 0.0,
2568
+ "mmlu_stem": "N/A",
2569
+ "mmlu_us_foreign_policy": 0.0,
2570
+ "mmlu_virology": 0.0,
2571
+ "mmlu_world_religions": 0.0
2572
+ },
2573
+ "n-shot": {
2574
+ "mmlu": 0,
2575
+ "mmlu_abstract_algebra": 2,
2576
+ "mmlu_anatomy": 2,
2577
+ "mmlu_astronomy": 2,
2578
+ "mmlu_business_ethics": 2,
2579
+ "mmlu_clinical_knowledge": 2,
2580
+ "mmlu_college_biology": 2,
2581
+ "mmlu_college_chemistry": 2,
2582
+ "mmlu_college_computer_science": 2,
2583
+ "mmlu_college_mathematics": 2,
2584
+ "mmlu_college_medicine": 2,
2585
+ "mmlu_college_physics": 2,
2586
+ "mmlu_computer_security": 2,
2587
+ "mmlu_conceptual_physics": 2,
2588
+ "mmlu_econometrics": 2,
2589
+ "mmlu_electrical_engineering": 2,
2590
+ "mmlu_elementary_mathematics": 2,
2591
+ "mmlu_formal_logic": 2,
2592
+ "mmlu_global_facts": 2,
2593
+ "mmlu_high_school_biology": 2,
2594
+ "mmlu_high_school_chemistry": 2,
2595
+ "mmlu_high_school_computer_science": 2,
2596
+ "mmlu_high_school_european_history": 2,
2597
+ "mmlu_high_school_geography": 2,
2598
+ "mmlu_high_school_government_and_politics": 2,
2599
+ "mmlu_high_school_macroeconomics": 2,
2600
+ "mmlu_high_school_mathematics": 2,
2601
+ "mmlu_high_school_microeconomics": 2,
2602
+ "mmlu_high_school_physics": 2,
2603
+ "mmlu_high_school_psychology": 2,
2604
+ "mmlu_high_school_statistics": 2,
2605
+ "mmlu_high_school_us_history": 2,
2606
+ "mmlu_high_school_world_history": 2,
2607
+ "mmlu_human_aging": 2,
2608
+ "mmlu_human_sexuality": 2,
2609
+ "mmlu_humanities": 2,
2610
+ "mmlu_international_law": 2,
2611
+ "mmlu_jurisprudence": 2,
2612
+ "mmlu_logical_fallacies": 2,
2613
+ "mmlu_machine_learning": 2,
2614
+ "mmlu_management": 2,
2615
+ "mmlu_marketing": 2,
2616
+ "mmlu_medical_genetics": 2,
2617
+ "mmlu_miscellaneous": 2,
2618
+ "mmlu_moral_disputes": 2,
2619
+ "mmlu_moral_scenarios": 2,
2620
+ "mmlu_nutrition": 2,
2621
+ "mmlu_other": 2,
2622
+ "mmlu_philosophy": 2,
2623
+ "mmlu_prehistory": 2,
2624
+ "mmlu_professional_accounting": 2,
2625
+ "mmlu_professional_law": 2,
2626
+ "mmlu_professional_medicine": 2,
2627
+ "mmlu_professional_psychology": 2,
2628
+ "mmlu_public_relations": 2,
2629
+ "mmlu_security_studies": 2,
2630
+ "mmlu_social_sciences": 2,
2631
+ "mmlu_sociology": 2,
2632
+ "mmlu_stem": 2,
2633
+ "mmlu_us_foreign_policy": 2,
2634
+ "mmlu_virology": 2,
2635
+ "mmlu_world_religions": 2
2636
+ },
2637
+ "config": {
2638
+ "model": "hf",
2639
+ "model_args": "pretrained=RWKV/HF_v5-Eagle-7B,dtype=bfloat16,trust_remote_code=True",
2640
+ "batch_size": "auto",
2641
+ "batch_sizes": [
2642
+ 8
2643
+ ],
2644
+ "device": null,
2645
+ "use_cache": null,
2646
+ "limit": null,
2647
+ "bootstrap_iters": 100000,
2648
+ "gen_kwargs": null
2649
+ },
2650
+ "git_hash": "99f5004"
2651
+ }
lm-eval-output/RWKV/HF_v5-Eagle-7B/mmlu/dtype=bfloat16,trust_remote_code=True-num_fewshot=2-nvidia-gpu/taskrun.log ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:653b4afd25e0e3e9fa7716f743147cf2c219299fc0efee2306bb8e9f48cbab13
3
+ size 202466
lm-eval-output/RWKV/HF_v5-Eagle-7B/mmlu/dtype=bfloat16,trust_remote_code=True-num_fewshot=5-nvidia-gpu/result-jsonl.tar.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f194d5957525fefb1ced73d0b7ee43d7297ab702b1391f1a50b5c30b132922bb
3
+ size 5383261
lm-eval-output/RWKV/HF_v5-Eagle-7B/mmlu/dtype=bfloat16,trust_remote_code=True-num_fewshot=5-nvidia-gpu/results.json ADDED
@@ -0,0 +1,2651 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "mmlu": {
4
+ "acc,none": 0.30864549209514314,
5
+ "acc_stderr,none": 0.05140559934324045,
6
+ "alias": "mmlu"
7
+ },
8
+ "mmlu_humanities": {
9
+ "alias": " - humanities",
10
+ "acc,none": 0.29436769394261425,
11
+ "acc_stderr,none": 0.04497916575062463
12
+ },
13
+ "mmlu_formal_logic": {
14
+ "alias": " - formal_logic",
15
+ "acc,none": 0.30952380952380953,
16
+ "acc_stderr,none": 0.04134913018303316
17
+ },
18
+ "mmlu_high_school_european_history": {
19
+ "alias": " - high_school_european_history",
20
+ "acc,none": 0.38181818181818183,
21
+ "acc_stderr,none": 0.03793713171165635
22
+ },
23
+ "mmlu_high_school_us_history": {
24
+ "alias": " - high_school_us_history",
25
+ "acc,none": 0.30392156862745096,
26
+ "acc_stderr,none": 0.03228210387037894
27
+ },
28
+ "mmlu_high_school_world_history": {
29
+ "alias": " - high_school_world_history",
30
+ "acc,none": 0.37130801687763715,
31
+ "acc_stderr,none": 0.03145068600744859
32
+ },
33
+ "mmlu_international_law": {
34
+ "alias": " - international_law",
35
+ "acc,none": 0.2809917355371901,
36
+ "acc_stderr,none": 0.04103203830514512
37
+ },
38
+ "mmlu_jurisprudence": {
39
+ "alias": " - jurisprudence",
40
+ "acc,none": 0.3148148148148148,
41
+ "acc_stderr,none": 0.04489931073591311
42
+ },
43
+ "mmlu_logical_fallacies": {
44
+ "alias": " - logical_fallacies",
45
+ "acc,none": 0.3619631901840491,
46
+ "acc_stderr,none": 0.037757007291414416
47
+ },
48
+ "mmlu_moral_disputes": {
49
+ "alias": " - moral_disputes",
50
+ "acc,none": 0.315028901734104,
51
+ "acc_stderr,none": 0.025009313790069706
52
+ },
53
+ "mmlu_moral_scenarios": {
54
+ "alias": " - moral_scenarios",
55
+ "acc,none": 0.24134078212290502,
56
+ "acc_stderr,none": 0.01431099954796147
57
+ },
58
+ "mmlu_philosophy": {
59
+ "alias": " - philosophy",
60
+ "acc,none": 0.2604501607717042,
61
+ "acc_stderr,none": 0.02492672322484555
62
+ },
63
+ "mmlu_prehistory": {
64
+ "alias": " - prehistory",
65
+ "acc,none": 0.30864197530864196,
66
+ "acc_stderr,none": 0.025702640260603746
67
+ },
68
+ "mmlu_professional_law": {
69
+ "alias": " - professional_law",
70
+ "acc,none": 0.2816166883963494,
71
+ "acc_stderr,none": 0.011487783272786696
72
+ },
73
+ "mmlu_world_religions": {
74
+ "alias": " - world_religions",
75
+ "acc,none": 0.39766081871345027,
76
+ "acc_stderr,none": 0.0375363895576169
77
+ },
78
+ "mmlu_other": {
79
+ "alias": " - other",
80
+ "acc,none": 0.34502735757965886,
81
+ "acc_stderr,none": 0.03902835053815799
82
+ },
83
+ "mmlu_business_ethics": {
84
+ "alias": " - business_ethics",
85
+ "acc,none": 0.36,
86
+ "acc_stderr,none": 0.048241815132442176
87
+ },
88
+ "mmlu_clinical_knowledge": {
89
+ "alias": " - clinical_knowledge",
90
+ "acc,none": 0.33962264150943394,
91
+ "acc_stderr,none": 0.02914690474779833
92
+ },
93
+ "mmlu_college_medicine": {
94
+ "alias": " - college_medicine",
95
+ "acc,none": 0.30057803468208094,
96
+ "acc_stderr,none": 0.0349610148119118
97
+ },
98
+ "mmlu_global_facts": {
99
+ "alias": " - global_facts",
100
+ "acc,none": 0.34,
101
+ "acc_stderr,none": 0.04760952285695235
102
+ },
103
+ "mmlu_human_aging": {
104
+ "alias": " - human_aging",
105
+ "acc,none": 0.32286995515695066,
106
+ "acc_stderr,none": 0.03138147637575498
107
+ },
108
+ "mmlu_management": {
109
+ "alias": " - management",
110
+ "acc,none": 0.3300970873786408,
111
+ "acc_stderr,none": 0.04656147110012351
112
+ },
113
+ "mmlu_marketing": {
114
+ "alias": " - marketing",
115
+ "acc,none": 0.3418803418803419,
116
+ "acc_stderr,none": 0.031075028526507745
117
+ },
118
+ "mmlu_medical_genetics": {
119
+ "alias": " - medical_genetics",
120
+ "acc,none": 0.28,
121
+ "acc_stderr,none": 0.04512608598542127
122
+ },
123
+ "mmlu_miscellaneous": {
124
+ "alias": " - miscellaneous",
125
+ "acc,none": 0.39080459770114945,
126
+ "acc_stderr,none": 0.01744836606706253
127
+ },
128
+ "mmlu_nutrition": {
129
+ "alias": " - nutrition",
130
+ "acc,none": 0.369281045751634,
131
+ "acc_stderr,none": 0.027634176689602663
132
+ },
133
+ "mmlu_professional_accounting": {
134
+ "alias": " - professional_accounting",
135
+ "acc,none": 0.2872340425531915,
136
+ "acc_stderr,none": 0.026992199173064356
137
+ },
138
+ "mmlu_professional_medicine": {
139
+ "alias": " - professional_medicine",
140
+ "acc,none": 0.3602941176470588,
141
+ "acc_stderr,none": 0.029163128570670736
142
+ },
143
+ "mmlu_virology": {
144
+ "alias": " - virology",
145
+ "acc,none": 0.2891566265060241,
146
+ "acc_stderr,none": 0.03529486801511115
147
+ },
148
+ "mmlu_social_sciences": {
149
+ "alias": " - social_sciences",
150
+ "acc,none": 0.3207669808254794,
151
+ "acc_stderr,none": 0.05347677675318793
152
+ },
153
+ "mmlu_econometrics": {
154
+ "alias": " - econometrics",
155
+ "acc,none": 0.2807017543859649,
156
+ "acc_stderr,none": 0.04227054451232199
157
+ },
158
+ "mmlu_high_school_geography": {
159
+ "alias": " - high_school_geography",
160
+ "acc,none": 0.2222222222222222,
161
+ "acc_stderr,none": 0.029620227874790482
162
+ },
163
+ "mmlu_high_school_government_and_politics": {
164
+ "alias": " - high_school_government_and_politics",
165
+ "acc,none": 0.36787564766839376,
166
+ "acc_stderr,none": 0.03480175668466036
167
+ },
168
+ "mmlu_high_school_macroeconomics": {
169
+ "alias": " - high_school_macroeconomics",
170
+ "acc,none": 0.3435897435897436,
171
+ "acc_stderr,none": 0.024078696580635484
172
+ },
173
+ "mmlu_high_school_microeconomics": {
174
+ "alias": " - high_school_microeconomics",
175
+ "acc,none": 0.2605042016806723,
176
+ "acc_stderr,none": 0.02851025151234193
177
+ },
178
+ "mmlu_high_school_psychology": {
179
+ "alias": " - high_school_psychology",
180
+ "acc,none": 0.3155963302752294,
181
+ "acc_stderr,none": 0.019926117513869662
182
+ },
183
+ "mmlu_human_sexuality": {
184
+ "alias": " - human_sexuality",
185
+ "acc,none": 0.3969465648854962,
186
+ "acc_stderr,none": 0.04291135671009225
187
+ },
188
+ "mmlu_professional_psychology": {
189
+ "alias": " - professional_psychology",
190
+ "acc,none": 0.2761437908496732,
191
+ "acc_stderr,none": 0.018087276935663137
192
+ },
193
+ "mmlu_public_relations": {
194
+ "alias": " - public_relations",
195
+ "acc,none": 0.33636363636363636,
196
+ "acc_stderr,none": 0.04525393596302505
197
+ },
198
+ "mmlu_security_studies": {
199
+ "alias": " - security_studies",
200
+ "acc,none": 0.4,
201
+ "acc_stderr,none": 0.03136250240935893
202
+ },
203
+ "mmlu_sociology": {
204
+ "alias": " - sociology",
205
+ "acc,none": 0.3880597014925373,
206
+ "acc_stderr,none": 0.0344578996436275
207
+ },
208
+ "mmlu_us_foreign_policy": {
209
+ "alias": " - us_foreign_policy",
210
+ "acc,none": 0.38,
211
+ "acc_stderr,none": 0.04878317312145633
212
+ },
213
+ "mmlu_stem": {
214
+ "alias": " - stem",
215
+ "acc,none": 0.28227085315572475,
216
+ "acc_stderr,none": 0.05646604183126475
217
+ },
218
+ "mmlu_abstract_algebra": {
219
+ "alias": " - abstract_algebra",
220
+ "acc,none": 0.2,
221
+ "acc_stderr,none": 0.04020151261036843
222
+ },
223
+ "mmlu_anatomy": {
224
+ "alias": " - anatomy",
225
+ "acc,none": 0.26666666666666666,
226
+ "acc_stderr,none": 0.038201699145179055
227
+ },
228
+ "mmlu_astronomy": {
229
+ "alias": " - astronomy",
230
+ "acc,none": 0.3684210526315789,
231
+ "acc_stderr,none": 0.03925523381052932
232
+ },
233
+ "mmlu_college_biology": {
234
+ "alias": " - college_biology",
235
+ "acc,none": 0.3125,
236
+ "acc_stderr,none": 0.038760854559127644
237
+ },
238
+ "mmlu_college_chemistry": {
239
+ "alias": " - college_chemistry",
240
+ "acc,none": 0.32,
241
+ "acc_stderr,none": 0.04688261722621504
242
+ },
243
+ "mmlu_college_computer_science": {
244
+ "alias": " - college_computer_science",
245
+ "acc,none": 0.32,
246
+ "acc_stderr,none": 0.04688261722621504
247
+ },
248
+ "mmlu_college_mathematics": {
249
+ "alias": " - college_mathematics",
250
+ "acc,none": 0.29,
251
+ "acc_stderr,none": 0.04560480215720683
252
+ },
253
+ "mmlu_college_physics": {
254
+ "alias": " - college_physics",
255
+ "acc,none": 0.18627450980392157,
256
+ "acc_stderr,none": 0.038739587141493524
257
+ },
258
+ "mmlu_computer_security": {
259
+ "alias": " - computer_security",
260
+ "acc,none": 0.37,
261
+ "acc_stderr,none": 0.04852365870939099
262
+ },
263
+ "mmlu_conceptual_physics": {
264
+ "alias": " - conceptual_physics",
265
+ "acc,none": 0.3191489361702128,
266
+ "acc_stderr,none": 0.030472973363380035
267
+ },
268
+ "mmlu_electrical_engineering": {
269
+ "alias": " - electrical_engineering",
270
+ "acc,none": 0.27586206896551724,
271
+ "acc_stderr,none": 0.037245636197746304
272
+ },
273
+ "mmlu_elementary_mathematics": {
274
+ "alias": " - elementary_mathematics",
275
+ "acc,none": 0.2830687830687831,
276
+ "acc_stderr,none": 0.023201392938194974
277
+ },
278
+ "mmlu_high_school_biology": {
279
+ "alias": " - high_school_biology",
280
+ "acc,none": 0.35161290322580646,
281
+ "acc_stderr,none": 0.02716253782694846
282
+ },
283
+ "mmlu_high_school_chemistry": {
284
+ "alias": " - high_school_chemistry",
285
+ "acc,none": 0.21674876847290642,
286
+ "acc_stderr,none": 0.02899033125251624
287
+ },
288
+ "mmlu_high_school_computer_science": {
289
+ "alias": " - high_school_computer_science",
290
+ "acc,none": 0.32,
291
+ "acc_stderr,none": 0.04688261722621505
292
+ },
293
+ "mmlu_high_school_mathematics": {
294
+ "alias": " - high_school_mathematics",
295
+ "acc,none": 0.24814814814814815,
296
+ "acc_stderr,none": 0.026335739404055803
297
+ },
298
+ "mmlu_high_school_physics": {
299
+ "alias": " - high_school_physics",
300
+ "acc,none": 0.2185430463576159,
301
+ "acc_stderr,none": 0.03374235550425694
302
+ },
303
+ "mmlu_high_school_statistics": {
304
+ "alias": " - high_school_statistics",
305
+ "acc,none": 0.22685185185185186,
306
+ "acc_stderr,none": 0.028561650102422252
307
+ },
308
+ "mmlu_machine_learning": {
309
+ "alias": " - machine_learning",
310
+ "acc,none": 0.25,
311
+ "acc_stderr,none": 0.04109974682633932
312
+ }
313
+ },
314
+ "groups": {
315
+ "mmlu": {
316
+ "acc,none": 0.30864549209514314,
317
+ "acc_stderr,none": 0.05140559934324045,
318
+ "alias": "mmlu"
319
+ },
320
+ "mmlu_humanities": {
321
+ "alias": " - humanities",
322
+ "acc,none": 0.29436769394261425,
323
+ "acc_stderr,none": 0.04497916575062463
324
+ },
325
+ "mmlu_other": {
326
+ "alias": " - other",
327
+ "acc,none": 0.34502735757965886,
328
+ "acc_stderr,none": 0.03902835053815799
329
+ },
330
+ "mmlu_social_sciences": {
331
+ "alias": " - social_sciences",
332
+ "acc,none": 0.3207669808254794,
333
+ "acc_stderr,none": 0.05347677675318793
334
+ },
335
+ "mmlu_stem": {
336
+ "alias": " - stem",
337
+ "acc,none": 0.28227085315572475,
338
+ "acc_stderr,none": 0.05646604183126475
339
+ }
340
+ },
341
+ "configs": {
342
+ "mmlu_abstract_algebra": {
343
+ "task": "mmlu_abstract_algebra",
344
+ "task_alias": "abstract_algebra",
345
+ "group": "mmlu_stem",
346
+ "group_alias": "stem",
347
+ "dataset_path": "hails/mmlu_no_train",
348
+ "dataset_name": "abstract_algebra",
349
+ "test_split": "test",
350
+ "fewshot_split": "dev",
351
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
352
+ "doc_to_target": "answer",
353
+ "doc_to_choice": [
354
+ "A",
355
+ "B",
356
+ "C",
357
+ "D"
358
+ ],
359
+ "description": "The following are multiple choice questions (with answers) about abstract algebra.\n\n",
360
+ "target_delimiter": " ",
361
+ "fewshot_delimiter": "\n\n",
362
+ "fewshot_config": {
363
+ "sampler": "first_n"
364
+ },
365
+ "num_fewshot": 5,
366
+ "metric_list": [
367
+ {
368
+ "metric": "acc",
369
+ "aggregation": "mean",
370
+ "higher_is_better": true
371
+ }
372
+ ],
373
+ "output_type": "multiple_choice",
374
+ "repeats": 1,
375
+ "should_decontaminate": false,
376
+ "metadata": {
377
+ "version": 0.0
378
+ }
379
+ },
380
+ "mmlu_anatomy": {
381
+ "task": "mmlu_anatomy",
382
+ "task_alias": "anatomy",
383
+ "group": "mmlu_stem",
384
+ "group_alias": "stem",
385
+ "dataset_path": "hails/mmlu_no_train",
386
+ "dataset_name": "anatomy",
387
+ "test_split": "test",
388
+ "fewshot_split": "dev",
389
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
390
+ "doc_to_target": "answer",
391
+ "doc_to_choice": [
392
+ "A",
393
+ "B",
394
+ "C",
395
+ "D"
396
+ ],
397
+ "description": "The following are multiple choice questions (with answers) about anatomy.\n\n",
398
+ "target_delimiter": " ",
399
+ "fewshot_delimiter": "\n\n",
400
+ "fewshot_config": {
401
+ "sampler": "first_n"
402
+ },
403
+ "num_fewshot": 5,
404
+ "metric_list": [
405
+ {
406
+ "metric": "acc",
407
+ "aggregation": "mean",
408
+ "higher_is_better": true
409
+ }
410
+ ],
411
+ "output_type": "multiple_choice",
412
+ "repeats": 1,
413
+ "should_decontaminate": false,
414
+ "metadata": {
415
+ "version": 0.0
416
+ }
417
+ },
418
+ "mmlu_astronomy": {
419
+ "task": "mmlu_astronomy",
420
+ "task_alias": "astronomy",
421
+ "group": "mmlu_stem",
422
+ "group_alias": "stem",
423
+ "dataset_path": "hails/mmlu_no_train",
424
+ "dataset_name": "astronomy",
425
+ "test_split": "test",
426
+ "fewshot_split": "dev",
427
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
428
+ "doc_to_target": "answer",
429
+ "doc_to_choice": [
430
+ "A",
431
+ "B",
432
+ "C",
433
+ "D"
434
+ ],
435
+ "description": "The following are multiple choice questions (with answers) about astronomy.\n\n",
436
+ "target_delimiter": " ",
437
+ "fewshot_delimiter": "\n\n",
438
+ "fewshot_config": {
439
+ "sampler": "first_n"
440
+ },
441
+ "num_fewshot": 5,
442
+ "metric_list": [
443
+ {
444
+ "metric": "acc",
445
+ "aggregation": "mean",
446
+ "higher_is_better": true
447
+ }
448
+ ],
449
+ "output_type": "multiple_choice",
450
+ "repeats": 1,
451
+ "should_decontaminate": false,
452
+ "metadata": {
453
+ "version": 0.0
454
+ }
455
+ },
456
+ "mmlu_business_ethics": {
457
+ "task": "mmlu_business_ethics",
458
+ "task_alias": "business_ethics",
459
+ "group": "mmlu_other",
460
+ "group_alias": "other",
461
+ "dataset_path": "hails/mmlu_no_train",
462
+ "dataset_name": "business_ethics",
463
+ "test_split": "test",
464
+ "fewshot_split": "dev",
465
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
466
+ "doc_to_target": "answer",
467
+ "doc_to_choice": [
468
+ "A",
469
+ "B",
470
+ "C",
471
+ "D"
472
+ ],
473
+ "description": "The following are multiple choice questions (with answers) about business ethics.\n\n",
474
+ "target_delimiter": " ",
475
+ "fewshot_delimiter": "\n\n",
476
+ "fewshot_config": {
477
+ "sampler": "first_n"
478
+ },
479
+ "num_fewshot": 5,
480
+ "metric_list": [
481
+ {
482
+ "metric": "acc",
483
+ "aggregation": "mean",
484
+ "higher_is_better": true
485
+ }
486
+ ],
487
+ "output_type": "multiple_choice",
488
+ "repeats": 1,
489
+ "should_decontaminate": false,
490
+ "metadata": {
491
+ "version": 0.0
492
+ }
493
+ },
494
+ "mmlu_clinical_knowledge": {
495
+ "task": "mmlu_clinical_knowledge",
496
+ "task_alias": "clinical_knowledge",
497
+ "group": "mmlu_other",
498
+ "group_alias": "other",
499
+ "dataset_path": "hails/mmlu_no_train",
500
+ "dataset_name": "clinical_knowledge",
501
+ "test_split": "test",
502
+ "fewshot_split": "dev",
503
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
504
+ "doc_to_target": "answer",
505
+ "doc_to_choice": [
506
+ "A",
507
+ "B",
508
+ "C",
509
+ "D"
510
+ ],
511
+ "description": "The following are multiple choice questions (with answers) about clinical knowledge.\n\n",
512
+ "target_delimiter": " ",
513
+ "fewshot_delimiter": "\n\n",
514
+ "fewshot_config": {
515
+ "sampler": "first_n"
516
+ },
517
+ "num_fewshot": 5,
518
+ "metric_list": [
519
+ {
520
+ "metric": "acc",
521
+ "aggregation": "mean",
522
+ "higher_is_better": true
523
+ }
524
+ ],
525
+ "output_type": "multiple_choice",
526
+ "repeats": 1,
527
+ "should_decontaminate": false,
528
+ "metadata": {
529
+ "version": 0.0
530
+ }
531
+ },
532
+ "mmlu_college_biology": {
533
+ "task": "mmlu_college_biology",
534
+ "task_alias": "college_biology",
535
+ "group": "mmlu_stem",
536
+ "group_alias": "stem",
537
+ "dataset_path": "hails/mmlu_no_train",
538
+ "dataset_name": "college_biology",
539
+ "test_split": "test",
540
+ "fewshot_split": "dev",
541
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
542
+ "doc_to_target": "answer",
543
+ "doc_to_choice": [
544
+ "A",
545
+ "B",
546
+ "C",
547
+ "D"
548
+ ],
549
+ "description": "The following are multiple choice questions (with answers) about college biology.\n\n",
550
+ "target_delimiter": " ",
551
+ "fewshot_delimiter": "\n\n",
552
+ "fewshot_config": {
553
+ "sampler": "first_n"
554
+ },
555
+ "num_fewshot": 5,
556
+ "metric_list": [
557
+ {
558
+ "metric": "acc",
559
+ "aggregation": "mean",
560
+ "higher_is_better": true
561
+ }
562
+ ],
563
+ "output_type": "multiple_choice",
564
+ "repeats": 1,
565
+ "should_decontaminate": false,
566
+ "metadata": {
567
+ "version": 0.0
568
+ }
569
+ },
570
+ "mmlu_college_chemistry": {
571
+ "task": "mmlu_college_chemistry",
572
+ "task_alias": "college_chemistry",
573
+ "group": "mmlu_stem",
574
+ "group_alias": "stem",
575
+ "dataset_path": "hails/mmlu_no_train",
576
+ "dataset_name": "college_chemistry",
577
+ "test_split": "test",
578
+ "fewshot_split": "dev",
579
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
580
+ "doc_to_target": "answer",
581
+ "doc_to_choice": [
582
+ "A",
583
+ "B",
584
+ "C",
585
+ "D"
586
+ ],
587
+ "description": "The following are multiple choice questions (with answers) about college chemistry.\n\n",
588
+ "target_delimiter": " ",
589
+ "fewshot_delimiter": "\n\n",
590
+ "fewshot_config": {
591
+ "sampler": "first_n"
592
+ },
593
+ "num_fewshot": 5,
594
+ "metric_list": [
595
+ {
596
+ "metric": "acc",
597
+ "aggregation": "mean",
598
+ "higher_is_better": true
599
+ }
600
+ ],
601
+ "output_type": "multiple_choice",
602
+ "repeats": 1,
603
+ "should_decontaminate": false,
604
+ "metadata": {
605
+ "version": 0.0
606
+ }
607
+ },
608
+ "mmlu_college_computer_science": {
609
+ "task": "mmlu_college_computer_science",
610
+ "task_alias": "college_computer_science",
611
+ "group": "mmlu_stem",
612
+ "group_alias": "stem",
613
+ "dataset_path": "hails/mmlu_no_train",
614
+ "dataset_name": "college_computer_science",
615
+ "test_split": "test",
616
+ "fewshot_split": "dev",
617
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
618
+ "doc_to_target": "answer",
619
+ "doc_to_choice": [
620
+ "A",
621
+ "B",
622
+ "C",
623
+ "D"
624
+ ],
625
+ "description": "The following are multiple choice questions (with answers) about college computer science.\n\n",
626
+ "target_delimiter": " ",
627
+ "fewshot_delimiter": "\n\n",
628
+ "fewshot_config": {
629
+ "sampler": "first_n"
630
+ },
631
+ "num_fewshot": 5,
632
+ "metric_list": [
633
+ {
634
+ "metric": "acc",
635
+ "aggregation": "mean",
636
+ "higher_is_better": true
637
+ }
638
+ ],
639
+ "output_type": "multiple_choice",
640
+ "repeats": 1,
641
+ "should_decontaminate": false,
642
+ "metadata": {
643
+ "version": 0.0
644
+ }
645
+ },
646
+ "mmlu_college_mathematics": {
647
+ "task": "mmlu_college_mathematics",
648
+ "task_alias": "college_mathematics",
649
+ "group": "mmlu_stem",
650
+ "group_alias": "stem",
651
+ "dataset_path": "hails/mmlu_no_train",
652
+ "dataset_name": "college_mathematics",
653
+ "test_split": "test",
654
+ "fewshot_split": "dev",
655
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
656
+ "doc_to_target": "answer",
657
+ "doc_to_choice": [
658
+ "A",
659
+ "B",
660
+ "C",
661
+ "D"
662
+ ],
663
+ "description": "The following are multiple choice questions (with answers) about college mathematics.\n\n",
664
+ "target_delimiter": " ",
665
+ "fewshot_delimiter": "\n\n",
666
+ "fewshot_config": {
667
+ "sampler": "first_n"
668
+ },
669
+ "num_fewshot": 5,
670
+ "metric_list": [
671
+ {
672
+ "metric": "acc",
673
+ "aggregation": "mean",
674
+ "higher_is_better": true
675
+ }
676
+ ],
677
+ "output_type": "multiple_choice",
678
+ "repeats": 1,
679
+ "should_decontaminate": false,
680
+ "metadata": {
681
+ "version": 0.0
682
+ }
683
+ },
684
+ "mmlu_college_medicine": {
685
+ "task": "mmlu_college_medicine",
686
+ "task_alias": "college_medicine",
687
+ "group": "mmlu_other",
688
+ "group_alias": "other",
689
+ "dataset_path": "hails/mmlu_no_train",
690
+ "dataset_name": "college_medicine",
691
+ "test_split": "test",
692
+ "fewshot_split": "dev",
693
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
694
+ "doc_to_target": "answer",
695
+ "doc_to_choice": [
696
+ "A",
697
+ "B",
698
+ "C",
699
+ "D"
700
+ ],
701
+ "description": "The following are multiple choice questions (with answers) about college medicine.\n\n",
702
+ "target_delimiter": " ",
703
+ "fewshot_delimiter": "\n\n",
704
+ "fewshot_config": {
705
+ "sampler": "first_n"
706
+ },
707
+ "num_fewshot": 5,
708
+ "metric_list": [
709
+ {
710
+ "metric": "acc",
711
+ "aggregation": "mean",
712
+ "higher_is_better": true
713
+ }
714
+ ],
715
+ "output_type": "multiple_choice",
716
+ "repeats": 1,
717
+ "should_decontaminate": false,
718
+ "metadata": {
719
+ "version": 0.0
720
+ }
721
+ },
722
+ "mmlu_college_physics": {
723
+ "task": "mmlu_college_physics",
724
+ "task_alias": "college_physics",
725
+ "group": "mmlu_stem",
726
+ "group_alias": "stem",
727
+ "dataset_path": "hails/mmlu_no_train",
728
+ "dataset_name": "college_physics",
729
+ "test_split": "test",
730
+ "fewshot_split": "dev",
731
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
732
+ "doc_to_target": "answer",
733
+ "doc_to_choice": [
734
+ "A",
735
+ "B",
736
+ "C",
737
+ "D"
738
+ ],
739
+ "description": "The following are multiple choice questions (with answers) about college physics.\n\n",
740
+ "target_delimiter": " ",
741
+ "fewshot_delimiter": "\n\n",
742
+ "fewshot_config": {
743
+ "sampler": "first_n"
744
+ },
745
+ "num_fewshot": 5,
746
+ "metric_list": [
747
+ {
748
+ "metric": "acc",
749
+ "aggregation": "mean",
750
+ "higher_is_better": true
751
+ }
752
+ ],
753
+ "output_type": "multiple_choice",
754
+ "repeats": 1,
755
+ "should_decontaminate": false,
756
+ "metadata": {
757
+ "version": 0.0
758
+ }
759
+ },
760
+ "mmlu_computer_security": {
761
+ "task": "mmlu_computer_security",
762
+ "task_alias": "computer_security",
763
+ "group": "mmlu_stem",
764
+ "group_alias": "stem",
765
+ "dataset_path": "hails/mmlu_no_train",
766
+ "dataset_name": "computer_security",
767
+ "test_split": "test",
768
+ "fewshot_split": "dev",
769
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
770
+ "doc_to_target": "answer",
771
+ "doc_to_choice": [
772
+ "A",
773
+ "B",
774
+ "C",
775
+ "D"
776
+ ],
777
+ "description": "The following are multiple choice questions (with answers) about computer security.\n\n",
778
+ "target_delimiter": " ",
779
+ "fewshot_delimiter": "\n\n",
780
+ "fewshot_config": {
781
+ "sampler": "first_n"
782
+ },
783
+ "num_fewshot": 5,
784
+ "metric_list": [
785
+ {
786
+ "metric": "acc",
787
+ "aggregation": "mean",
788
+ "higher_is_better": true
789
+ }
790
+ ],
791
+ "output_type": "multiple_choice",
792
+ "repeats": 1,
793
+ "should_decontaminate": false,
794
+ "metadata": {
795
+ "version": 0.0
796
+ }
797
+ },
798
+ "mmlu_conceptual_physics": {
799
+ "task": "mmlu_conceptual_physics",
800
+ "task_alias": "conceptual_physics",
801
+ "group": "mmlu_stem",
802
+ "group_alias": "stem",
803
+ "dataset_path": "hails/mmlu_no_train",
804
+ "dataset_name": "conceptual_physics",
805
+ "test_split": "test",
806
+ "fewshot_split": "dev",
807
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
808
+ "doc_to_target": "answer",
809
+ "doc_to_choice": [
810
+ "A",
811
+ "B",
812
+ "C",
813
+ "D"
814
+ ],
815
+ "description": "The following are multiple choice questions (with answers) about conceptual physics.\n\n",
816
+ "target_delimiter": " ",
817
+ "fewshot_delimiter": "\n\n",
818
+ "fewshot_config": {
819
+ "sampler": "first_n"
820
+ },
821
+ "num_fewshot": 5,
822
+ "metric_list": [
823
+ {
824
+ "metric": "acc",
825
+ "aggregation": "mean",
826
+ "higher_is_better": true
827
+ }
828
+ ],
829
+ "output_type": "multiple_choice",
830
+ "repeats": 1,
831
+ "should_decontaminate": false,
832
+ "metadata": {
833
+ "version": 0.0
834
+ }
835
+ },
836
+ "mmlu_econometrics": {
837
+ "task": "mmlu_econometrics",
838
+ "task_alias": "econometrics",
839
+ "group": "mmlu_social_sciences",
840
+ "group_alias": "social_sciences",
841
+ "dataset_path": "hails/mmlu_no_train",
842
+ "dataset_name": "econometrics",
843
+ "test_split": "test",
844
+ "fewshot_split": "dev",
845
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
846
+ "doc_to_target": "answer",
847
+ "doc_to_choice": [
848
+ "A",
849
+ "B",
850
+ "C",
851
+ "D"
852
+ ],
853
+ "description": "The following are multiple choice questions (with answers) about econometrics.\n\n",
854
+ "target_delimiter": " ",
855
+ "fewshot_delimiter": "\n\n",
856
+ "fewshot_config": {
857
+ "sampler": "first_n"
858
+ },
859
+ "num_fewshot": 5,
860
+ "metric_list": [
861
+ {
862
+ "metric": "acc",
863
+ "aggregation": "mean",
864
+ "higher_is_better": true
865
+ }
866
+ ],
867
+ "output_type": "multiple_choice",
868
+ "repeats": 1,
869
+ "should_decontaminate": false,
870
+ "metadata": {
871
+ "version": 0.0
872
+ }
873
+ },
874
+ "mmlu_electrical_engineering": {
875
+ "task": "mmlu_electrical_engineering",
876
+ "task_alias": "electrical_engineering",
877
+ "group": "mmlu_stem",
878
+ "group_alias": "stem",
879
+ "dataset_path": "hails/mmlu_no_train",
880
+ "dataset_name": "electrical_engineering",
881
+ "test_split": "test",
882
+ "fewshot_split": "dev",
883
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
884
+ "doc_to_target": "answer",
885
+ "doc_to_choice": [
886
+ "A",
887
+ "B",
888
+ "C",
889
+ "D"
890
+ ],
891
+ "description": "The following are multiple choice questions (with answers) about electrical engineering.\n\n",
892
+ "target_delimiter": " ",
893
+ "fewshot_delimiter": "\n\n",
894
+ "fewshot_config": {
895
+ "sampler": "first_n"
896
+ },
897
+ "num_fewshot": 5,
898
+ "metric_list": [
899
+ {
900
+ "metric": "acc",
901
+ "aggregation": "mean",
902
+ "higher_is_better": true
903
+ }
904
+ ],
905
+ "output_type": "multiple_choice",
906
+ "repeats": 1,
907
+ "should_decontaminate": false,
908
+ "metadata": {
909
+ "version": 0.0
910
+ }
911
+ },
912
+ "mmlu_elementary_mathematics": {
913
+ "task": "mmlu_elementary_mathematics",
914
+ "task_alias": "elementary_mathematics",
915
+ "group": "mmlu_stem",
916
+ "group_alias": "stem",
917
+ "dataset_path": "hails/mmlu_no_train",
918
+ "dataset_name": "elementary_mathematics",
919
+ "test_split": "test",
920
+ "fewshot_split": "dev",
921
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
922
+ "doc_to_target": "answer",
923
+ "doc_to_choice": [
924
+ "A",
925
+ "B",
926
+ "C",
927
+ "D"
928
+ ],
929
+ "description": "The following are multiple choice questions (with answers) about elementary mathematics.\n\n",
930
+ "target_delimiter": " ",
931
+ "fewshot_delimiter": "\n\n",
932
+ "fewshot_config": {
933
+ "sampler": "first_n"
934
+ },
935
+ "num_fewshot": 5,
936
+ "metric_list": [
937
+ {
938
+ "metric": "acc",
939
+ "aggregation": "mean",
940
+ "higher_is_better": true
941
+ }
942
+ ],
943
+ "output_type": "multiple_choice",
944
+ "repeats": 1,
945
+ "should_decontaminate": false,
946
+ "metadata": {
947
+ "version": 0.0
948
+ }
949
+ },
950
+ "mmlu_formal_logic": {
951
+ "task": "mmlu_formal_logic",
952
+ "task_alias": "formal_logic",
953
+ "group": "mmlu_humanities",
954
+ "group_alias": "humanities",
955
+ "dataset_path": "hails/mmlu_no_train",
956
+ "dataset_name": "formal_logic",
957
+ "test_split": "test",
958
+ "fewshot_split": "dev",
959
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
960
+ "doc_to_target": "answer",
961
+ "doc_to_choice": [
962
+ "A",
963
+ "B",
964
+ "C",
965
+ "D"
966
+ ],
967
+ "description": "The following are multiple choice questions (with answers) about formal logic.\n\n",
968
+ "target_delimiter": " ",
969
+ "fewshot_delimiter": "\n\n",
970
+ "fewshot_config": {
971
+ "sampler": "first_n"
972
+ },
973
+ "num_fewshot": 5,
974
+ "metric_list": [
975
+ {
976
+ "metric": "acc",
977
+ "aggregation": "mean",
978
+ "higher_is_better": true
979
+ }
980
+ ],
981
+ "output_type": "multiple_choice",
982
+ "repeats": 1,
983
+ "should_decontaminate": false,
984
+ "metadata": {
985
+ "version": 0.0
986
+ }
987
+ },
988
+ "mmlu_global_facts": {
989
+ "task": "mmlu_global_facts",
990
+ "task_alias": "global_facts",
991
+ "group": "mmlu_other",
992
+ "group_alias": "other",
993
+ "dataset_path": "hails/mmlu_no_train",
994
+ "dataset_name": "global_facts",
995
+ "test_split": "test",
996
+ "fewshot_split": "dev",
997
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
998
+ "doc_to_target": "answer",
999
+ "doc_to_choice": [
1000
+ "A",
1001
+ "B",
1002
+ "C",
1003
+ "D"
1004
+ ],
1005
+ "description": "The following are multiple choice questions (with answers) about global facts.\n\n",
1006
+ "target_delimiter": " ",
1007
+ "fewshot_delimiter": "\n\n",
1008
+ "fewshot_config": {
1009
+ "sampler": "first_n"
1010
+ },
1011
+ "num_fewshot": 5,
1012
+ "metric_list": [
1013
+ {
1014
+ "metric": "acc",
1015
+ "aggregation": "mean",
1016
+ "higher_is_better": true
1017
+ }
1018
+ ],
1019
+ "output_type": "multiple_choice",
1020
+ "repeats": 1,
1021
+ "should_decontaminate": false,
1022
+ "metadata": {
1023
+ "version": 0.0
1024
+ }
1025
+ },
1026
+ "mmlu_high_school_biology": {
1027
+ "task": "mmlu_high_school_biology",
1028
+ "task_alias": "high_school_biology",
1029
+ "group": "mmlu_stem",
1030
+ "group_alias": "stem",
1031
+ "dataset_path": "hails/mmlu_no_train",
1032
+ "dataset_name": "high_school_biology",
1033
+ "test_split": "test",
1034
+ "fewshot_split": "dev",
1035
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1036
+ "doc_to_target": "answer",
1037
+ "doc_to_choice": [
1038
+ "A",
1039
+ "B",
1040
+ "C",
1041
+ "D"
1042
+ ],
1043
+ "description": "The following are multiple choice questions (with answers) about high school biology.\n\n",
1044
+ "target_delimiter": " ",
1045
+ "fewshot_delimiter": "\n\n",
1046
+ "fewshot_config": {
1047
+ "sampler": "first_n"
1048
+ },
1049
+ "num_fewshot": 5,
1050
+ "metric_list": [
1051
+ {
1052
+ "metric": "acc",
1053
+ "aggregation": "mean",
1054
+ "higher_is_better": true
1055
+ }
1056
+ ],
1057
+ "output_type": "multiple_choice",
1058
+ "repeats": 1,
1059
+ "should_decontaminate": false,
1060
+ "metadata": {
1061
+ "version": 0.0
1062
+ }
1063
+ },
1064
+ "mmlu_high_school_chemistry": {
1065
+ "task": "mmlu_high_school_chemistry",
1066
+ "task_alias": "high_school_chemistry",
1067
+ "group": "mmlu_stem",
1068
+ "group_alias": "stem",
1069
+ "dataset_path": "hails/mmlu_no_train",
1070
+ "dataset_name": "high_school_chemistry",
1071
+ "test_split": "test",
1072
+ "fewshot_split": "dev",
1073
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1074
+ "doc_to_target": "answer",
1075
+ "doc_to_choice": [
1076
+ "A",
1077
+ "B",
1078
+ "C",
1079
+ "D"
1080
+ ],
1081
+ "description": "The following are multiple choice questions (with answers) about high school chemistry.\n\n",
1082
+ "target_delimiter": " ",
1083
+ "fewshot_delimiter": "\n\n",
1084
+ "fewshot_config": {
1085
+ "sampler": "first_n"
1086
+ },
1087
+ "num_fewshot": 5,
1088
+ "metric_list": [
1089
+ {
1090
+ "metric": "acc",
1091
+ "aggregation": "mean",
1092
+ "higher_is_better": true
1093
+ }
1094
+ ],
1095
+ "output_type": "multiple_choice",
1096
+ "repeats": 1,
1097
+ "should_decontaminate": false,
1098
+ "metadata": {
1099
+ "version": 0.0
1100
+ }
1101
+ },
1102
+ "mmlu_high_school_computer_science": {
1103
+ "task": "mmlu_high_school_computer_science",
1104
+ "task_alias": "high_school_computer_science",
1105
+ "group": "mmlu_stem",
1106
+ "group_alias": "stem",
1107
+ "dataset_path": "hails/mmlu_no_train",
1108
+ "dataset_name": "high_school_computer_science",
1109
+ "test_split": "test",
1110
+ "fewshot_split": "dev",
1111
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1112
+ "doc_to_target": "answer",
1113
+ "doc_to_choice": [
1114
+ "A",
1115
+ "B",
1116
+ "C",
1117
+ "D"
1118
+ ],
1119
+ "description": "The following are multiple choice questions (with answers) about high school computer science.\n\n",
1120
+ "target_delimiter": " ",
1121
+ "fewshot_delimiter": "\n\n",
1122
+ "fewshot_config": {
1123
+ "sampler": "first_n"
1124
+ },
1125
+ "num_fewshot": 5,
1126
+ "metric_list": [
1127
+ {
1128
+ "metric": "acc",
1129
+ "aggregation": "mean",
1130
+ "higher_is_better": true
1131
+ }
1132
+ ],
1133
+ "output_type": "multiple_choice",
1134
+ "repeats": 1,
1135
+ "should_decontaminate": false,
1136
+ "metadata": {
1137
+ "version": 0.0
1138
+ }
1139
+ },
1140
+ "mmlu_high_school_european_history": {
1141
+ "task": "mmlu_high_school_european_history",
1142
+ "task_alias": "high_school_european_history",
1143
+ "group": "mmlu_humanities",
1144
+ "group_alias": "humanities",
1145
+ "dataset_path": "hails/mmlu_no_train",
1146
+ "dataset_name": "high_school_european_history",
1147
+ "test_split": "test",
1148
+ "fewshot_split": "dev",
1149
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1150
+ "doc_to_target": "answer",
1151
+ "doc_to_choice": [
1152
+ "A",
1153
+ "B",
1154
+ "C",
1155
+ "D"
1156
+ ],
1157
+ "description": "The following are multiple choice questions (with answers) about high school european history.\n\n",
1158
+ "target_delimiter": " ",
1159
+ "fewshot_delimiter": "\n\n",
1160
+ "fewshot_config": {
1161
+ "sampler": "first_n"
1162
+ },
1163
+ "num_fewshot": 5,
1164
+ "metric_list": [
1165
+ {
1166
+ "metric": "acc",
1167
+ "aggregation": "mean",
1168
+ "higher_is_better": true
1169
+ }
1170
+ ],
1171
+ "output_type": "multiple_choice",
1172
+ "repeats": 1,
1173
+ "should_decontaminate": false,
1174
+ "metadata": {
1175
+ "version": 0.0
1176
+ }
1177
+ },
1178
+ "mmlu_high_school_geography": {
1179
+ "task": "mmlu_high_school_geography",
1180
+ "task_alias": "high_school_geography",
1181
+ "group": "mmlu_social_sciences",
1182
+ "group_alias": "social_sciences",
1183
+ "dataset_path": "hails/mmlu_no_train",
1184
+ "dataset_name": "high_school_geography",
1185
+ "test_split": "test",
1186
+ "fewshot_split": "dev",
1187
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1188
+ "doc_to_target": "answer",
1189
+ "doc_to_choice": [
1190
+ "A",
1191
+ "B",
1192
+ "C",
1193
+ "D"
1194
+ ],
1195
+ "description": "The following are multiple choice questions (with answers) about high school geography.\n\n",
1196
+ "target_delimiter": " ",
1197
+ "fewshot_delimiter": "\n\n",
1198
+ "fewshot_config": {
1199
+ "sampler": "first_n"
1200
+ },
1201
+ "num_fewshot": 5,
1202
+ "metric_list": [
1203
+ {
1204
+ "metric": "acc",
1205
+ "aggregation": "mean",
1206
+ "higher_is_better": true
1207
+ }
1208
+ ],
1209
+ "output_type": "multiple_choice",
1210
+ "repeats": 1,
1211
+ "should_decontaminate": false,
1212
+ "metadata": {
1213
+ "version": 0.0
1214
+ }
1215
+ },
1216
+ "mmlu_high_school_government_and_politics": {
1217
+ "task": "mmlu_high_school_government_and_politics",
1218
+ "task_alias": "high_school_government_and_politics",
1219
+ "group": "mmlu_social_sciences",
1220
+ "group_alias": "social_sciences",
1221
+ "dataset_path": "hails/mmlu_no_train",
1222
+ "dataset_name": "high_school_government_and_politics",
1223
+ "test_split": "test",
1224
+ "fewshot_split": "dev",
1225
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1226
+ "doc_to_target": "answer",
1227
+ "doc_to_choice": [
1228
+ "A",
1229
+ "B",
1230
+ "C",
1231
+ "D"
1232
+ ],
1233
+ "description": "The following are multiple choice questions (with answers) about high school government and politics.\n\n",
1234
+ "target_delimiter": " ",
1235
+ "fewshot_delimiter": "\n\n",
1236
+ "fewshot_config": {
1237
+ "sampler": "first_n"
1238
+ },
1239
+ "num_fewshot": 5,
1240
+ "metric_list": [
1241
+ {
1242
+ "metric": "acc",
1243
+ "aggregation": "mean",
1244
+ "higher_is_better": true
1245
+ }
1246
+ ],
1247
+ "output_type": "multiple_choice",
1248
+ "repeats": 1,
1249
+ "should_decontaminate": false,
1250
+ "metadata": {
1251
+ "version": 0.0
1252
+ }
1253
+ },
1254
+ "mmlu_high_school_macroeconomics": {
1255
+ "task": "mmlu_high_school_macroeconomics",
1256
+ "task_alias": "high_school_macroeconomics",
1257
+ "group": "mmlu_social_sciences",
1258
+ "group_alias": "social_sciences",
1259
+ "dataset_path": "hails/mmlu_no_train",
1260
+ "dataset_name": "high_school_macroeconomics",
1261
+ "test_split": "test",
1262
+ "fewshot_split": "dev",
1263
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1264
+ "doc_to_target": "answer",
1265
+ "doc_to_choice": [
1266
+ "A",
1267
+ "B",
1268
+ "C",
1269
+ "D"
1270
+ ],
1271
+ "description": "The following are multiple choice questions (with answers) about high school macroeconomics.\n\n",
1272
+ "target_delimiter": " ",
1273
+ "fewshot_delimiter": "\n\n",
1274
+ "fewshot_config": {
1275
+ "sampler": "first_n"
1276
+ },
1277
+ "num_fewshot": 5,
1278
+ "metric_list": [
1279
+ {
1280
+ "metric": "acc",
1281
+ "aggregation": "mean",
1282
+ "higher_is_better": true
1283
+ }
1284
+ ],
1285
+ "output_type": "multiple_choice",
1286
+ "repeats": 1,
1287
+ "should_decontaminate": false,
1288
+ "metadata": {
1289
+ "version": 0.0
1290
+ }
1291
+ },
1292
+ "mmlu_high_school_mathematics": {
1293
+ "task": "mmlu_high_school_mathematics",
1294
+ "task_alias": "high_school_mathematics",
1295
+ "group": "mmlu_stem",
1296
+ "group_alias": "stem",
1297
+ "dataset_path": "hails/mmlu_no_train",
1298
+ "dataset_name": "high_school_mathematics",
1299
+ "test_split": "test",
1300
+ "fewshot_split": "dev",
1301
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1302
+ "doc_to_target": "answer",
1303
+ "doc_to_choice": [
1304
+ "A",
1305
+ "B",
1306
+ "C",
1307
+ "D"
1308
+ ],
1309
+ "description": "The following are multiple choice questions (with answers) about high school mathematics.\n\n",
1310
+ "target_delimiter": " ",
1311
+ "fewshot_delimiter": "\n\n",
1312
+ "fewshot_config": {
1313
+ "sampler": "first_n"
1314
+ },
1315
+ "num_fewshot": 5,
1316
+ "metric_list": [
1317
+ {
1318
+ "metric": "acc",
1319
+ "aggregation": "mean",
1320
+ "higher_is_better": true
1321
+ }
1322
+ ],
1323
+ "output_type": "multiple_choice",
1324
+ "repeats": 1,
1325
+ "should_decontaminate": false,
1326
+ "metadata": {
1327
+ "version": 0.0
1328
+ }
1329
+ },
1330
+ "mmlu_high_school_microeconomics": {
1331
+ "task": "mmlu_high_school_microeconomics",
1332
+ "task_alias": "high_school_microeconomics",
1333
+ "group": "mmlu_social_sciences",
1334
+ "group_alias": "social_sciences",
1335
+ "dataset_path": "hails/mmlu_no_train",
1336
+ "dataset_name": "high_school_microeconomics",
1337
+ "test_split": "test",
1338
+ "fewshot_split": "dev",
1339
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1340
+ "doc_to_target": "answer",
1341
+ "doc_to_choice": [
1342
+ "A",
1343
+ "B",
1344
+ "C",
1345
+ "D"
1346
+ ],
1347
+ "description": "The following are multiple choice questions (with answers) about high school microeconomics.\n\n",
1348
+ "target_delimiter": " ",
1349
+ "fewshot_delimiter": "\n\n",
1350
+ "fewshot_config": {
1351
+ "sampler": "first_n"
1352
+ },
1353
+ "num_fewshot": 5,
1354
+ "metric_list": [
1355
+ {
1356
+ "metric": "acc",
1357
+ "aggregation": "mean",
1358
+ "higher_is_better": true
1359
+ }
1360
+ ],
1361
+ "output_type": "multiple_choice",
1362
+ "repeats": 1,
1363
+ "should_decontaminate": false,
1364
+ "metadata": {
1365
+ "version": 0.0
1366
+ }
1367
+ },
1368
+ "mmlu_high_school_physics": {
1369
+ "task": "mmlu_high_school_physics",
1370
+ "task_alias": "high_school_physics",
1371
+ "group": "mmlu_stem",
1372
+ "group_alias": "stem",
1373
+ "dataset_path": "hails/mmlu_no_train",
1374
+ "dataset_name": "high_school_physics",
1375
+ "test_split": "test",
1376
+ "fewshot_split": "dev",
1377
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1378
+ "doc_to_target": "answer",
1379
+ "doc_to_choice": [
1380
+ "A",
1381
+ "B",
1382
+ "C",
1383
+ "D"
1384
+ ],
1385
+ "description": "The following are multiple choice questions (with answers) about high school physics.\n\n",
1386
+ "target_delimiter": " ",
1387
+ "fewshot_delimiter": "\n\n",
1388
+ "fewshot_config": {
1389
+ "sampler": "first_n"
1390
+ },
1391
+ "num_fewshot": 5,
1392
+ "metric_list": [
1393
+ {
1394
+ "metric": "acc",
1395
+ "aggregation": "mean",
1396
+ "higher_is_better": true
1397
+ }
1398
+ ],
1399
+ "output_type": "multiple_choice",
1400
+ "repeats": 1,
1401
+ "should_decontaminate": false,
1402
+ "metadata": {
1403
+ "version": 0.0
1404
+ }
1405
+ },
1406
+ "mmlu_high_school_psychology": {
1407
+ "task": "mmlu_high_school_psychology",
1408
+ "task_alias": "high_school_psychology",
1409
+ "group": "mmlu_social_sciences",
1410
+ "group_alias": "social_sciences",
1411
+ "dataset_path": "hails/mmlu_no_train",
1412
+ "dataset_name": "high_school_psychology",
1413
+ "test_split": "test",
1414
+ "fewshot_split": "dev",
1415
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1416
+ "doc_to_target": "answer",
1417
+ "doc_to_choice": [
1418
+ "A",
1419
+ "B",
1420
+ "C",
1421
+ "D"
1422
+ ],
1423
+ "description": "The following are multiple choice questions (with answers) about high school psychology.\n\n",
1424
+ "target_delimiter": " ",
1425
+ "fewshot_delimiter": "\n\n",
1426
+ "fewshot_config": {
1427
+ "sampler": "first_n"
1428
+ },
1429
+ "num_fewshot": 5,
1430
+ "metric_list": [
1431
+ {
1432
+ "metric": "acc",
1433
+ "aggregation": "mean",
1434
+ "higher_is_better": true
1435
+ }
1436
+ ],
1437
+ "output_type": "multiple_choice",
1438
+ "repeats": 1,
1439
+ "should_decontaminate": false,
1440
+ "metadata": {
1441
+ "version": 0.0
1442
+ }
1443
+ },
1444
+ "mmlu_high_school_statistics": {
1445
+ "task": "mmlu_high_school_statistics",
1446
+ "task_alias": "high_school_statistics",
1447
+ "group": "mmlu_stem",
1448
+ "group_alias": "stem",
1449
+ "dataset_path": "hails/mmlu_no_train",
1450
+ "dataset_name": "high_school_statistics",
1451
+ "test_split": "test",
1452
+ "fewshot_split": "dev",
1453
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1454
+ "doc_to_target": "answer",
1455
+ "doc_to_choice": [
1456
+ "A",
1457
+ "B",
1458
+ "C",
1459
+ "D"
1460
+ ],
1461
+ "description": "The following are multiple choice questions (with answers) about high school statistics.\n\n",
1462
+ "target_delimiter": " ",
1463
+ "fewshot_delimiter": "\n\n",
1464
+ "fewshot_config": {
1465
+ "sampler": "first_n"
1466
+ },
1467
+ "num_fewshot": 5,
1468
+ "metric_list": [
1469
+ {
1470
+ "metric": "acc",
1471
+ "aggregation": "mean",
1472
+ "higher_is_better": true
1473
+ }
1474
+ ],
1475
+ "output_type": "multiple_choice",
1476
+ "repeats": 1,
1477
+ "should_decontaminate": false,
1478
+ "metadata": {
1479
+ "version": 0.0
1480
+ }
1481
+ },
1482
+ "mmlu_high_school_us_history": {
1483
+ "task": "mmlu_high_school_us_history",
1484
+ "task_alias": "high_school_us_history",
1485
+ "group": "mmlu_humanities",
1486
+ "group_alias": "humanities",
1487
+ "dataset_path": "hails/mmlu_no_train",
1488
+ "dataset_name": "high_school_us_history",
1489
+ "test_split": "test",
1490
+ "fewshot_split": "dev",
1491
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1492
+ "doc_to_target": "answer",
1493
+ "doc_to_choice": [
1494
+ "A",
1495
+ "B",
1496
+ "C",
1497
+ "D"
1498
+ ],
1499
+ "description": "The following are multiple choice questions (with answers) about high school us history.\n\n",
1500
+ "target_delimiter": " ",
1501
+ "fewshot_delimiter": "\n\n",
1502
+ "fewshot_config": {
1503
+ "sampler": "first_n"
1504
+ },
1505
+ "num_fewshot": 5,
1506
+ "metric_list": [
1507
+ {
1508
+ "metric": "acc",
1509
+ "aggregation": "mean",
1510
+ "higher_is_better": true
1511
+ }
1512
+ ],
1513
+ "output_type": "multiple_choice",
1514
+ "repeats": 1,
1515
+ "should_decontaminate": false,
1516
+ "metadata": {
1517
+ "version": 0.0
1518
+ }
1519
+ },
1520
+ "mmlu_high_school_world_history": {
1521
+ "task": "mmlu_high_school_world_history",
1522
+ "task_alias": "high_school_world_history",
1523
+ "group": "mmlu_humanities",
1524
+ "group_alias": "humanities",
1525
+ "dataset_path": "hails/mmlu_no_train",
1526
+ "dataset_name": "high_school_world_history",
1527
+ "test_split": "test",
1528
+ "fewshot_split": "dev",
1529
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1530
+ "doc_to_target": "answer",
1531
+ "doc_to_choice": [
1532
+ "A",
1533
+ "B",
1534
+ "C",
1535
+ "D"
1536
+ ],
1537
+ "description": "The following are multiple choice questions (with answers) about high school world history.\n\n",
1538
+ "target_delimiter": " ",
1539
+ "fewshot_delimiter": "\n\n",
1540
+ "fewshot_config": {
1541
+ "sampler": "first_n"
1542
+ },
1543
+ "num_fewshot": 5,
1544
+ "metric_list": [
1545
+ {
1546
+ "metric": "acc",
1547
+ "aggregation": "mean",
1548
+ "higher_is_better": true
1549
+ }
1550
+ ],
1551
+ "output_type": "multiple_choice",
1552
+ "repeats": 1,
1553
+ "should_decontaminate": false,
1554
+ "metadata": {
1555
+ "version": 0.0
1556
+ }
1557
+ },
1558
+ "mmlu_human_aging": {
1559
+ "task": "mmlu_human_aging",
1560
+ "task_alias": "human_aging",
1561
+ "group": "mmlu_other",
1562
+ "group_alias": "other",
1563
+ "dataset_path": "hails/mmlu_no_train",
1564
+ "dataset_name": "human_aging",
1565
+ "test_split": "test",
1566
+ "fewshot_split": "dev",
1567
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1568
+ "doc_to_target": "answer",
1569
+ "doc_to_choice": [
1570
+ "A",
1571
+ "B",
1572
+ "C",
1573
+ "D"
1574
+ ],
1575
+ "description": "The following are multiple choice questions (with answers) about human aging.\n\n",
1576
+ "target_delimiter": " ",
1577
+ "fewshot_delimiter": "\n\n",
1578
+ "fewshot_config": {
1579
+ "sampler": "first_n"
1580
+ },
1581
+ "num_fewshot": 5,
1582
+ "metric_list": [
1583
+ {
1584
+ "metric": "acc",
1585
+ "aggregation": "mean",
1586
+ "higher_is_better": true
1587
+ }
1588
+ ],
1589
+ "output_type": "multiple_choice",
1590
+ "repeats": 1,
1591
+ "should_decontaminate": false,
1592
+ "metadata": {
1593
+ "version": 0.0
1594
+ }
1595
+ },
1596
+ "mmlu_human_sexuality": {
1597
+ "task": "mmlu_human_sexuality",
1598
+ "task_alias": "human_sexuality",
1599
+ "group": "mmlu_social_sciences",
1600
+ "group_alias": "social_sciences",
1601
+ "dataset_path": "hails/mmlu_no_train",
1602
+ "dataset_name": "human_sexuality",
1603
+ "test_split": "test",
1604
+ "fewshot_split": "dev",
1605
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1606
+ "doc_to_target": "answer",
1607
+ "doc_to_choice": [
1608
+ "A",
1609
+ "B",
1610
+ "C",
1611
+ "D"
1612
+ ],
1613
+ "description": "The following are multiple choice questions (with answers) about human sexuality.\n\n",
1614
+ "target_delimiter": " ",
1615
+ "fewshot_delimiter": "\n\n",
1616
+ "fewshot_config": {
1617
+ "sampler": "first_n"
1618
+ },
1619
+ "num_fewshot": 5,
1620
+ "metric_list": [
1621
+ {
1622
+ "metric": "acc",
1623
+ "aggregation": "mean",
1624
+ "higher_is_better": true
1625
+ }
1626
+ ],
1627
+ "output_type": "multiple_choice",
1628
+ "repeats": 1,
1629
+ "should_decontaminate": false,
1630
+ "metadata": {
1631
+ "version": 0.0
1632
+ }
1633
+ },
1634
+ "mmlu_international_law": {
1635
+ "task": "mmlu_international_law",
1636
+ "task_alias": "international_law",
1637
+ "group": "mmlu_humanities",
1638
+ "group_alias": "humanities",
1639
+ "dataset_path": "hails/mmlu_no_train",
1640
+ "dataset_name": "international_law",
1641
+ "test_split": "test",
1642
+ "fewshot_split": "dev",
1643
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1644
+ "doc_to_target": "answer",
1645
+ "doc_to_choice": [
1646
+ "A",
1647
+ "B",
1648
+ "C",
1649
+ "D"
1650
+ ],
1651
+ "description": "The following are multiple choice questions (with answers) about international law.\n\n",
1652
+ "target_delimiter": " ",
1653
+ "fewshot_delimiter": "\n\n",
1654
+ "fewshot_config": {
1655
+ "sampler": "first_n"
1656
+ },
1657
+ "num_fewshot": 5,
1658
+ "metric_list": [
1659
+ {
1660
+ "metric": "acc",
1661
+ "aggregation": "mean",
1662
+ "higher_is_better": true
1663
+ }
1664
+ ],
1665
+ "output_type": "multiple_choice",
1666
+ "repeats": 1,
1667
+ "should_decontaminate": false,
1668
+ "metadata": {
1669
+ "version": 0.0
1670
+ }
1671
+ },
1672
+ "mmlu_jurisprudence": {
1673
+ "task": "mmlu_jurisprudence",
1674
+ "task_alias": "jurisprudence",
1675
+ "group": "mmlu_humanities",
1676
+ "group_alias": "humanities",
1677
+ "dataset_path": "hails/mmlu_no_train",
1678
+ "dataset_name": "jurisprudence",
1679
+ "test_split": "test",
1680
+ "fewshot_split": "dev",
1681
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1682
+ "doc_to_target": "answer",
1683
+ "doc_to_choice": [
1684
+ "A",
1685
+ "B",
1686
+ "C",
1687
+ "D"
1688
+ ],
1689
+ "description": "The following are multiple choice questions (with answers) about jurisprudence.\n\n",
1690
+ "target_delimiter": " ",
1691
+ "fewshot_delimiter": "\n\n",
1692
+ "fewshot_config": {
1693
+ "sampler": "first_n"
1694
+ },
1695
+ "num_fewshot": 5,
1696
+ "metric_list": [
1697
+ {
1698
+ "metric": "acc",
1699
+ "aggregation": "mean",
1700
+ "higher_is_better": true
1701
+ }
1702
+ ],
1703
+ "output_type": "multiple_choice",
1704
+ "repeats": 1,
1705
+ "should_decontaminate": false,
1706
+ "metadata": {
1707
+ "version": 0.0
1708
+ }
1709
+ },
1710
+ "mmlu_logical_fallacies": {
1711
+ "task": "mmlu_logical_fallacies",
1712
+ "task_alias": "logical_fallacies",
1713
+ "group": "mmlu_humanities",
1714
+ "group_alias": "humanities",
1715
+ "dataset_path": "hails/mmlu_no_train",
1716
+ "dataset_name": "logical_fallacies",
1717
+ "test_split": "test",
1718
+ "fewshot_split": "dev",
1719
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1720
+ "doc_to_target": "answer",
1721
+ "doc_to_choice": [
1722
+ "A",
1723
+ "B",
1724
+ "C",
1725
+ "D"
1726
+ ],
1727
+ "description": "The following are multiple choice questions (with answers) about logical fallacies.\n\n",
1728
+ "target_delimiter": " ",
1729
+ "fewshot_delimiter": "\n\n",
1730
+ "fewshot_config": {
1731
+ "sampler": "first_n"
1732
+ },
1733
+ "num_fewshot": 5,
1734
+ "metric_list": [
1735
+ {
1736
+ "metric": "acc",
1737
+ "aggregation": "mean",
1738
+ "higher_is_better": true
1739
+ }
1740
+ ],
1741
+ "output_type": "multiple_choice",
1742
+ "repeats": 1,
1743
+ "should_decontaminate": false,
1744
+ "metadata": {
1745
+ "version": 0.0
1746
+ }
1747
+ },
1748
+ "mmlu_machine_learning": {
1749
+ "task": "mmlu_machine_learning",
1750
+ "task_alias": "machine_learning",
1751
+ "group": "mmlu_stem",
1752
+ "group_alias": "stem",
1753
+ "dataset_path": "hails/mmlu_no_train",
1754
+ "dataset_name": "machine_learning",
1755
+ "test_split": "test",
1756
+ "fewshot_split": "dev",
1757
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1758
+ "doc_to_target": "answer",
1759
+ "doc_to_choice": [
1760
+ "A",
1761
+ "B",
1762
+ "C",
1763
+ "D"
1764
+ ],
1765
+ "description": "The following are multiple choice questions (with answers) about machine learning.\n\n",
1766
+ "target_delimiter": " ",
1767
+ "fewshot_delimiter": "\n\n",
1768
+ "fewshot_config": {
1769
+ "sampler": "first_n"
1770
+ },
1771
+ "num_fewshot": 5,
1772
+ "metric_list": [
1773
+ {
1774
+ "metric": "acc",
1775
+ "aggregation": "mean",
1776
+ "higher_is_better": true
1777
+ }
1778
+ ],
1779
+ "output_type": "multiple_choice",
1780
+ "repeats": 1,
1781
+ "should_decontaminate": false,
1782
+ "metadata": {
1783
+ "version": 0.0
1784
+ }
1785
+ },
1786
+ "mmlu_management": {
1787
+ "task": "mmlu_management",
1788
+ "task_alias": "management",
1789
+ "group": "mmlu_other",
1790
+ "group_alias": "other",
1791
+ "dataset_path": "hails/mmlu_no_train",
1792
+ "dataset_name": "management",
1793
+ "test_split": "test",
1794
+ "fewshot_split": "dev",
1795
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1796
+ "doc_to_target": "answer",
1797
+ "doc_to_choice": [
1798
+ "A",
1799
+ "B",
1800
+ "C",
1801
+ "D"
1802
+ ],
1803
+ "description": "The following are multiple choice questions (with answers) about management.\n\n",
1804
+ "target_delimiter": " ",
1805
+ "fewshot_delimiter": "\n\n",
1806
+ "fewshot_config": {
1807
+ "sampler": "first_n"
1808
+ },
1809
+ "num_fewshot": 5,
1810
+ "metric_list": [
1811
+ {
1812
+ "metric": "acc",
1813
+ "aggregation": "mean",
1814
+ "higher_is_better": true
1815
+ }
1816
+ ],
1817
+ "output_type": "multiple_choice",
1818
+ "repeats": 1,
1819
+ "should_decontaminate": false,
1820
+ "metadata": {
1821
+ "version": 0.0
1822
+ }
1823
+ },
1824
+ "mmlu_marketing": {
1825
+ "task": "mmlu_marketing",
1826
+ "task_alias": "marketing",
1827
+ "group": "mmlu_other",
1828
+ "group_alias": "other",
1829
+ "dataset_path": "hails/mmlu_no_train",
1830
+ "dataset_name": "marketing",
1831
+ "test_split": "test",
1832
+ "fewshot_split": "dev",
1833
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1834
+ "doc_to_target": "answer",
1835
+ "doc_to_choice": [
1836
+ "A",
1837
+ "B",
1838
+ "C",
1839
+ "D"
1840
+ ],
1841
+ "description": "The following are multiple choice questions (with answers) about marketing.\n\n",
1842
+ "target_delimiter": " ",
1843
+ "fewshot_delimiter": "\n\n",
1844
+ "fewshot_config": {
1845
+ "sampler": "first_n"
1846
+ },
1847
+ "num_fewshot": 5,
1848
+ "metric_list": [
1849
+ {
1850
+ "metric": "acc",
1851
+ "aggregation": "mean",
1852
+ "higher_is_better": true
1853
+ }
1854
+ ],
1855
+ "output_type": "multiple_choice",
1856
+ "repeats": 1,
1857
+ "should_decontaminate": false,
1858
+ "metadata": {
1859
+ "version": 0.0
1860
+ }
1861
+ },
1862
+ "mmlu_medical_genetics": {
1863
+ "task": "mmlu_medical_genetics",
1864
+ "task_alias": "medical_genetics",
1865
+ "group": "mmlu_other",
1866
+ "group_alias": "other",
1867
+ "dataset_path": "hails/mmlu_no_train",
1868
+ "dataset_name": "medical_genetics",
1869
+ "test_split": "test",
1870
+ "fewshot_split": "dev",
1871
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1872
+ "doc_to_target": "answer",
1873
+ "doc_to_choice": [
1874
+ "A",
1875
+ "B",
1876
+ "C",
1877
+ "D"
1878
+ ],
1879
+ "description": "The following are multiple choice questions (with answers) about medical genetics.\n\n",
1880
+ "target_delimiter": " ",
1881
+ "fewshot_delimiter": "\n\n",
1882
+ "fewshot_config": {
1883
+ "sampler": "first_n"
1884
+ },
1885
+ "num_fewshot": 5,
1886
+ "metric_list": [
1887
+ {
1888
+ "metric": "acc",
1889
+ "aggregation": "mean",
1890
+ "higher_is_better": true
1891
+ }
1892
+ ],
1893
+ "output_type": "multiple_choice",
1894
+ "repeats": 1,
1895
+ "should_decontaminate": false,
1896
+ "metadata": {
1897
+ "version": 0.0
1898
+ }
1899
+ },
1900
+ "mmlu_miscellaneous": {
1901
+ "task": "mmlu_miscellaneous",
1902
+ "task_alias": "miscellaneous",
1903
+ "group": "mmlu_other",
1904
+ "group_alias": "other",
1905
+ "dataset_path": "hails/mmlu_no_train",
1906
+ "dataset_name": "miscellaneous",
1907
+ "test_split": "test",
1908
+ "fewshot_split": "dev",
1909
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1910
+ "doc_to_target": "answer",
1911
+ "doc_to_choice": [
1912
+ "A",
1913
+ "B",
1914
+ "C",
1915
+ "D"
1916
+ ],
1917
+ "description": "The following are multiple choice questions (with answers) about miscellaneous.\n\n",
1918
+ "target_delimiter": " ",
1919
+ "fewshot_delimiter": "\n\n",
1920
+ "fewshot_config": {
1921
+ "sampler": "first_n"
1922
+ },
1923
+ "num_fewshot": 5,
1924
+ "metric_list": [
1925
+ {
1926
+ "metric": "acc",
1927
+ "aggregation": "mean",
1928
+ "higher_is_better": true
1929
+ }
1930
+ ],
1931
+ "output_type": "multiple_choice",
1932
+ "repeats": 1,
1933
+ "should_decontaminate": false,
1934
+ "metadata": {
1935
+ "version": 0.0
1936
+ }
1937
+ },
1938
+ "mmlu_moral_disputes": {
1939
+ "task": "mmlu_moral_disputes",
1940
+ "task_alias": "moral_disputes",
1941
+ "group": "mmlu_humanities",
1942
+ "group_alias": "humanities",
1943
+ "dataset_path": "hails/mmlu_no_train",
1944
+ "dataset_name": "moral_disputes",
1945
+ "test_split": "test",
1946
+ "fewshot_split": "dev",
1947
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1948
+ "doc_to_target": "answer",
1949
+ "doc_to_choice": [
1950
+ "A",
1951
+ "B",
1952
+ "C",
1953
+ "D"
1954
+ ],
1955
+ "description": "The following are multiple choice questions (with answers) about moral disputes.\n\n",
1956
+ "target_delimiter": " ",
1957
+ "fewshot_delimiter": "\n\n",
1958
+ "fewshot_config": {
1959
+ "sampler": "first_n"
1960
+ },
1961
+ "num_fewshot": 5,
1962
+ "metric_list": [
1963
+ {
1964
+ "metric": "acc",
1965
+ "aggregation": "mean",
1966
+ "higher_is_better": true
1967
+ }
1968
+ ],
1969
+ "output_type": "multiple_choice",
1970
+ "repeats": 1,
1971
+ "should_decontaminate": false,
1972
+ "metadata": {
1973
+ "version": 0.0
1974
+ }
1975
+ },
1976
+ "mmlu_moral_scenarios": {
1977
+ "task": "mmlu_moral_scenarios",
1978
+ "task_alias": "moral_scenarios",
1979
+ "group": "mmlu_humanities",
1980
+ "group_alias": "humanities",
1981
+ "dataset_path": "hails/mmlu_no_train",
1982
+ "dataset_name": "moral_scenarios",
1983
+ "test_split": "test",
1984
+ "fewshot_split": "dev",
1985
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
1986
+ "doc_to_target": "answer",
1987
+ "doc_to_choice": [
1988
+ "A",
1989
+ "B",
1990
+ "C",
1991
+ "D"
1992
+ ],
1993
+ "description": "The following are multiple choice questions (with answers) about moral scenarios.\n\n",
1994
+ "target_delimiter": " ",
1995
+ "fewshot_delimiter": "\n\n",
1996
+ "fewshot_config": {
1997
+ "sampler": "first_n"
1998
+ },
1999
+ "num_fewshot": 5,
2000
+ "metric_list": [
2001
+ {
2002
+ "metric": "acc",
2003
+ "aggregation": "mean",
2004
+ "higher_is_better": true
2005
+ }
2006
+ ],
2007
+ "output_type": "multiple_choice",
2008
+ "repeats": 1,
2009
+ "should_decontaminate": false,
2010
+ "metadata": {
2011
+ "version": 0.0
2012
+ }
2013
+ },
2014
+ "mmlu_nutrition": {
2015
+ "task": "mmlu_nutrition",
2016
+ "task_alias": "nutrition",
2017
+ "group": "mmlu_other",
2018
+ "group_alias": "other",
2019
+ "dataset_path": "hails/mmlu_no_train",
2020
+ "dataset_name": "nutrition",
2021
+ "test_split": "test",
2022
+ "fewshot_split": "dev",
2023
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
2024
+ "doc_to_target": "answer",
2025
+ "doc_to_choice": [
2026
+ "A",
2027
+ "B",
2028
+ "C",
2029
+ "D"
2030
+ ],
2031
+ "description": "The following are multiple choice questions (with answers) about nutrition.\n\n",
2032
+ "target_delimiter": " ",
2033
+ "fewshot_delimiter": "\n\n",
2034
+ "fewshot_config": {
2035
+ "sampler": "first_n"
2036
+ },
2037
+ "num_fewshot": 5,
2038
+ "metric_list": [
2039
+ {
2040
+ "metric": "acc",
2041
+ "aggregation": "mean",
2042
+ "higher_is_better": true
2043
+ }
2044
+ ],
2045
+ "output_type": "multiple_choice",
2046
+ "repeats": 1,
2047
+ "should_decontaminate": false,
2048
+ "metadata": {
2049
+ "version": 0.0
2050
+ }
2051
+ },
2052
+ "mmlu_philosophy": {
2053
+ "task": "mmlu_philosophy",
2054
+ "task_alias": "philosophy",
2055
+ "group": "mmlu_humanities",
2056
+ "group_alias": "humanities",
2057
+ "dataset_path": "hails/mmlu_no_train",
2058
+ "dataset_name": "philosophy",
2059
+ "test_split": "test",
2060
+ "fewshot_split": "dev",
2061
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
2062
+ "doc_to_target": "answer",
2063
+ "doc_to_choice": [
2064
+ "A",
2065
+ "B",
2066
+ "C",
2067
+ "D"
2068
+ ],
2069
+ "description": "The following are multiple choice questions (with answers) about philosophy.\n\n",
2070
+ "target_delimiter": " ",
2071
+ "fewshot_delimiter": "\n\n",
2072
+ "fewshot_config": {
2073
+ "sampler": "first_n"
2074
+ },
2075
+ "num_fewshot": 5,
2076
+ "metric_list": [
2077
+ {
2078
+ "metric": "acc",
2079
+ "aggregation": "mean",
2080
+ "higher_is_better": true
2081
+ }
2082
+ ],
2083
+ "output_type": "multiple_choice",
2084
+ "repeats": 1,
2085
+ "should_decontaminate": false,
2086
+ "metadata": {
2087
+ "version": 0.0
2088
+ }
2089
+ },
2090
+ "mmlu_prehistory": {
2091
+ "task": "mmlu_prehistory",
2092
+ "task_alias": "prehistory",
2093
+ "group": "mmlu_humanities",
2094
+ "group_alias": "humanities",
2095
+ "dataset_path": "hails/mmlu_no_train",
2096
+ "dataset_name": "prehistory",
2097
+ "test_split": "test",
2098
+ "fewshot_split": "dev",
2099
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
2100
+ "doc_to_target": "answer",
2101
+ "doc_to_choice": [
2102
+ "A",
2103
+ "B",
2104
+ "C",
2105
+ "D"
2106
+ ],
2107
+ "description": "The following are multiple choice questions (with answers) about prehistory.\n\n",
2108
+ "target_delimiter": " ",
2109
+ "fewshot_delimiter": "\n\n",
2110
+ "fewshot_config": {
2111
+ "sampler": "first_n"
2112
+ },
2113
+ "num_fewshot": 5,
2114
+ "metric_list": [
2115
+ {
2116
+ "metric": "acc",
2117
+ "aggregation": "mean",
2118
+ "higher_is_better": true
2119
+ }
2120
+ ],
2121
+ "output_type": "multiple_choice",
2122
+ "repeats": 1,
2123
+ "should_decontaminate": false,
2124
+ "metadata": {
2125
+ "version": 0.0
2126
+ }
2127
+ },
2128
+ "mmlu_professional_accounting": {
2129
+ "task": "mmlu_professional_accounting",
2130
+ "task_alias": "professional_accounting",
2131
+ "group": "mmlu_other",
2132
+ "group_alias": "other",
2133
+ "dataset_path": "hails/mmlu_no_train",
2134
+ "dataset_name": "professional_accounting",
2135
+ "test_split": "test",
2136
+ "fewshot_split": "dev",
2137
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
2138
+ "doc_to_target": "answer",
2139
+ "doc_to_choice": [
2140
+ "A",
2141
+ "B",
2142
+ "C",
2143
+ "D"
2144
+ ],
2145
+ "description": "The following are multiple choice questions (with answers) about professional accounting.\n\n",
2146
+ "target_delimiter": " ",
2147
+ "fewshot_delimiter": "\n\n",
2148
+ "fewshot_config": {
2149
+ "sampler": "first_n"
2150
+ },
2151
+ "num_fewshot": 5,
2152
+ "metric_list": [
2153
+ {
2154
+ "metric": "acc",
2155
+ "aggregation": "mean",
2156
+ "higher_is_better": true
2157
+ }
2158
+ ],
2159
+ "output_type": "multiple_choice",
2160
+ "repeats": 1,
2161
+ "should_decontaminate": false,
2162
+ "metadata": {
2163
+ "version": 0.0
2164
+ }
2165
+ },
2166
+ "mmlu_professional_law": {
2167
+ "task": "mmlu_professional_law",
2168
+ "task_alias": "professional_law",
2169
+ "group": "mmlu_humanities",
2170
+ "group_alias": "humanities",
2171
+ "dataset_path": "hails/mmlu_no_train",
2172
+ "dataset_name": "professional_law",
2173
+ "test_split": "test",
2174
+ "fewshot_split": "dev",
2175
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
2176
+ "doc_to_target": "answer",
2177
+ "doc_to_choice": [
2178
+ "A",
2179
+ "B",
2180
+ "C",
2181
+ "D"
2182
+ ],
2183
+ "description": "The following are multiple choice questions (with answers) about professional law.\n\n",
2184
+ "target_delimiter": " ",
2185
+ "fewshot_delimiter": "\n\n",
2186
+ "fewshot_config": {
2187
+ "sampler": "first_n"
2188
+ },
2189
+ "num_fewshot": 5,
2190
+ "metric_list": [
2191
+ {
2192
+ "metric": "acc",
2193
+ "aggregation": "mean",
2194
+ "higher_is_better": true
2195
+ }
2196
+ ],
2197
+ "output_type": "multiple_choice",
2198
+ "repeats": 1,
2199
+ "should_decontaminate": false,
2200
+ "metadata": {
2201
+ "version": 0.0
2202
+ }
2203
+ },
2204
+ "mmlu_professional_medicine": {
2205
+ "task": "mmlu_professional_medicine",
2206
+ "task_alias": "professional_medicine",
2207
+ "group": "mmlu_other",
2208
+ "group_alias": "other",
2209
+ "dataset_path": "hails/mmlu_no_train",
2210
+ "dataset_name": "professional_medicine",
2211
+ "test_split": "test",
2212
+ "fewshot_split": "dev",
2213
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
2214
+ "doc_to_target": "answer",
2215
+ "doc_to_choice": [
2216
+ "A",
2217
+ "B",
2218
+ "C",
2219
+ "D"
2220
+ ],
2221
+ "description": "The following are multiple choice questions (with answers) about professional medicine.\n\n",
2222
+ "target_delimiter": " ",
2223
+ "fewshot_delimiter": "\n\n",
2224
+ "fewshot_config": {
2225
+ "sampler": "first_n"
2226
+ },
2227
+ "num_fewshot": 5,
2228
+ "metric_list": [
2229
+ {
2230
+ "metric": "acc",
2231
+ "aggregation": "mean",
2232
+ "higher_is_better": true
2233
+ }
2234
+ ],
2235
+ "output_type": "multiple_choice",
2236
+ "repeats": 1,
2237
+ "should_decontaminate": false,
2238
+ "metadata": {
2239
+ "version": 0.0
2240
+ }
2241
+ },
2242
+ "mmlu_professional_psychology": {
2243
+ "task": "mmlu_professional_psychology",
2244
+ "task_alias": "professional_psychology",
2245
+ "group": "mmlu_social_sciences",
2246
+ "group_alias": "social_sciences",
2247
+ "dataset_path": "hails/mmlu_no_train",
2248
+ "dataset_name": "professional_psychology",
2249
+ "test_split": "test",
2250
+ "fewshot_split": "dev",
2251
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
2252
+ "doc_to_target": "answer",
2253
+ "doc_to_choice": [
2254
+ "A",
2255
+ "B",
2256
+ "C",
2257
+ "D"
2258
+ ],
2259
+ "description": "The following are multiple choice questions (with answers) about professional psychology.\n\n",
2260
+ "target_delimiter": " ",
2261
+ "fewshot_delimiter": "\n\n",
2262
+ "fewshot_config": {
2263
+ "sampler": "first_n"
2264
+ },
2265
+ "num_fewshot": 5,
2266
+ "metric_list": [
2267
+ {
2268
+ "metric": "acc",
2269
+ "aggregation": "mean",
2270
+ "higher_is_better": true
2271
+ }
2272
+ ],
2273
+ "output_type": "multiple_choice",
2274
+ "repeats": 1,
2275
+ "should_decontaminate": false,
2276
+ "metadata": {
2277
+ "version": 0.0
2278
+ }
2279
+ },
2280
+ "mmlu_public_relations": {
2281
+ "task": "mmlu_public_relations",
2282
+ "task_alias": "public_relations",
2283
+ "group": "mmlu_social_sciences",
2284
+ "group_alias": "social_sciences",
2285
+ "dataset_path": "hails/mmlu_no_train",
2286
+ "dataset_name": "public_relations",
2287
+ "test_split": "test",
2288
+ "fewshot_split": "dev",
2289
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
2290
+ "doc_to_target": "answer",
2291
+ "doc_to_choice": [
2292
+ "A",
2293
+ "B",
2294
+ "C",
2295
+ "D"
2296
+ ],
2297
+ "description": "The following are multiple choice questions (with answers) about public relations.\n\n",
2298
+ "target_delimiter": " ",
2299
+ "fewshot_delimiter": "\n\n",
2300
+ "fewshot_config": {
2301
+ "sampler": "first_n"
2302
+ },
2303
+ "num_fewshot": 5,
2304
+ "metric_list": [
2305
+ {
2306
+ "metric": "acc",
2307
+ "aggregation": "mean",
2308
+ "higher_is_better": true
2309
+ }
2310
+ ],
2311
+ "output_type": "multiple_choice",
2312
+ "repeats": 1,
2313
+ "should_decontaminate": false,
2314
+ "metadata": {
2315
+ "version": 0.0
2316
+ }
2317
+ },
2318
+ "mmlu_security_studies": {
2319
+ "task": "mmlu_security_studies",
2320
+ "task_alias": "security_studies",
2321
+ "group": "mmlu_social_sciences",
2322
+ "group_alias": "social_sciences",
2323
+ "dataset_path": "hails/mmlu_no_train",
2324
+ "dataset_name": "security_studies",
2325
+ "test_split": "test",
2326
+ "fewshot_split": "dev",
2327
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
2328
+ "doc_to_target": "answer",
2329
+ "doc_to_choice": [
2330
+ "A",
2331
+ "B",
2332
+ "C",
2333
+ "D"
2334
+ ],
2335
+ "description": "The following are multiple choice questions (with answers) about security studies.\n\n",
2336
+ "target_delimiter": " ",
2337
+ "fewshot_delimiter": "\n\n",
2338
+ "fewshot_config": {
2339
+ "sampler": "first_n"
2340
+ },
2341
+ "num_fewshot": 5,
2342
+ "metric_list": [
2343
+ {
2344
+ "metric": "acc",
2345
+ "aggregation": "mean",
2346
+ "higher_is_better": true
2347
+ }
2348
+ ],
2349
+ "output_type": "multiple_choice",
2350
+ "repeats": 1,
2351
+ "should_decontaminate": false,
2352
+ "metadata": {
2353
+ "version": 0.0
2354
+ }
2355
+ },
2356
+ "mmlu_sociology": {
2357
+ "task": "mmlu_sociology",
2358
+ "task_alias": "sociology",
2359
+ "group": "mmlu_social_sciences",
2360
+ "group_alias": "social_sciences",
2361
+ "dataset_path": "hails/mmlu_no_train",
2362
+ "dataset_name": "sociology",
2363
+ "test_split": "test",
2364
+ "fewshot_split": "dev",
2365
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
2366
+ "doc_to_target": "answer",
2367
+ "doc_to_choice": [
2368
+ "A",
2369
+ "B",
2370
+ "C",
2371
+ "D"
2372
+ ],
2373
+ "description": "The following are multiple choice questions (with answers) about sociology.\n\n",
2374
+ "target_delimiter": " ",
2375
+ "fewshot_delimiter": "\n\n",
2376
+ "fewshot_config": {
2377
+ "sampler": "first_n"
2378
+ },
2379
+ "num_fewshot": 5,
2380
+ "metric_list": [
2381
+ {
2382
+ "metric": "acc",
2383
+ "aggregation": "mean",
2384
+ "higher_is_better": true
2385
+ }
2386
+ ],
2387
+ "output_type": "multiple_choice",
2388
+ "repeats": 1,
2389
+ "should_decontaminate": false,
2390
+ "metadata": {
2391
+ "version": 0.0
2392
+ }
2393
+ },
2394
+ "mmlu_us_foreign_policy": {
2395
+ "task": "mmlu_us_foreign_policy",
2396
+ "task_alias": "us_foreign_policy",
2397
+ "group": "mmlu_social_sciences",
2398
+ "group_alias": "social_sciences",
2399
+ "dataset_path": "hails/mmlu_no_train",
2400
+ "dataset_name": "us_foreign_policy",
2401
+ "test_split": "test",
2402
+ "fewshot_split": "dev",
2403
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
2404
+ "doc_to_target": "answer",
2405
+ "doc_to_choice": [
2406
+ "A",
2407
+ "B",
2408
+ "C",
2409
+ "D"
2410
+ ],
2411
+ "description": "The following are multiple choice questions (with answers) about us foreign policy.\n\n",
2412
+ "target_delimiter": " ",
2413
+ "fewshot_delimiter": "\n\n",
2414
+ "fewshot_config": {
2415
+ "sampler": "first_n"
2416
+ },
2417
+ "num_fewshot": 5,
2418
+ "metric_list": [
2419
+ {
2420
+ "metric": "acc",
2421
+ "aggregation": "mean",
2422
+ "higher_is_better": true
2423
+ }
2424
+ ],
2425
+ "output_type": "multiple_choice",
2426
+ "repeats": 1,
2427
+ "should_decontaminate": false,
2428
+ "metadata": {
2429
+ "version": 0.0
2430
+ }
2431
+ },
2432
+ "mmlu_virology": {
2433
+ "task": "mmlu_virology",
2434
+ "task_alias": "virology",
2435
+ "group": "mmlu_other",
2436
+ "group_alias": "other",
2437
+ "dataset_path": "hails/mmlu_no_train",
2438
+ "dataset_name": "virology",
2439
+ "test_split": "test",
2440
+ "fewshot_split": "dev",
2441
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
2442
+ "doc_to_target": "answer",
2443
+ "doc_to_choice": [
2444
+ "A",
2445
+ "B",
2446
+ "C",
2447
+ "D"
2448
+ ],
2449
+ "description": "The following are multiple choice questions (with answers) about virology.\n\n",
2450
+ "target_delimiter": " ",
2451
+ "fewshot_delimiter": "\n\n",
2452
+ "fewshot_config": {
2453
+ "sampler": "first_n"
2454
+ },
2455
+ "num_fewshot": 5,
2456
+ "metric_list": [
2457
+ {
2458
+ "metric": "acc",
2459
+ "aggregation": "mean",
2460
+ "higher_is_better": true
2461
+ }
2462
+ ],
2463
+ "output_type": "multiple_choice",
2464
+ "repeats": 1,
2465
+ "should_decontaminate": false,
2466
+ "metadata": {
2467
+ "version": 0.0
2468
+ }
2469
+ },
2470
+ "mmlu_world_religions": {
2471
+ "task": "mmlu_world_religions",
2472
+ "task_alias": "world_religions",
2473
+ "group": "mmlu_humanities",
2474
+ "group_alias": "humanities",
2475
+ "dataset_path": "hails/mmlu_no_train",
2476
+ "dataset_name": "world_religions",
2477
+ "test_split": "test",
2478
+ "fewshot_split": "dev",
2479
+ "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
2480
+ "doc_to_target": "answer",
2481
+ "doc_to_choice": [
2482
+ "A",
2483
+ "B",
2484
+ "C",
2485
+ "D"
2486
+ ],
2487
+ "description": "The following are multiple choice questions (with answers) about world religions.\n\n",
2488
+ "target_delimiter": " ",
2489
+ "fewshot_delimiter": "\n\n",
2490
+ "fewshot_config": {
2491
+ "sampler": "first_n"
2492
+ },
2493
+ "num_fewshot": 5,
2494
+ "metric_list": [
2495
+ {
2496
+ "metric": "acc",
2497
+ "aggregation": "mean",
2498
+ "higher_is_better": true
2499
+ }
2500
+ ],
2501
+ "output_type": "multiple_choice",
2502
+ "repeats": 1,
2503
+ "should_decontaminate": false,
2504
+ "metadata": {
2505
+ "version": 0.0
2506
+ }
2507
+ }
2508
+ },
2509
+ "versions": {
2510
+ "mmlu": "N/A",
2511
+ "mmlu_abstract_algebra": 0.0,
2512
+ "mmlu_anatomy": 0.0,
2513
+ "mmlu_astronomy": 0.0,
2514
+ "mmlu_business_ethics": 0.0,
2515
+ "mmlu_clinical_knowledge": 0.0,
2516
+ "mmlu_college_biology": 0.0,
2517
+ "mmlu_college_chemistry": 0.0,
2518
+ "mmlu_college_computer_science": 0.0,
2519
+ "mmlu_college_mathematics": 0.0,
2520
+ "mmlu_college_medicine": 0.0,
2521
+ "mmlu_college_physics": 0.0,
2522
+ "mmlu_computer_security": 0.0,
2523
+ "mmlu_conceptual_physics": 0.0,
2524
+ "mmlu_econometrics": 0.0,
2525
+ "mmlu_electrical_engineering": 0.0,
2526
+ "mmlu_elementary_mathematics": 0.0,
2527
+ "mmlu_formal_logic": 0.0,
2528
+ "mmlu_global_facts": 0.0,
2529
+ "mmlu_high_school_biology": 0.0,
2530
+ "mmlu_high_school_chemistry": 0.0,
2531
+ "mmlu_high_school_computer_science": 0.0,
2532
+ "mmlu_high_school_european_history": 0.0,
2533
+ "mmlu_high_school_geography": 0.0,
2534
+ "mmlu_high_school_government_and_politics": 0.0,
2535
+ "mmlu_high_school_macroeconomics": 0.0,
2536
+ "mmlu_high_school_mathematics": 0.0,
2537
+ "mmlu_high_school_microeconomics": 0.0,
2538
+ "mmlu_high_school_physics": 0.0,
2539
+ "mmlu_high_school_psychology": 0.0,
2540
+ "mmlu_high_school_statistics": 0.0,
2541
+ "mmlu_high_school_us_history": 0.0,
2542
+ "mmlu_high_school_world_history": 0.0,
2543
+ "mmlu_human_aging": 0.0,
2544
+ "mmlu_human_sexuality": 0.0,
2545
+ "mmlu_humanities": "N/A",
2546
+ "mmlu_international_law": 0.0,
2547
+ "mmlu_jurisprudence": 0.0,
2548
+ "mmlu_logical_fallacies": 0.0,
2549
+ "mmlu_machine_learning": 0.0,
2550
+ "mmlu_management": 0.0,
2551
+ "mmlu_marketing": 0.0,
2552
+ "mmlu_medical_genetics": 0.0,
2553
+ "mmlu_miscellaneous": 0.0,
2554
+ "mmlu_moral_disputes": 0.0,
2555
+ "mmlu_moral_scenarios": 0.0,
2556
+ "mmlu_nutrition": 0.0,
2557
+ "mmlu_other": "N/A",
2558
+ "mmlu_philosophy": 0.0,
2559
+ "mmlu_prehistory": 0.0,
2560
+ "mmlu_professional_accounting": 0.0,
2561
+ "mmlu_professional_law": 0.0,
2562
+ "mmlu_professional_medicine": 0.0,
2563
+ "mmlu_professional_psychology": 0.0,
2564
+ "mmlu_public_relations": 0.0,
2565
+ "mmlu_security_studies": 0.0,
2566
+ "mmlu_social_sciences": "N/A",
2567
+ "mmlu_sociology": 0.0,
2568
+ "mmlu_stem": "N/A",
2569
+ "mmlu_us_foreign_policy": 0.0,
2570
+ "mmlu_virology": 0.0,
2571
+ "mmlu_world_religions": 0.0
2572
+ },
2573
+ "n-shot": {
2574
+ "mmlu": 0,
2575
+ "mmlu_abstract_algebra": 5,
2576
+ "mmlu_anatomy": 5,
2577
+ "mmlu_astronomy": 5,
2578
+ "mmlu_business_ethics": 5,
2579
+ "mmlu_clinical_knowledge": 5,
2580
+ "mmlu_college_biology": 5,
2581
+ "mmlu_college_chemistry": 5,
2582
+ "mmlu_college_computer_science": 5,
2583
+ "mmlu_college_mathematics": 5,
2584
+ "mmlu_college_medicine": 5,
2585
+ "mmlu_college_physics": 5,
2586
+ "mmlu_computer_security": 5,
2587
+ "mmlu_conceptual_physics": 5,
2588
+ "mmlu_econometrics": 5,
2589
+ "mmlu_electrical_engineering": 5,
2590
+ "mmlu_elementary_mathematics": 5,
2591
+ "mmlu_formal_logic": 5,
2592
+ "mmlu_global_facts": 5,
2593
+ "mmlu_high_school_biology": 5,
2594
+ "mmlu_high_school_chemistry": 5,
2595
+ "mmlu_high_school_computer_science": 5,
2596
+ "mmlu_high_school_european_history": 5,
2597
+ "mmlu_high_school_geography": 5,
2598
+ "mmlu_high_school_government_and_politics": 5,
2599
+ "mmlu_high_school_macroeconomics": 5,
2600
+ "mmlu_high_school_mathematics": 5,
2601
+ "mmlu_high_school_microeconomics": 5,
2602
+ "mmlu_high_school_physics": 5,
2603
+ "mmlu_high_school_psychology": 5,
2604
+ "mmlu_high_school_statistics": 5,
2605
+ "mmlu_high_school_us_history": 5,
2606
+ "mmlu_high_school_world_history": 5,
2607
+ "mmlu_human_aging": 5,
2608
+ "mmlu_human_sexuality": 5,
2609
+ "mmlu_humanities": 5,
2610
+ "mmlu_international_law": 5,
2611
+ "mmlu_jurisprudence": 5,
2612
+ "mmlu_logical_fallacies": 5,
2613
+ "mmlu_machine_learning": 5,
2614
+ "mmlu_management": 5,
2615
+ "mmlu_marketing": 5,
2616
+ "mmlu_medical_genetics": 5,
2617
+ "mmlu_miscellaneous": 5,
2618
+ "mmlu_moral_disputes": 5,
2619
+ "mmlu_moral_scenarios": 5,
2620
+ "mmlu_nutrition": 5,
2621
+ "mmlu_other": 5,
2622
+ "mmlu_philosophy": 5,
2623
+ "mmlu_prehistory": 5,
2624
+ "mmlu_professional_accounting": 5,
2625
+ "mmlu_professional_law": 5,
2626
+ "mmlu_professional_medicine": 5,
2627
+ "mmlu_professional_psychology": 5,
2628
+ "mmlu_public_relations": 5,
2629
+ "mmlu_security_studies": 5,
2630
+ "mmlu_social_sciences": 5,
2631
+ "mmlu_sociology": 5,
2632
+ "mmlu_stem": 5,
2633
+ "mmlu_us_foreign_policy": 5,
2634
+ "mmlu_virology": 5,
2635
+ "mmlu_world_religions": 5
2636
+ },
2637
+ "config": {
2638
+ "model": "hf",
2639
+ "model_args": "pretrained=RWKV/HF_v5-Eagle-7B,dtype=bfloat16,trust_remote_code=True",
2640
+ "batch_size": "auto",
2641
+ "batch_sizes": [
2642
+ 8
2643
+ ],
2644
+ "device": null,
2645
+ "use_cache": null,
2646
+ "limit": null,
2647
+ "bootstrap_iters": 100000,
2648
+ "gen_kwargs": null
2649
+ },
2650
+ "git_hash": "99f5004"
2651
+ }
lm-eval-output/RWKV/HF_v5-Eagle-7B/mmlu/dtype=bfloat16,trust_remote_code=True-num_fewshot=5-nvidia-gpu/taskrun.log ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ab2df012db414dbfe58f18c2c07e7f37e0deb997e856a403d14c8ae4e50617e2
3
+ size 202712
lm-eval-output/RWKV/HF_v5-Eagle-7B/pawsx/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bf5665a69b88801cfc3ac2b83778a7c81809436c0de8287a56f3b1073fffa048
3
+ size 2133470
lm-eval-output/RWKV/HF_v5-Eagle-7B/pawsx/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json ADDED
@@ -0,0 +1,283 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "pawsx": {
4
+ "acc,none": 0.45671428571428574,
5
+ "acc_stderr,none": 0.04503688625601942,
6
+ "alias": "pawsx"
7
+ },
8
+ "paws_de": {
9
+ "acc,none": 0.399,
10
+ "acc_stderr,none": 0.010952601505572451,
11
+ "alias": " - paws_de"
12
+ },
13
+ "paws_en": {
14
+ "acc,none": 0.385,
15
+ "acc_stderr,none": 0.010883323176386975,
16
+ "alias": " - paws_en"
17
+ },
18
+ "paws_es": {
19
+ "acc,none": 0.3725,
20
+ "acc_stderr,none": 0.010813433320184794,
21
+ "alias": " - paws_es"
22
+ },
23
+ "paws_fr": {
24
+ "acc,none": 0.5395,
25
+ "acc_stderr,none": 0.011148184426533283,
26
+ "alias": " - paws_fr"
27
+ },
28
+ "paws_ja": {
29
+ "acc,none": 0.5205,
30
+ "acc_stderr,none": 0.011173732641806813,
31
+ "alias": " - paws_ja"
32
+ },
33
+ "paws_ko": {
34
+ "acc,none": 0.484,
35
+ "acc_stderr,none": 0.011177408788874896,
36
+ "alias": " - paws_ko"
37
+ },
38
+ "paws_zh": {
39
+ "acc,none": 0.4965,
40
+ "acc_stderr,none": 0.011182862030875934,
41
+ "alias": " - paws_zh"
42
+ }
43
+ },
44
+ "groups": {
45
+ "pawsx": {
46
+ "acc,none": 0.45671428571428574,
47
+ "acc_stderr,none": 0.04503688625601942,
48
+ "alias": "pawsx"
49
+ }
50
+ },
51
+ "configs": {
52
+ "paws_de": {
53
+ "task": "paws_de",
54
+ "group": "pawsx",
55
+ "dataset_path": "paws-x",
56
+ "dataset_name": "de",
57
+ "training_split": "train",
58
+ "validation_split": "validation",
59
+ "test_split": "test",
60
+ "doc_to_text": "",
61
+ "doc_to_target": "label",
62
+ "doc_to_choice": "{{[sentence1+\", richtig? Ja, \"+sentence2, sentence1+\", richtig? Nein, \"+sentence2]}}",
63
+ "description": "",
64
+ "target_delimiter": " ",
65
+ "fewshot_delimiter": "\n\n",
66
+ "metric_list": [
67
+ {
68
+ "metric": "acc",
69
+ "aggregation": "mean",
70
+ "higher_is_better": true
71
+ }
72
+ ],
73
+ "output_type": "multiple_choice",
74
+ "repeats": 1,
75
+ "should_decontaminate": false,
76
+ "metadata": {
77
+ "version": 0.0
78
+ }
79
+ },
80
+ "paws_en": {
81
+ "task": "paws_en",
82
+ "group": "pawsx",
83
+ "dataset_path": "paws-x",
84
+ "dataset_name": "en",
85
+ "training_split": "train",
86
+ "validation_split": "validation",
87
+ "test_split": "test",
88
+ "doc_to_text": "",
89
+ "doc_to_target": "label",
90
+ "doc_to_choice": "{{[sentence1+\", right? Yes, \"+sentence2, sentence1+\", right? No, \"+sentence2]}}",
91
+ "description": "",
92
+ "target_delimiter": " ",
93
+ "fewshot_delimiter": "\n\n",
94
+ "metric_list": [
95
+ {
96
+ "metric": "acc",
97
+ "aggregation": "mean",
98
+ "higher_is_better": true
99
+ }
100
+ ],
101
+ "output_type": "multiple_choice",
102
+ "repeats": 1,
103
+ "should_decontaminate": false,
104
+ "metadata": {
105
+ "version": 0.0
106
+ }
107
+ },
108
+ "paws_es": {
109
+ "task": "paws_es",
110
+ "group": "pawsx",
111
+ "dataset_path": "paws-x",
112
+ "dataset_name": "es",
113
+ "training_split": "train",
114
+ "validation_split": "validation",
115
+ "test_split": "test",
116
+ "doc_to_text": "",
117
+ "doc_to_target": "label",
118
+ "doc_to_choice": "{{[sentence1+\", verdad? Sí, \"+sentence2, sentence1+\", verdad? No, \"+sentence2]}}",
119
+ "description": "",
120
+ "target_delimiter": " ",
121
+ "fewshot_delimiter": "\n\n",
122
+ "metric_list": [
123
+ {
124
+ "metric": "acc",
125
+ "aggregation": "mean",
126
+ "higher_is_better": true
127
+ }
128
+ ],
129
+ "output_type": "multiple_choice",
130
+ "repeats": 1,
131
+ "should_decontaminate": false,
132
+ "metadata": {
133
+ "version": 0.0
134
+ }
135
+ },
136
+ "paws_fr": {
137
+ "task": "paws_fr",
138
+ "group": "pawsx",
139
+ "dataset_path": "paws-x",
140
+ "dataset_name": "fr",
141
+ "training_split": "train",
142
+ "validation_split": "validation",
143
+ "test_split": "test",
144
+ "doc_to_text": "",
145
+ "doc_to_target": "label",
146
+ "doc_to_choice": "{{[sentence1+\", n'est-ce pas? Oui, \"+sentence2, sentence1+\", n'est-ce pas? No, \"+sentence2]}}",
147
+ "description": "",
148
+ "target_delimiter": " ",
149
+ "fewshot_delimiter": "\n\n",
150
+ "metric_list": [
151
+ {
152
+ "metric": "acc",
153
+ "aggregation": "mean",
154
+ "higher_is_better": true
155
+ }
156
+ ],
157
+ "output_type": "multiple_choice",
158
+ "repeats": 1,
159
+ "should_decontaminate": false,
160
+ "metadata": {
161
+ "version": 0.0
162
+ }
163
+ },
164
+ "paws_ja": {
165
+ "task": "paws_ja",
166
+ "group": "pawsx",
167
+ "dataset_path": "paws-x",
168
+ "dataset_name": "ja",
169
+ "training_split": "train",
170
+ "validation_split": "validation",
171
+ "test_split": "test",
172
+ "doc_to_text": "",
173
+ "doc_to_target": "label",
174
+ "doc_to_choice": "{{[sentence1+\", ですね? はい, \"+sentence2, sentence1+\", ですね? いいえ, \"+sentence2]}}",
175
+ "description": "",
176
+ "target_delimiter": " ",
177
+ "fewshot_delimiter": "\n\n",
178
+ "metric_list": [
179
+ {
180
+ "metric": "acc",
181
+ "aggregation": "mean",
182
+ "higher_is_better": true
183
+ }
184
+ ],
185
+ "output_type": "multiple_choice",
186
+ "repeats": 1,
187
+ "should_decontaminate": false,
188
+ "metadata": {
189
+ "version": 0.0
190
+ }
191
+ },
192
+ "paws_ko": {
193
+ "task": "paws_ko",
194
+ "group": "pawsx",
195
+ "dataset_path": "paws-x",
196
+ "dataset_name": "ko",
197
+ "training_split": "train",
198
+ "validation_split": "validation",
199
+ "test_split": "test",
200
+ "doc_to_text": "",
201
+ "doc_to_target": "label",
202
+ "doc_to_choice": "{{[sentence1+\", 맞죠? 예, \"+sentence2, sentence1+\", 맞죠? 아니요, \"+sentence2]}}",
203
+ "description": "",
204
+ "target_delimiter": " ",
205
+ "fewshot_delimiter": "\n\n",
206
+ "metric_list": [
207
+ {
208
+ "metric": "acc",
209
+ "aggregation": "mean",
210
+ "higher_is_better": true
211
+ }
212
+ ],
213
+ "output_type": "multiple_choice",
214
+ "repeats": 1,
215
+ "should_decontaminate": false,
216
+ "metadata": {
217
+ "version": 0.0
218
+ }
219
+ },
220
+ "paws_zh": {
221
+ "task": "paws_zh",
222
+ "group": "pawsx",
223
+ "dataset_path": "paws-x",
224
+ "dataset_name": "zh",
225
+ "training_split": "train",
226
+ "validation_split": "validation",
227
+ "test_split": "test",
228
+ "doc_to_text": "",
229
+ "doc_to_target": "label",
230
+ "doc_to_choice": "{{[sentence1+\", 对吧? 是, \"+sentence2, sentence1+\", 对吧? 不是, \"+sentence2]}}",
231
+ "description": "",
232
+ "target_delimiter": " ",
233
+ "fewshot_delimiter": "\n\n",
234
+ "metric_list": [
235
+ {
236
+ "metric": "acc",
237
+ "aggregation": "mean",
238
+ "higher_is_better": true
239
+ }
240
+ ],
241
+ "output_type": "multiple_choice",
242
+ "repeats": 1,
243
+ "should_decontaminate": false,
244
+ "metadata": {
245
+ "version": 0.0
246
+ }
247
+ }
248
+ },
249
+ "versions": {
250
+ "paws_de": 0.0,
251
+ "paws_en": 0.0,
252
+ "paws_es": 0.0,
253
+ "paws_fr": 0.0,
254
+ "paws_ja": 0.0,
255
+ "paws_ko": 0.0,
256
+ "paws_zh": 0.0,
257
+ "pawsx": "N/A"
258
+ },
259
+ "n-shot": {
260
+ "paws_de": 0,
261
+ "paws_en": 0,
262
+ "paws_es": 0,
263
+ "paws_fr": 0,
264
+ "paws_ja": 0,
265
+ "paws_ko": 0,
266
+ "paws_zh": 0,
267
+ "pawsx": 0
268
+ },
269
+ "config": {
270
+ "model": "hf",
271
+ "model_args": "pretrained=RWKV/HF_v5-Eagle-7B,dtype=bfloat16,trust_remote_code=True",
272
+ "batch_size": "auto",
273
+ "batch_sizes": [
274
+ 64
275
+ ],
276
+ "device": null,
277
+ "use_cache": null,
278
+ "limit": null,
279
+ "bootstrap_iters": 100000,
280
+ "gen_kwargs": null
281
+ },
282
+ "git_hash": "99f5004"
283
+ }
lm-eval-output/RWKV/HF_v5-Eagle-7B/pawsx/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b0e09f39ef452dfb32888916f9ea0f3446ad84fa0a868665c56b4205872ca7f0
3
+ size 58994
lm-eval-output/RWKV/HF_v5-Eagle-7B/pawsx/trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:102b25deb55b73448a30509a8085664e645712ecfef50ea86e018a2bd94bf927
3
+ size 2127451
lm-eval-output/RWKV/HF_v5-Eagle-7B/pawsx/trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json ADDED
@@ -0,0 +1,283 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "pawsx": {
4
+ "acc,none": 0.4555,
5
+ "acc_stderr,none": 0.05413647422159046,
6
+ "alias": "pawsx"
7
+ },
8
+ "paws_de": {
9
+ "acc,none": 0.4,
10
+ "acc_stderr,none": 0.010957190790298967,
11
+ "alias": " - paws_de"
12
+ },
13
+ "paws_en": {
14
+ "acc,none": 0.3765,
15
+ "acc_stderr,none": 0.010836631916589663,
16
+ "alias": " - paws_en"
17
+ },
18
+ "paws_es": {
19
+ "acc,none": 0.3725,
20
+ "acc_stderr,none": 0.01081343332018479,
21
+ "alias": " - paws_es"
22
+ },
23
+ "paws_fr": {
24
+ "acc,none": 0.5385,
25
+ "acc_stderr,none": 0.011149934327957061,
26
+ "alias": " - paws_fr"
27
+ },
28
+ "paws_ja": {
29
+ "acc,none": 0.519,
30
+ "acc_stderr,none": 0.011175058879956061,
31
+ "alias": " - paws_ja"
32
+ },
33
+ "paws_ko": {
34
+ "acc,none": 0.4845,
35
+ "acc_stderr,none": 0.01117776123260332,
36
+ "alias": " - paws_ko"
37
+ },
38
+ "paws_zh": {
39
+ "acc,none": 0.4975,
40
+ "acc_stderr,none": 0.011182996230990788,
41
+ "alias": " - paws_zh"
42
+ }
43
+ },
44
+ "groups": {
45
+ "pawsx": {
46
+ "acc,none": 0.4555,
47
+ "acc_stderr,none": 0.05413647422159046,
48
+ "alias": "pawsx"
49
+ }
50
+ },
51
+ "configs": {
52
+ "paws_de": {
53
+ "task": "paws_de",
54
+ "group": "pawsx",
55
+ "dataset_path": "paws-x",
56
+ "dataset_name": "de",
57
+ "training_split": "train",
58
+ "validation_split": "validation",
59
+ "test_split": "test",
60
+ "doc_to_text": "",
61
+ "doc_to_target": "label",
62
+ "doc_to_choice": "{{[sentence1+\", richtig? Ja, \"+sentence2, sentence1+\", richtig? Nein, \"+sentence2]}}",
63
+ "description": "",
64
+ "target_delimiter": " ",
65
+ "fewshot_delimiter": "\n\n",
66
+ "metric_list": [
67
+ {
68
+ "metric": "acc",
69
+ "aggregation": "mean",
70
+ "higher_is_better": true
71
+ }
72
+ ],
73
+ "output_type": "multiple_choice",
74
+ "repeats": 1,
75
+ "should_decontaminate": false,
76
+ "metadata": {
77
+ "version": 0.0
78
+ }
79
+ },
80
+ "paws_en": {
81
+ "task": "paws_en",
82
+ "group": "pawsx",
83
+ "dataset_path": "paws-x",
84
+ "dataset_name": "en",
85
+ "training_split": "train",
86
+ "validation_split": "validation",
87
+ "test_split": "test",
88
+ "doc_to_text": "",
89
+ "doc_to_target": "label",
90
+ "doc_to_choice": "{{[sentence1+\", right? Yes, \"+sentence2, sentence1+\", right? No, \"+sentence2]}}",
91
+ "description": "",
92
+ "target_delimiter": " ",
93
+ "fewshot_delimiter": "\n\n",
94
+ "metric_list": [
95
+ {
96
+ "metric": "acc",
97
+ "aggregation": "mean",
98
+ "higher_is_better": true
99
+ }
100
+ ],
101
+ "output_type": "multiple_choice",
102
+ "repeats": 1,
103
+ "should_decontaminate": false,
104
+ "metadata": {
105
+ "version": 0.0
106
+ }
107
+ },
108
+ "paws_es": {
109
+ "task": "paws_es",
110
+ "group": "pawsx",
111
+ "dataset_path": "paws-x",
112
+ "dataset_name": "es",
113
+ "training_split": "train",
114
+ "validation_split": "validation",
115
+ "test_split": "test",
116
+ "doc_to_text": "",
117
+ "doc_to_target": "label",
118
+ "doc_to_choice": "{{[sentence1+\", verdad? Sí, \"+sentence2, sentence1+\", verdad? No, \"+sentence2]}}",
119
+ "description": "",
120
+ "target_delimiter": " ",
121
+ "fewshot_delimiter": "\n\n",
122
+ "metric_list": [
123
+ {
124
+ "metric": "acc",
125
+ "aggregation": "mean",
126
+ "higher_is_better": true
127
+ }
128
+ ],
129
+ "output_type": "multiple_choice",
130
+ "repeats": 1,
131
+ "should_decontaminate": false,
132
+ "metadata": {
133
+ "version": 0.0
134
+ }
135
+ },
136
+ "paws_fr": {
137
+ "task": "paws_fr",
138
+ "group": "pawsx",
139
+ "dataset_path": "paws-x",
140
+ "dataset_name": "fr",
141
+ "training_split": "train",
142
+ "validation_split": "validation",
143
+ "test_split": "test",
144
+ "doc_to_text": "",
145
+ "doc_to_target": "label",
146
+ "doc_to_choice": "{{[sentence1+\", n'est-ce pas? Oui, \"+sentence2, sentence1+\", n'est-ce pas? No, \"+sentence2]}}",
147
+ "description": "",
148
+ "target_delimiter": " ",
149
+ "fewshot_delimiter": "\n\n",
150
+ "metric_list": [
151
+ {
152
+ "metric": "acc",
153
+ "aggregation": "mean",
154
+ "higher_is_better": true
155
+ }
156
+ ],
157
+ "output_type": "multiple_choice",
158
+ "repeats": 1,
159
+ "should_decontaminate": false,
160
+ "metadata": {
161
+ "version": 0.0
162
+ }
163
+ },
164
+ "paws_ja": {
165
+ "task": "paws_ja",
166
+ "group": "pawsx",
167
+ "dataset_path": "paws-x",
168
+ "dataset_name": "ja",
169
+ "training_split": "train",
170
+ "validation_split": "validation",
171
+ "test_split": "test",
172
+ "doc_to_text": "",
173
+ "doc_to_target": "label",
174
+ "doc_to_choice": "{{[sentence1+\", ですね? はい, \"+sentence2, sentence1+\", ですね? いいえ, \"+sentence2]}}",
175
+ "description": "",
176
+ "target_delimiter": " ",
177
+ "fewshot_delimiter": "\n\n",
178
+ "metric_list": [
179
+ {
180
+ "metric": "acc",
181
+ "aggregation": "mean",
182
+ "higher_is_better": true
183
+ }
184
+ ],
185
+ "output_type": "multiple_choice",
186
+ "repeats": 1,
187
+ "should_decontaminate": false,
188
+ "metadata": {
189
+ "version": 0.0
190
+ }
191
+ },
192
+ "paws_ko": {
193
+ "task": "paws_ko",
194
+ "group": "pawsx",
195
+ "dataset_path": "paws-x",
196
+ "dataset_name": "ko",
197
+ "training_split": "train",
198
+ "validation_split": "validation",
199
+ "test_split": "test",
200
+ "doc_to_text": "",
201
+ "doc_to_target": "label",
202
+ "doc_to_choice": "{{[sentence1+\", 맞죠? 예, \"+sentence2, sentence1+\", 맞죠? 아니요, \"+sentence2]}}",
203
+ "description": "",
204
+ "target_delimiter": " ",
205
+ "fewshot_delimiter": "\n\n",
206
+ "metric_list": [
207
+ {
208
+ "metric": "acc",
209
+ "aggregation": "mean",
210
+ "higher_is_better": true
211
+ }
212
+ ],
213
+ "output_type": "multiple_choice",
214
+ "repeats": 1,
215
+ "should_decontaminate": false,
216
+ "metadata": {
217
+ "version": 0.0
218
+ }
219
+ },
220
+ "paws_zh": {
221
+ "task": "paws_zh",
222
+ "group": "pawsx",
223
+ "dataset_path": "paws-x",
224
+ "dataset_name": "zh",
225
+ "training_split": "train",
226
+ "validation_split": "validation",
227
+ "test_split": "test",
228
+ "doc_to_text": "",
229
+ "doc_to_target": "label",
230
+ "doc_to_choice": "{{[sentence1+\", 对吧? 是, \"+sentence2, sentence1+\", 对吧? 不是, \"+sentence2]}}",
231
+ "description": "",
232
+ "target_delimiter": " ",
233
+ "fewshot_delimiter": "\n\n",
234
+ "metric_list": [
235
+ {
236
+ "metric": "acc",
237
+ "aggregation": "mean",
238
+ "higher_is_better": true
239
+ }
240
+ ],
241
+ "output_type": "multiple_choice",
242
+ "repeats": 1,
243
+ "should_decontaminate": false,
244
+ "metadata": {
245
+ "version": 0.0
246
+ }
247
+ }
248
+ },
249
+ "versions": {
250
+ "paws_de": 0.0,
251
+ "paws_en": 0.0,
252
+ "paws_es": 0.0,
253
+ "paws_fr": 0.0,
254
+ "paws_ja": 0.0,
255
+ "paws_ko": 0.0,
256
+ "paws_zh": 0.0,
257
+ "pawsx": "N/A"
258
+ },
259
+ "n-shot": {
260
+ "paws_de": 0,
261
+ "paws_en": 0,
262
+ "paws_es": 0,
263
+ "paws_fr": 0,
264
+ "paws_ja": 0,
265
+ "paws_ko": 0,
266
+ "paws_zh": 0,
267
+ "pawsx": 0
268
+ },
269
+ "config": {
270
+ "model": "hf",
271
+ "model_args": "pretrained=RWKV/HF_v5-Eagle-7B,trust_remote_code=True",
272
+ "batch_size": "auto",
273
+ "batch_sizes": [
274
+ 64
275
+ ],
276
+ "device": null,
277
+ "use_cache": null,
278
+ "limit": null,
279
+ "bootstrap_iters": 100000,
280
+ "gen_kwargs": null
281
+ },
282
+ "git_hash": "c8d9bbd"
283
+ }