Commit
·
1436862
1
Parent(s):
0489f47
initial test results
Browse files- lm-eval-output/EleutherAI/pythia-6.9b/lambada_multilingual/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json +252 -0
- lm-eval-output/EleutherAI/pythia-6.9b/lambada_multilingual/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log +3 -0
- lm-eval-output/EleutherAI/pythia-6.9b/pawsx/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json +283 -0
- lm-eval-output/EleutherAI/pythia-6.9b/pawsx/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log +3 -0
- lm-eval-output/EleutherAI/pythia-6.9b/xcopa/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json +390 -0
- lm-eval-output/EleutherAI/pythia-6.9b/xcopa/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log +3 -0
- lm-eval-output/EleutherAI/pythia-6.9b/xnli/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json +548 -0
- lm-eval-output/EleutherAI/pythia-6.9b/xnli/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log +3 -0
- lm-eval-output/EleutherAI/pythia-6.9b/xstorycloze/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json +423 -0
- lm-eval-output/EleutherAI/pythia-6.9b/xstorycloze/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log +3 -0
- lm-eval-output/EleutherAI/pythia-6.9b/xwinograd/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json +248 -0
- lm-eval-output/EleutherAI/pythia-6.9b/xwinograd/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log +3 -0
- lm-eval-output/allenai/OLMo-7B/lambada_multilingual/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json +33 -31
- lm-eval-output/allenai/OLMo-7B/lambada_multilingual/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log +2 -2
- lm-eval-output/allenai/OLMo-7B/pawsx/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json +21 -19
- lm-eval-output/allenai/OLMo-7B/pawsx/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log +2 -2
- lm-eval-output/allenai/OLMo-7B/xcopa/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json +37 -35
- lm-eval-output/allenai/OLMo-7B/xcopa/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log +2 -2
- lm-eval-output/allenai/OLMo-7B/xnli/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json +39 -37
- lm-eval-output/allenai/OLMo-7B/xnli/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log +2 -2
- lm-eval-output/allenai/OLMo-7B/xstorycloze/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json +30 -28
- lm-eval-output/allenai/OLMo-7B/xstorycloze/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log +2 -2
- lm-eval-output/allenai/OLMo-7B/xwinograd/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json +19 -17
- lm-eval-output/allenai/OLMo-7B/xwinograd/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log +2 -2
lm-eval-output/EleutherAI/pythia-6.9b/lambada_multilingual/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json
ADDED
@@ -0,0 +1,252 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"lambada_multilingual": {
|
4 |
+
"perplexity,none": 85.61923274283521,
|
5 |
+
"perplexity_stderr,none": 24.934559721383756,
|
6 |
+
"acc,none": 0.36743644478944304,
|
7 |
+
"acc_stderr,none": 0.06807273135902886,
|
8 |
+
"alias": "lambada_multilingual"
|
9 |
+
},
|
10 |
+
"lambada_openai_mt_de": {
|
11 |
+
"perplexity,none": 111.70921565884652,
|
12 |
+
"perplexity_stderr,none": 6.7130825671387395,
|
13 |
+
"acc,none": 0.2889578886085775,
|
14 |
+
"acc_stderr,none": 0.006315053173776882,
|
15 |
+
"alias": " - lambada_openai_mt_de"
|
16 |
+
},
|
17 |
+
"lambada_openai_mt_en": {
|
18 |
+
"perplexity,none": 5.776225342797313,
|
19 |
+
"perplexity_stderr,none": 0.14023382949276372,
|
20 |
+
"acc,none": 0.6037259848631865,
|
21 |
+
"acc_stderr,none": 0.006814434238262819,
|
22 |
+
"alias": " - lambada_openai_mt_en"
|
23 |
+
},
|
24 |
+
"lambada_openai_mt_es": {
|
25 |
+
"perplexity,none": 115.041411283382,
|
26 |
+
"perplexity_stderr,none": 6.4558637110495605,
|
27 |
+
"acc,none": 0.2848825926644673,
|
28 |
+
"acc_stderr,none": 0.006288306538252616,
|
29 |
+
"alias": " - lambada_openai_mt_es"
|
30 |
+
},
|
31 |
+
"lambada_openai_mt_fr": {
|
32 |
+
"perplexity,none": 79.00193299360477,
|
33 |
+
"perplexity_stderr,none": 4.502315563797141,
|
34 |
+
"acc,none": 0.34892295750048513,
|
35 |
+
"acc_stderr,none": 0.006640381581831473,
|
36 |
+
"alias": " - lambada_openai_mt_fr"
|
37 |
+
},
|
38 |
+
"lambada_openai_mt_it": {
|
39 |
+
"perplexity,none": 116.56737843554541,
|
40 |
+
"perplexity_stderr,none": 7.125874424310032,
|
41 |
+
"acc,none": 0.31069280031049873,
|
42 |
+
"acc_stderr,none": 0.00644739198299003,
|
43 |
+
"alias": " - lambada_openai_mt_it"
|
44 |
+
}
|
45 |
+
},
|
46 |
+
"groups": {
|
47 |
+
"lambada_multilingual": {
|
48 |
+
"perplexity,none": 85.61923274283521,
|
49 |
+
"perplexity_stderr,none": 24.934559721383756,
|
50 |
+
"acc,none": 0.36743644478944304,
|
51 |
+
"acc_stderr,none": 0.06807273135902886,
|
52 |
+
"alias": "lambada_multilingual"
|
53 |
+
}
|
54 |
+
},
|
55 |
+
"configs": {
|
56 |
+
"lambada_openai_mt_de": {
|
57 |
+
"task": "lambada_openai_mt_de",
|
58 |
+
"group": [
|
59 |
+
"lambada_multilingual"
|
60 |
+
],
|
61 |
+
"dataset_path": "EleutherAI/lambada_openai",
|
62 |
+
"dataset_name": "de",
|
63 |
+
"test_split": "test",
|
64 |
+
"doc_to_text": "{{text.split(' ')[:-1]|join(' ')}}",
|
65 |
+
"doc_to_target": "{{' '+text.split(' ')[-1]}}",
|
66 |
+
"description": "",
|
67 |
+
"target_delimiter": " ",
|
68 |
+
"fewshot_delimiter": "\n\n",
|
69 |
+
"metric_list": [
|
70 |
+
{
|
71 |
+
"metric": "perplexity",
|
72 |
+
"aggregation": "perplexity",
|
73 |
+
"higher_is_better": false
|
74 |
+
},
|
75 |
+
{
|
76 |
+
"metric": "acc",
|
77 |
+
"aggregation": "mean",
|
78 |
+
"higher_is_better": true
|
79 |
+
}
|
80 |
+
],
|
81 |
+
"output_type": "loglikelihood",
|
82 |
+
"repeats": 1,
|
83 |
+
"should_decontaminate": true,
|
84 |
+
"doc_to_decontamination_query": "{{text}}",
|
85 |
+
"metadata": {
|
86 |
+
"version": 1.0
|
87 |
+
}
|
88 |
+
},
|
89 |
+
"lambada_openai_mt_en": {
|
90 |
+
"task": "lambada_openai_mt_en",
|
91 |
+
"group": [
|
92 |
+
"lambada_multilingual"
|
93 |
+
],
|
94 |
+
"dataset_path": "EleutherAI/lambada_openai",
|
95 |
+
"dataset_name": "en",
|
96 |
+
"test_split": "test",
|
97 |
+
"doc_to_text": "{{text.split(' ')[:-1]|join(' ')}}",
|
98 |
+
"doc_to_target": "{{' '+text.split(' ')[-1]}}",
|
99 |
+
"description": "",
|
100 |
+
"target_delimiter": " ",
|
101 |
+
"fewshot_delimiter": "\n\n",
|
102 |
+
"metric_list": [
|
103 |
+
{
|
104 |
+
"metric": "perplexity",
|
105 |
+
"aggregation": "perplexity",
|
106 |
+
"higher_is_better": false
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"metric": "acc",
|
110 |
+
"aggregation": "mean",
|
111 |
+
"higher_is_better": true
|
112 |
+
}
|
113 |
+
],
|
114 |
+
"output_type": "loglikelihood",
|
115 |
+
"repeats": 1,
|
116 |
+
"should_decontaminate": true,
|
117 |
+
"doc_to_decontamination_query": "{{text}}",
|
118 |
+
"metadata": {
|
119 |
+
"version": 1.0
|
120 |
+
}
|
121 |
+
},
|
122 |
+
"lambada_openai_mt_es": {
|
123 |
+
"task": "lambada_openai_mt_es",
|
124 |
+
"group": [
|
125 |
+
"lambada_multilingual"
|
126 |
+
],
|
127 |
+
"dataset_path": "EleutherAI/lambada_openai",
|
128 |
+
"dataset_name": "es",
|
129 |
+
"test_split": "test",
|
130 |
+
"doc_to_text": "{{text.split(' ')[:-1]|join(' ')}}",
|
131 |
+
"doc_to_target": "{{' '+text.split(' ')[-1]}}",
|
132 |
+
"description": "",
|
133 |
+
"target_delimiter": " ",
|
134 |
+
"fewshot_delimiter": "\n\n",
|
135 |
+
"metric_list": [
|
136 |
+
{
|
137 |
+
"metric": "perplexity",
|
138 |
+
"aggregation": "perplexity",
|
139 |
+
"higher_is_better": false
|
140 |
+
},
|
141 |
+
{
|
142 |
+
"metric": "acc",
|
143 |
+
"aggregation": "mean",
|
144 |
+
"higher_is_better": true
|
145 |
+
}
|
146 |
+
],
|
147 |
+
"output_type": "loglikelihood",
|
148 |
+
"repeats": 1,
|
149 |
+
"should_decontaminate": true,
|
150 |
+
"doc_to_decontamination_query": "{{text}}",
|
151 |
+
"metadata": {
|
152 |
+
"version": 1.0
|
153 |
+
}
|
154 |
+
},
|
155 |
+
"lambada_openai_mt_fr": {
|
156 |
+
"task": "lambada_openai_mt_fr",
|
157 |
+
"group": [
|
158 |
+
"lambada_multilingual"
|
159 |
+
],
|
160 |
+
"dataset_path": "EleutherAI/lambada_openai",
|
161 |
+
"dataset_name": "fr",
|
162 |
+
"test_split": "test",
|
163 |
+
"doc_to_text": "{{text.split(' ')[:-1]|join(' ')}}",
|
164 |
+
"doc_to_target": "{{' '+text.split(' ')[-1]}}",
|
165 |
+
"description": "",
|
166 |
+
"target_delimiter": " ",
|
167 |
+
"fewshot_delimiter": "\n\n",
|
168 |
+
"metric_list": [
|
169 |
+
{
|
170 |
+
"metric": "perplexity",
|
171 |
+
"aggregation": "perplexity",
|
172 |
+
"higher_is_better": false
|
173 |
+
},
|
174 |
+
{
|
175 |
+
"metric": "acc",
|
176 |
+
"aggregation": "mean",
|
177 |
+
"higher_is_better": true
|
178 |
+
}
|
179 |
+
],
|
180 |
+
"output_type": "loglikelihood",
|
181 |
+
"repeats": 1,
|
182 |
+
"should_decontaminate": true,
|
183 |
+
"doc_to_decontamination_query": "{{text}}",
|
184 |
+
"metadata": {
|
185 |
+
"version": 1.0
|
186 |
+
}
|
187 |
+
},
|
188 |
+
"lambada_openai_mt_it": {
|
189 |
+
"task": "lambada_openai_mt_it",
|
190 |
+
"group": [
|
191 |
+
"lambada_multilingual"
|
192 |
+
],
|
193 |
+
"dataset_path": "EleutherAI/lambada_openai",
|
194 |
+
"dataset_name": "it",
|
195 |
+
"test_split": "test",
|
196 |
+
"doc_to_text": "{{text.split(' ')[:-1]|join(' ')}}",
|
197 |
+
"doc_to_target": "{{' '+text.split(' ')[-1]}}",
|
198 |
+
"description": "",
|
199 |
+
"target_delimiter": " ",
|
200 |
+
"fewshot_delimiter": "\n\n",
|
201 |
+
"metric_list": [
|
202 |
+
{
|
203 |
+
"metric": "perplexity",
|
204 |
+
"aggregation": "perplexity",
|
205 |
+
"higher_is_better": false
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"metric": "acc",
|
209 |
+
"aggregation": "mean",
|
210 |
+
"higher_is_better": true
|
211 |
+
}
|
212 |
+
],
|
213 |
+
"output_type": "loglikelihood",
|
214 |
+
"repeats": 1,
|
215 |
+
"should_decontaminate": true,
|
216 |
+
"doc_to_decontamination_query": "{{text}}",
|
217 |
+
"metadata": {
|
218 |
+
"version": 1.0
|
219 |
+
}
|
220 |
+
}
|
221 |
+
},
|
222 |
+
"versions": {
|
223 |
+
"lambada_multilingual": "N/A",
|
224 |
+
"lambada_openai_mt_de": 1.0,
|
225 |
+
"lambada_openai_mt_en": 1.0,
|
226 |
+
"lambada_openai_mt_es": 1.0,
|
227 |
+
"lambada_openai_mt_fr": 1.0,
|
228 |
+
"lambada_openai_mt_it": 1.0
|
229 |
+
},
|
230 |
+
"n-shot": {
|
231 |
+
"lambada_multilingual": 0,
|
232 |
+
"lambada_openai_mt_de": 0,
|
233 |
+
"lambada_openai_mt_en": 0,
|
234 |
+
"lambada_openai_mt_es": 0,
|
235 |
+
"lambada_openai_mt_fr": 0,
|
236 |
+
"lambada_openai_mt_it": 0
|
237 |
+
},
|
238 |
+
"config": {
|
239 |
+
"model": "hf",
|
240 |
+
"model_args": "pretrained=EleutherAI/pythia-6.9b,dtype=bfloat16,trust_remote_code=True",
|
241 |
+
"batch_size": "auto",
|
242 |
+
"batch_sizes": [
|
243 |
+
16
|
244 |
+
],
|
245 |
+
"device": null,
|
246 |
+
"use_cache": null,
|
247 |
+
"limit": null,
|
248 |
+
"bootstrap_iters": 100000,
|
249 |
+
"gen_kwargs": null
|
250 |
+
},
|
251 |
+
"git_hash": "62513ca"
|
252 |
+
}
|
lm-eval-output/EleutherAI/pythia-6.9b/lambada_multilingual/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fcc2fe76914379486253225c3094724a88c9f6daa13b6f256cf5236be339514b
|
3 |
+
size 54122
|
lm-eval-output/EleutherAI/pythia-6.9b/pawsx/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json
ADDED
@@ -0,0 +1,283 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"pawsx": {
|
4 |
+
"acc,none": 0.4842142857142857,
|
5 |
+
"acc_stderr,none": 0.03733481753135015,
|
6 |
+
"alias": "pawsx"
|
7 |
+
},
|
8 |
+
"paws_de": {
|
9 |
+
"acc,none": 0.4305,
|
10 |
+
"acc_stderr,none": 0.011074574398099854,
|
11 |
+
"alias": " - paws_de"
|
12 |
+
},
|
13 |
+
"paws_en": {
|
14 |
+
"acc,none": 0.4085,
|
15 |
+
"acc_stderr,none": 0.010994285431808401,
|
16 |
+
"alias": " - paws_en"
|
17 |
+
},
|
18 |
+
"paws_es": {
|
19 |
+
"acc,none": 0.4745,
|
20 |
+
"acc_stderr,none": 0.011168582883330074,
|
21 |
+
"alias": " - paws_es"
|
22 |
+
},
|
23 |
+
"paws_fr": {
|
24 |
+
"acc,none": 0.5405,
|
25 |
+
"acc_stderr,none": 0.011146389370464352,
|
26 |
+
"alias": " - paws_fr"
|
27 |
+
},
|
28 |
+
"paws_ja": {
|
29 |
+
"acc,none": 0.4845,
|
30 |
+
"acc_stderr,none": 0.01117776123260332,
|
31 |
+
"alias": " - paws_ja"
|
32 |
+
},
|
33 |
+
"paws_ko": {
|
34 |
+
"acc,none": 0.544,
|
35 |
+
"acc_stderr,none": 0.011139750761283315,
|
36 |
+
"alias": " - paws_ko"
|
37 |
+
},
|
38 |
+
"paws_zh": {
|
39 |
+
"acc,none": 0.507,
|
40 |
+
"acc_stderr,none": 0.011182040020027772,
|
41 |
+
"alias": " - paws_zh"
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"groups": {
|
45 |
+
"pawsx": {
|
46 |
+
"acc,none": 0.4842142857142857,
|
47 |
+
"acc_stderr,none": 0.03733481753135015,
|
48 |
+
"alias": "pawsx"
|
49 |
+
}
|
50 |
+
},
|
51 |
+
"configs": {
|
52 |
+
"paws_de": {
|
53 |
+
"task": "paws_de",
|
54 |
+
"group": "pawsx",
|
55 |
+
"dataset_path": "paws-x",
|
56 |
+
"dataset_name": "de",
|
57 |
+
"training_split": "train",
|
58 |
+
"validation_split": "validation",
|
59 |
+
"test_split": "test",
|
60 |
+
"doc_to_text": "",
|
61 |
+
"doc_to_target": "label",
|
62 |
+
"doc_to_choice": "{{[sentence1+\", richtig? Ja, \"+sentence2, sentence1+\", richtig? Nein, \"+sentence2]}}",
|
63 |
+
"description": "",
|
64 |
+
"target_delimiter": " ",
|
65 |
+
"fewshot_delimiter": "\n\n",
|
66 |
+
"metric_list": [
|
67 |
+
{
|
68 |
+
"metric": "acc",
|
69 |
+
"aggregation": "mean",
|
70 |
+
"higher_is_better": true
|
71 |
+
}
|
72 |
+
],
|
73 |
+
"output_type": "multiple_choice",
|
74 |
+
"repeats": 1,
|
75 |
+
"should_decontaminate": false,
|
76 |
+
"metadata": {
|
77 |
+
"version": 0.0
|
78 |
+
}
|
79 |
+
},
|
80 |
+
"paws_en": {
|
81 |
+
"task": "paws_en",
|
82 |
+
"group": "pawsx",
|
83 |
+
"dataset_path": "paws-x",
|
84 |
+
"dataset_name": "en",
|
85 |
+
"training_split": "train",
|
86 |
+
"validation_split": "validation",
|
87 |
+
"test_split": "test",
|
88 |
+
"doc_to_text": "",
|
89 |
+
"doc_to_target": "label",
|
90 |
+
"doc_to_choice": "{{[sentence1+\", right? Yes, \"+sentence2, sentence1+\", right? No, \"+sentence2]}}",
|
91 |
+
"description": "",
|
92 |
+
"target_delimiter": " ",
|
93 |
+
"fewshot_delimiter": "\n\n",
|
94 |
+
"metric_list": [
|
95 |
+
{
|
96 |
+
"metric": "acc",
|
97 |
+
"aggregation": "mean",
|
98 |
+
"higher_is_better": true
|
99 |
+
}
|
100 |
+
],
|
101 |
+
"output_type": "multiple_choice",
|
102 |
+
"repeats": 1,
|
103 |
+
"should_decontaminate": false,
|
104 |
+
"metadata": {
|
105 |
+
"version": 0.0
|
106 |
+
}
|
107 |
+
},
|
108 |
+
"paws_es": {
|
109 |
+
"task": "paws_es",
|
110 |
+
"group": "pawsx",
|
111 |
+
"dataset_path": "paws-x",
|
112 |
+
"dataset_name": "es",
|
113 |
+
"training_split": "train",
|
114 |
+
"validation_split": "validation",
|
115 |
+
"test_split": "test",
|
116 |
+
"doc_to_text": "",
|
117 |
+
"doc_to_target": "label",
|
118 |
+
"doc_to_choice": "{{[sentence1+\", verdad? Sí, \"+sentence2, sentence1+\", verdad? No, \"+sentence2]}}",
|
119 |
+
"description": "",
|
120 |
+
"target_delimiter": " ",
|
121 |
+
"fewshot_delimiter": "\n\n",
|
122 |
+
"metric_list": [
|
123 |
+
{
|
124 |
+
"metric": "acc",
|
125 |
+
"aggregation": "mean",
|
126 |
+
"higher_is_better": true
|
127 |
+
}
|
128 |
+
],
|
129 |
+
"output_type": "multiple_choice",
|
130 |
+
"repeats": 1,
|
131 |
+
"should_decontaminate": false,
|
132 |
+
"metadata": {
|
133 |
+
"version": 0.0
|
134 |
+
}
|
135 |
+
},
|
136 |
+
"paws_fr": {
|
137 |
+
"task": "paws_fr",
|
138 |
+
"group": "pawsx",
|
139 |
+
"dataset_path": "paws-x",
|
140 |
+
"dataset_name": "fr",
|
141 |
+
"training_split": "train",
|
142 |
+
"validation_split": "validation",
|
143 |
+
"test_split": "test",
|
144 |
+
"doc_to_text": "",
|
145 |
+
"doc_to_target": "label",
|
146 |
+
"doc_to_choice": "{{[sentence1+\", n'est-ce pas? Oui, \"+sentence2, sentence1+\", n'est-ce pas? No, \"+sentence2]}}",
|
147 |
+
"description": "",
|
148 |
+
"target_delimiter": " ",
|
149 |
+
"fewshot_delimiter": "\n\n",
|
150 |
+
"metric_list": [
|
151 |
+
{
|
152 |
+
"metric": "acc",
|
153 |
+
"aggregation": "mean",
|
154 |
+
"higher_is_better": true
|
155 |
+
}
|
156 |
+
],
|
157 |
+
"output_type": "multiple_choice",
|
158 |
+
"repeats": 1,
|
159 |
+
"should_decontaminate": false,
|
160 |
+
"metadata": {
|
161 |
+
"version": 0.0
|
162 |
+
}
|
163 |
+
},
|
164 |
+
"paws_ja": {
|
165 |
+
"task": "paws_ja",
|
166 |
+
"group": "pawsx",
|
167 |
+
"dataset_path": "paws-x",
|
168 |
+
"dataset_name": "ja",
|
169 |
+
"training_split": "train",
|
170 |
+
"validation_split": "validation",
|
171 |
+
"test_split": "test",
|
172 |
+
"doc_to_text": "",
|
173 |
+
"doc_to_target": "label",
|
174 |
+
"doc_to_choice": "{{[sentence1+\", ですね? はい, \"+sentence2, sentence1+\", ですね? いいえ, \"+sentence2]}}",
|
175 |
+
"description": "",
|
176 |
+
"target_delimiter": " ",
|
177 |
+
"fewshot_delimiter": "\n\n",
|
178 |
+
"metric_list": [
|
179 |
+
{
|
180 |
+
"metric": "acc",
|
181 |
+
"aggregation": "mean",
|
182 |
+
"higher_is_better": true
|
183 |
+
}
|
184 |
+
],
|
185 |
+
"output_type": "multiple_choice",
|
186 |
+
"repeats": 1,
|
187 |
+
"should_decontaminate": false,
|
188 |
+
"metadata": {
|
189 |
+
"version": 0.0
|
190 |
+
}
|
191 |
+
},
|
192 |
+
"paws_ko": {
|
193 |
+
"task": "paws_ko",
|
194 |
+
"group": "pawsx",
|
195 |
+
"dataset_path": "paws-x",
|
196 |
+
"dataset_name": "ko",
|
197 |
+
"training_split": "train",
|
198 |
+
"validation_split": "validation",
|
199 |
+
"test_split": "test",
|
200 |
+
"doc_to_text": "",
|
201 |
+
"doc_to_target": "label",
|
202 |
+
"doc_to_choice": "{{[sentence1+\", 맞죠? 예, \"+sentence2, sentence1+\", 맞죠? 아니요, \"+sentence2]}}",
|
203 |
+
"description": "",
|
204 |
+
"target_delimiter": " ",
|
205 |
+
"fewshot_delimiter": "\n\n",
|
206 |
+
"metric_list": [
|
207 |
+
{
|
208 |
+
"metric": "acc",
|
209 |
+
"aggregation": "mean",
|
210 |
+
"higher_is_better": true
|
211 |
+
}
|
212 |
+
],
|
213 |
+
"output_type": "multiple_choice",
|
214 |
+
"repeats": 1,
|
215 |
+
"should_decontaminate": false,
|
216 |
+
"metadata": {
|
217 |
+
"version": 0.0
|
218 |
+
}
|
219 |
+
},
|
220 |
+
"paws_zh": {
|
221 |
+
"task": "paws_zh",
|
222 |
+
"group": "pawsx",
|
223 |
+
"dataset_path": "paws-x",
|
224 |
+
"dataset_name": "zh",
|
225 |
+
"training_split": "train",
|
226 |
+
"validation_split": "validation",
|
227 |
+
"test_split": "test",
|
228 |
+
"doc_to_text": "",
|
229 |
+
"doc_to_target": "label",
|
230 |
+
"doc_to_choice": "{{[sentence1+\", 对吧? 是, \"+sentence2, sentence1+\", 对吧? 不是, \"+sentence2]}}",
|
231 |
+
"description": "",
|
232 |
+
"target_delimiter": " ",
|
233 |
+
"fewshot_delimiter": "\n\n",
|
234 |
+
"metric_list": [
|
235 |
+
{
|
236 |
+
"metric": "acc",
|
237 |
+
"aggregation": "mean",
|
238 |
+
"higher_is_better": true
|
239 |
+
}
|
240 |
+
],
|
241 |
+
"output_type": "multiple_choice",
|
242 |
+
"repeats": 1,
|
243 |
+
"should_decontaminate": false,
|
244 |
+
"metadata": {
|
245 |
+
"version": 0.0
|
246 |
+
}
|
247 |
+
}
|
248 |
+
},
|
249 |
+
"versions": {
|
250 |
+
"paws_de": 0.0,
|
251 |
+
"paws_en": 0.0,
|
252 |
+
"paws_es": 0.0,
|
253 |
+
"paws_fr": 0.0,
|
254 |
+
"paws_ja": 0.0,
|
255 |
+
"paws_ko": 0.0,
|
256 |
+
"paws_zh": 0.0,
|
257 |
+
"pawsx": "N/A"
|
258 |
+
},
|
259 |
+
"n-shot": {
|
260 |
+
"paws_de": 0,
|
261 |
+
"paws_en": 0,
|
262 |
+
"paws_es": 0,
|
263 |
+
"paws_fr": 0,
|
264 |
+
"paws_ja": 0,
|
265 |
+
"paws_ko": 0,
|
266 |
+
"paws_zh": 0,
|
267 |
+
"pawsx": 0
|
268 |
+
},
|
269 |
+
"config": {
|
270 |
+
"model": "hf",
|
271 |
+
"model_args": "pretrained=EleutherAI/pythia-6.9b,dtype=bfloat16,trust_remote_code=True",
|
272 |
+
"batch_size": "auto",
|
273 |
+
"batch_sizes": [
|
274 |
+
16
|
275 |
+
],
|
276 |
+
"device": null,
|
277 |
+
"use_cache": null,
|
278 |
+
"limit": null,
|
279 |
+
"bootstrap_iters": 100000,
|
280 |
+
"gen_kwargs": null
|
281 |
+
},
|
282 |
+
"git_hash": "62513ca"
|
283 |
+
}
|
lm-eval-output/EleutherAI/pythia-6.9b/pawsx/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3b0bfaec54a85a1853a31d1481440c21368bc9b18cccb8e05c4810bdc8b3f85f
|
3 |
+
size 35601
|
lm-eval-output/EleutherAI/pythia-6.9b/xcopa/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json
ADDED
@@ -0,0 +1,390 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"xcopa": {
|
4 |
+
"acc,none": 0.5405454545454547,
|
5 |
+
"acc_stderr,none": 0.029688555203892242,
|
6 |
+
"alias": "xcopa"
|
7 |
+
},
|
8 |
+
"xcopa_et": {
|
9 |
+
"acc,none": 0.5,
|
10 |
+
"acc_stderr,none": 0.022383074051792257,
|
11 |
+
"alias": " - xcopa_et"
|
12 |
+
},
|
13 |
+
"xcopa_ht": {
|
14 |
+
"acc,none": 0.532,
|
15 |
+
"acc_stderr,none": 0.022337186479044296,
|
16 |
+
"alias": " - xcopa_ht"
|
17 |
+
},
|
18 |
+
"xcopa_id": {
|
19 |
+
"acc,none": 0.564,
|
20 |
+
"acc_stderr,none": 0.0221989546414768,
|
21 |
+
"alias": " - xcopa_id"
|
22 |
+
},
|
23 |
+
"xcopa_it": {
|
24 |
+
"acc,none": 0.566,
|
25 |
+
"acc_stderr,none": 0.022187215803029008,
|
26 |
+
"alias": " - xcopa_it"
|
27 |
+
},
|
28 |
+
"xcopa_qu": {
|
29 |
+
"acc,none": 0.506,
|
30 |
+
"acc_stderr,none": 0.022381462412439324,
|
31 |
+
"alias": " - xcopa_qu"
|
32 |
+
},
|
33 |
+
"xcopa_sw": {
|
34 |
+
"acc,none": 0.54,
|
35 |
+
"acc_stderr,none": 0.022311333245289663,
|
36 |
+
"alias": " - xcopa_sw"
|
37 |
+
},
|
38 |
+
"xcopa_ta": {
|
39 |
+
"acc,none": 0.516,
|
40 |
+
"acc_stderr,none": 0.0223716109825804,
|
41 |
+
"alias": " - xcopa_ta"
|
42 |
+
},
|
43 |
+
"xcopa_th": {
|
44 |
+
"acc,none": 0.574,
|
45 |
+
"acc_stderr,none": 0.022136577335085637,
|
46 |
+
"alias": " - xcopa_th"
|
47 |
+
},
|
48 |
+
"xcopa_tr": {
|
49 |
+
"acc,none": 0.53,
|
50 |
+
"acc_stderr,none": 0.022342748192502843,
|
51 |
+
"alias": " - xcopa_tr"
|
52 |
+
},
|
53 |
+
"xcopa_vi": {
|
54 |
+
"acc,none": 0.54,
|
55 |
+
"acc_stderr,none": 0.022311333245289666,
|
56 |
+
"alias": " - xcopa_vi"
|
57 |
+
},
|
58 |
+
"xcopa_zh": {
|
59 |
+
"acc,none": 0.578,
|
60 |
+
"acc_stderr,none": 0.022109039310618556,
|
61 |
+
"alias": " - xcopa_zh"
|
62 |
+
}
|
63 |
+
},
|
64 |
+
"groups": {
|
65 |
+
"xcopa": {
|
66 |
+
"acc,none": 0.5405454545454547,
|
67 |
+
"acc_stderr,none": 0.029688555203892242,
|
68 |
+
"alias": "xcopa"
|
69 |
+
}
|
70 |
+
},
|
71 |
+
"configs": {
|
72 |
+
"xcopa_et": {
|
73 |
+
"task": "xcopa_et",
|
74 |
+
"group": "xcopa",
|
75 |
+
"dataset_path": "xcopa",
|
76 |
+
"dataset_name": "et",
|
77 |
+
"validation_split": "validation",
|
78 |
+
"test_split": "test",
|
79 |
+
"doc_to_text": "functools.partial(<function doc_to_text at 0x7f49f0751d00>, connector={'cause': 'sest', 'effect': 'seetõttu'})",
|
80 |
+
"doc_to_target": "label",
|
81 |
+
"doc_to_choice": "def doc_to_choice(doc):\n return [convert_choice(doc[\"choice1\"]), convert_choice(doc[\"choice2\"])]\n",
|
82 |
+
"description": "",
|
83 |
+
"target_delimiter": " ",
|
84 |
+
"fewshot_delimiter": "\n\n",
|
85 |
+
"metric_list": [
|
86 |
+
{
|
87 |
+
"metric": "acc"
|
88 |
+
}
|
89 |
+
],
|
90 |
+
"output_type": "multiple_choice",
|
91 |
+
"repeats": 1,
|
92 |
+
"should_decontaminate": false,
|
93 |
+
"metadata": {
|
94 |
+
"version": 1.0
|
95 |
+
}
|
96 |
+
},
|
97 |
+
"xcopa_ht": {
|
98 |
+
"task": "xcopa_ht",
|
99 |
+
"group": "xcopa",
|
100 |
+
"dataset_path": "xcopa",
|
101 |
+
"dataset_name": "ht",
|
102 |
+
"validation_split": "validation",
|
103 |
+
"test_split": "test",
|
104 |
+
"doc_to_text": "functools.partial(<function doc_to_text at 0x7f49f07882c0>, connector={'cause': 'poukisa', 'effect': 'donk sa'})",
|
105 |
+
"doc_to_target": "label",
|
106 |
+
"doc_to_choice": "def doc_to_choice(doc):\n return [convert_choice(doc[\"choice1\"]), convert_choice(doc[\"choice2\"])]\n",
|
107 |
+
"description": "",
|
108 |
+
"target_delimiter": " ",
|
109 |
+
"fewshot_delimiter": "\n\n",
|
110 |
+
"metric_list": [
|
111 |
+
{
|
112 |
+
"metric": "acc"
|
113 |
+
}
|
114 |
+
],
|
115 |
+
"output_type": "multiple_choice",
|
116 |
+
"repeats": 1,
|
117 |
+
"should_decontaminate": false,
|
118 |
+
"metadata": {
|
119 |
+
"version": 1.0
|
120 |
+
}
|
121 |
+
},
|
122 |
+
"xcopa_id": {
|
123 |
+
"task": "xcopa_id",
|
124 |
+
"group": "xcopa",
|
125 |
+
"dataset_path": "xcopa",
|
126 |
+
"dataset_name": "id",
|
127 |
+
"validation_split": "validation",
|
128 |
+
"test_split": "test",
|
129 |
+
"doc_to_text": "functools.partial(<function doc_to_text at 0x7f49f0752e80>, connector={'cause': 'karena', 'effect': 'maka'})",
|
130 |
+
"doc_to_target": "label",
|
131 |
+
"doc_to_choice": "def doc_to_choice(doc):\n return [convert_choice(doc[\"choice1\"]), convert_choice(doc[\"choice2\"])]\n",
|
132 |
+
"description": "",
|
133 |
+
"target_delimiter": " ",
|
134 |
+
"fewshot_delimiter": "\n\n",
|
135 |
+
"metric_list": [
|
136 |
+
{
|
137 |
+
"metric": "acc"
|
138 |
+
}
|
139 |
+
],
|
140 |
+
"output_type": "multiple_choice",
|
141 |
+
"repeats": 1,
|
142 |
+
"should_decontaminate": false,
|
143 |
+
"metadata": {
|
144 |
+
"version": 1.0
|
145 |
+
}
|
146 |
+
},
|
147 |
+
"xcopa_it": {
|
148 |
+
"task": "xcopa_it",
|
149 |
+
"group": "xcopa",
|
150 |
+
"dataset_path": "xcopa",
|
151 |
+
"dataset_name": "it",
|
152 |
+
"validation_split": "validation",
|
153 |
+
"test_split": "test",
|
154 |
+
"doc_to_text": "functools.partial(<function doc_to_text at 0x7f49f072fb00>, connector={'cause': 'perché', 'effect': 'quindi'})",
|
155 |
+
"doc_to_target": "label",
|
156 |
+
"doc_to_choice": "def doc_to_choice(doc):\n return [convert_choice(doc[\"choice1\"]), convert_choice(doc[\"choice2\"])]\n",
|
157 |
+
"description": "",
|
158 |
+
"target_delimiter": " ",
|
159 |
+
"fewshot_delimiter": "\n\n",
|
160 |
+
"metric_list": [
|
161 |
+
{
|
162 |
+
"metric": "acc"
|
163 |
+
}
|
164 |
+
],
|
165 |
+
"output_type": "multiple_choice",
|
166 |
+
"repeats": 1,
|
167 |
+
"should_decontaminate": false,
|
168 |
+
"metadata": {
|
169 |
+
"version": 1.0
|
170 |
+
}
|
171 |
+
},
|
172 |
+
"xcopa_qu": {
|
173 |
+
"task": "xcopa_qu",
|
174 |
+
"group": "xcopa",
|
175 |
+
"dataset_path": "xcopa",
|
176 |
+
"dataset_name": "qu",
|
177 |
+
"validation_split": "validation",
|
178 |
+
"test_split": "test",
|
179 |
+
"doc_to_text": "functools.partial(<function doc_to_text at 0x7f49f2f105e0>, connector={'cause': 'imataq', 'effect': 'chaymi'})",
|
180 |
+
"doc_to_target": "label",
|
181 |
+
"doc_to_choice": "def doc_to_choice(doc):\n return [convert_choice(doc[\"choice1\"]), convert_choice(doc[\"choice2\"])]\n",
|
182 |
+
"description": "",
|
183 |
+
"target_delimiter": " ",
|
184 |
+
"fewshot_delimiter": "\n\n",
|
185 |
+
"metric_list": [
|
186 |
+
{
|
187 |
+
"metric": "acc"
|
188 |
+
}
|
189 |
+
],
|
190 |
+
"output_type": "multiple_choice",
|
191 |
+
"repeats": 1,
|
192 |
+
"should_decontaminate": false,
|
193 |
+
"metadata": {
|
194 |
+
"version": 1.0
|
195 |
+
}
|
196 |
+
},
|
197 |
+
"xcopa_sw": {
|
198 |
+
"task": "xcopa_sw",
|
199 |
+
"group": "xcopa",
|
200 |
+
"dataset_path": "xcopa",
|
201 |
+
"dataset_name": "sw",
|
202 |
+
"validation_split": "validation",
|
203 |
+
"test_split": "test",
|
204 |
+
"doc_to_text": "functools.partial(<function doc_to_text at 0x7f49f07896c0>, connector={'cause': 'kwa sababu', 'effect': 'kwa hiyo'})",
|
205 |
+
"doc_to_target": "label",
|
206 |
+
"doc_to_choice": "def doc_to_choice(doc):\n return [convert_choice(doc[\"choice1\"]), convert_choice(doc[\"choice2\"])]\n",
|
207 |
+
"description": "",
|
208 |
+
"target_delimiter": " ",
|
209 |
+
"fewshot_delimiter": "\n\n",
|
210 |
+
"metric_list": [
|
211 |
+
{
|
212 |
+
"metric": "acc"
|
213 |
+
}
|
214 |
+
],
|
215 |
+
"output_type": "multiple_choice",
|
216 |
+
"repeats": 1,
|
217 |
+
"should_decontaminate": false,
|
218 |
+
"metadata": {
|
219 |
+
"version": 1.0
|
220 |
+
}
|
221 |
+
},
|
222 |
+
"xcopa_ta": {
|
223 |
+
"task": "xcopa_ta",
|
224 |
+
"group": "xcopa",
|
225 |
+
"dataset_path": "xcopa",
|
226 |
+
"dataset_name": "ta",
|
227 |
+
"validation_split": "validation",
|
228 |
+
"test_split": "test",
|
229 |
+
"doc_to_text": "functools.partial(<function doc_to_text at 0x7f49f0789da0>, connector={'cause': 'காரணமாக', 'effect': 'எனவே'})",
|
230 |
+
"doc_to_target": "label",
|
231 |
+
"doc_to_choice": "def doc_to_choice(doc):\n return [convert_choice(doc[\"choice1\"]), convert_choice(doc[\"choice2\"])]\n",
|
232 |
+
"description": "",
|
233 |
+
"target_delimiter": " ",
|
234 |
+
"fewshot_delimiter": "\n\n",
|
235 |
+
"metric_list": [
|
236 |
+
{
|
237 |
+
"metric": "acc"
|
238 |
+
}
|
239 |
+
],
|
240 |
+
"output_type": "multiple_choice",
|
241 |
+
"repeats": 1,
|
242 |
+
"should_decontaminate": false,
|
243 |
+
"metadata": {
|
244 |
+
"version": 1.0
|
245 |
+
}
|
246 |
+
},
|
247 |
+
"xcopa_th": {
|
248 |
+
"task": "xcopa_th",
|
249 |
+
"group": "xcopa",
|
250 |
+
"dataset_path": "xcopa",
|
251 |
+
"dataset_name": "th",
|
252 |
+
"validation_split": "validation",
|
253 |
+
"test_split": "test",
|
254 |
+
"doc_to_text": "functools.partial(<function doc_to_text at 0x7f49f0752ca0>, connector={'cause': 'เพราะ', 'effect': 'ดังนั้น'})",
|
255 |
+
"doc_to_target": "label",
|
256 |
+
"doc_to_choice": "def doc_to_choice(doc):\n return [convert_choice(doc[\"choice1\"]), convert_choice(doc[\"choice2\"])]\n",
|
257 |
+
"description": "",
|
258 |
+
"target_delimiter": " ",
|
259 |
+
"fewshot_delimiter": "\n\n",
|
260 |
+
"metric_list": [
|
261 |
+
{
|
262 |
+
"metric": "acc"
|
263 |
+
}
|
264 |
+
],
|
265 |
+
"output_type": "multiple_choice",
|
266 |
+
"repeats": 1,
|
267 |
+
"should_decontaminate": false,
|
268 |
+
"metadata": {
|
269 |
+
"version": 1.0
|
270 |
+
}
|
271 |
+
},
|
272 |
+
"xcopa_tr": {
|
273 |
+
"task": "xcopa_tr",
|
274 |
+
"group": "xcopa",
|
275 |
+
"dataset_path": "xcopa",
|
276 |
+
"dataset_name": "tr",
|
277 |
+
"validation_split": "validation",
|
278 |
+
"test_split": "test",
|
279 |
+
"doc_to_text": "functools.partial(<function doc_to_text at 0x7f49f072e0c0>, connector={'cause': 'çünkü', 'effect': 'bu yüzden'})",
|
280 |
+
"doc_to_target": "label",
|
281 |
+
"doc_to_choice": "def doc_to_choice(doc):\n return [convert_choice(doc[\"choice1\"]), convert_choice(doc[\"choice2\"])]\n",
|
282 |
+
"description": "",
|
283 |
+
"target_delimiter": " ",
|
284 |
+
"fewshot_delimiter": "\n\n",
|
285 |
+
"metric_list": [
|
286 |
+
{
|
287 |
+
"metric": "acc"
|
288 |
+
}
|
289 |
+
],
|
290 |
+
"output_type": "multiple_choice",
|
291 |
+
"repeats": 1,
|
292 |
+
"should_decontaminate": false,
|
293 |
+
"metadata": {
|
294 |
+
"version": 1.0
|
295 |
+
}
|
296 |
+
},
|
297 |
+
"xcopa_vi": {
|
298 |
+
"task": "xcopa_vi",
|
299 |
+
"group": "xcopa",
|
300 |
+
"dataset_path": "xcopa",
|
301 |
+
"dataset_name": "vi",
|
302 |
+
"validation_split": "validation",
|
303 |
+
"test_split": "test",
|
304 |
+
"doc_to_text": "functools.partial(<function doc_to_text at 0x7f49f0750400>, connector={'cause': 'bởi vì', 'effect': 'vì vậy'})",
|
305 |
+
"doc_to_target": "label",
|
306 |
+
"doc_to_choice": "def doc_to_choice(doc):\n return [convert_choice(doc[\"choice1\"]), convert_choice(doc[\"choice2\"])]\n",
|
307 |
+
"description": "",
|
308 |
+
"target_delimiter": " ",
|
309 |
+
"fewshot_delimiter": "\n\n",
|
310 |
+
"metric_list": [
|
311 |
+
{
|
312 |
+
"metric": "acc"
|
313 |
+
}
|
314 |
+
],
|
315 |
+
"output_type": "multiple_choice",
|
316 |
+
"repeats": 1,
|
317 |
+
"should_decontaminate": false,
|
318 |
+
"metadata": {
|
319 |
+
"version": 1.0
|
320 |
+
}
|
321 |
+
},
|
322 |
+
"xcopa_zh": {
|
323 |
+
"task": "xcopa_zh",
|
324 |
+
"group": "xcopa",
|
325 |
+
"dataset_path": "xcopa",
|
326 |
+
"dataset_name": "zh",
|
327 |
+
"validation_split": "validation",
|
328 |
+
"test_split": "test",
|
329 |
+
"doc_to_text": "functools.partial(<function doc_to_text at 0x7f49f2f11b20>, connector={'cause': '因为', 'effect': '所以'})",
|
330 |
+
"doc_to_target": "label",
|
331 |
+
"doc_to_choice": "def doc_to_choice(doc):\n return [convert_choice(doc[\"choice1\"]), convert_choice(doc[\"choice2\"])]\n",
|
332 |
+
"description": "",
|
333 |
+
"target_delimiter": " ",
|
334 |
+
"fewshot_delimiter": "\n\n",
|
335 |
+
"metric_list": [
|
336 |
+
{
|
337 |
+
"metric": "acc"
|
338 |
+
}
|
339 |
+
],
|
340 |
+
"output_type": "multiple_choice",
|
341 |
+
"repeats": 1,
|
342 |
+
"should_decontaminate": false,
|
343 |
+
"metadata": {
|
344 |
+
"version": 1.0
|
345 |
+
}
|
346 |
+
}
|
347 |
+
},
|
348 |
+
"versions": {
|
349 |
+
"xcopa": "N/A",
|
350 |
+
"xcopa_et": 1.0,
|
351 |
+
"xcopa_ht": 1.0,
|
352 |
+
"xcopa_id": 1.0,
|
353 |
+
"xcopa_it": 1.0,
|
354 |
+
"xcopa_qu": 1.0,
|
355 |
+
"xcopa_sw": 1.0,
|
356 |
+
"xcopa_ta": 1.0,
|
357 |
+
"xcopa_th": 1.0,
|
358 |
+
"xcopa_tr": 1.0,
|
359 |
+
"xcopa_vi": 1.0,
|
360 |
+
"xcopa_zh": 1.0
|
361 |
+
},
|
362 |
+
"n-shot": {
|
363 |
+
"xcopa": 0,
|
364 |
+
"xcopa_et": 0,
|
365 |
+
"xcopa_ht": 0,
|
366 |
+
"xcopa_id": 0,
|
367 |
+
"xcopa_it": 0,
|
368 |
+
"xcopa_qu": 0,
|
369 |
+
"xcopa_sw": 0,
|
370 |
+
"xcopa_ta": 0,
|
371 |
+
"xcopa_th": 0,
|
372 |
+
"xcopa_tr": 0,
|
373 |
+
"xcopa_vi": 0,
|
374 |
+
"xcopa_zh": 0
|
375 |
+
},
|
376 |
+
"config": {
|
377 |
+
"model": "hf",
|
378 |
+
"model_args": "pretrained=EleutherAI/pythia-6.9b,dtype=bfloat16,trust_remote_code=True",
|
379 |
+
"batch_size": "auto",
|
380 |
+
"batch_sizes": [
|
381 |
+
16
|
382 |
+
],
|
383 |
+
"device": null,
|
384 |
+
"use_cache": null,
|
385 |
+
"limit": null,
|
386 |
+
"bootstrap_iters": 100000,
|
387 |
+
"gen_kwargs": null
|
388 |
+
},
|
389 |
+
"git_hash": "62513ca"
|
390 |
+
}
|
lm-eval-output/EleutherAI/pythia-6.9b/xcopa/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8d2e1afa10d1635c613dde3e9d07dccc5fcf3541a797c2f621b7c2bf619e0b0b
|
3 |
+
size 54447
|
lm-eval-output/EleutherAI/pythia-6.9b/xnli/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json
ADDED
@@ -0,0 +1,548 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"xnli": {
|
4 |
+
"acc,none": 0.3997054886211513,
|
5 |
+
"acc_stderr,none": 0.05058781670580755,
|
6 |
+
"alias": "xnli"
|
7 |
+
},
|
8 |
+
"xnli_ar": {
|
9 |
+
"acc,none": 0.334136546184739,
|
10 |
+
"acc_stderr,none": 0.009454577602463628,
|
11 |
+
"alias": " - xnli_ar"
|
12 |
+
},
|
13 |
+
"xnli_bg": {
|
14 |
+
"acc,none": 0.41004016064257026,
|
15 |
+
"acc_stderr,none": 0.009858525713807858,
|
16 |
+
"alias": " - xnli_bg"
|
17 |
+
},
|
18 |
+
"xnli_de": {
|
19 |
+
"acc,none": 0.44819277108433736,
|
20 |
+
"acc_stderr,none": 0.00996812942690988,
|
21 |
+
"alias": " - xnli_de"
|
22 |
+
},
|
23 |
+
"xnli_el": {
|
24 |
+
"acc,none": 0.3742971887550201,
|
25 |
+
"acc_stderr,none": 0.009700182103576732,
|
26 |
+
"alias": " - xnli_el"
|
27 |
+
},
|
28 |
+
"xnli_en": {
|
29 |
+
"acc,none": 0.542570281124498,
|
30 |
+
"acc_stderr,none": 0.009985682220227443,
|
31 |
+
"alias": " - xnli_en"
|
32 |
+
},
|
33 |
+
"xnli_es": {
|
34 |
+
"acc,none": 0.4465863453815261,
|
35 |
+
"acc_stderr,none": 0.009964722457358764,
|
36 |
+
"alias": " - xnli_es"
|
37 |
+
},
|
38 |
+
"xnli_fr": {
|
39 |
+
"acc,none": 0.46265060240963857,
|
40 |
+
"acc_stderr,none": 0.009994072620561411,
|
41 |
+
"alias": " - xnli_fr"
|
42 |
+
},
|
43 |
+
"xnli_hi": {
|
44 |
+
"acc,none": 0.3634538152610442,
|
45 |
+
"acc_stderr,none": 0.009641111987257547,
|
46 |
+
"alias": " - xnli_hi"
|
47 |
+
},
|
48 |
+
"xnli_ru": {
|
49 |
+
"acc,none": 0.42690763052208835,
|
50 |
+
"acc_stderr,none": 0.009914408828583405,
|
51 |
+
"alias": " - xnli_ru"
|
52 |
+
},
|
53 |
+
"xnli_sw": {
|
54 |
+
"acc,none": 0.3542168674698795,
|
55 |
+
"acc_stderr,none": 0.009586620142951844,
|
56 |
+
"alias": " - xnli_sw"
|
57 |
+
},
|
58 |
+
"xnli_th": {
|
59 |
+
"acc,none": 0.3859437751004016,
|
60 |
+
"acc_stderr,none": 0.009757838842063325,
|
61 |
+
"alias": " - xnli_th"
|
62 |
+
},
|
63 |
+
"xnli_tr": {
|
64 |
+
"acc,none": 0.3855421686746988,
|
65 |
+
"acc_stderr,none": 0.009755949341224318,
|
66 |
+
"alias": " - xnli_tr"
|
67 |
+
},
|
68 |
+
"xnli_ur": {
|
69 |
+
"acc,none": 0.3329317269076305,
|
70 |
+
"acc_stderr,none": 0.009446051001358228,
|
71 |
+
"alias": " - xnli_ur"
|
72 |
+
},
|
73 |
+
"xnli_vi": {
|
74 |
+
"acc,none": 0.38795180722891565,
|
75 |
+
"acc_stderr,none": 0.009767181346586388,
|
76 |
+
"alias": " - xnli_vi"
|
77 |
+
},
|
78 |
+
"xnli_zh": {
|
79 |
+
"acc,none": 0.3401606425702811,
|
80 |
+
"acc_stderr,none": 0.009496174608136402,
|
81 |
+
"alias": " - xnli_zh"
|
82 |
+
}
|
83 |
+
},
|
84 |
+
"groups": {
|
85 |
+
"xnli": {
|
86 |
+
"acc,none": 0.3997054886211513,
|
87 |
+
"acc_stderr,none": 0.05058781670580755,
|
88 |
+
"alias": "xnli"
|
89 |
+
}
|
90 |
+
},
|
91 |
+
"configs": {
|
92 |
+
"xnli_ar": {
|
93 |
+
"task": "xnli_ar",
|
94 |
+
"group": "xnli",
|
95 |
+
"dataset_path": "xnli",
|
96 |
+
"dataset_name": "ar",
|
97 |
+
"training_split": "train",
|
98 |
+
"validation_split": "validation",
|
99 |
+
"doc_to_text": "",
|
100 |
+
"doc_to_target": "label",
|
101 |
+
"doc_to_choice": "{{[premise+\", صحيح? نعم, \"+hypothesis,premise+\", صحيح? لذا, \"+hypothesis,premise+\", صحيح? رقم, \"+hypothesis]}}",
|
102 |
+
"description": "",
|
103 |
+
"target_delimiter": " ",
|
104 |
+
"fewshot_delimiter": "\n\n",
|
105 |
+
"metric_list": [
|
106 |
+
{
|
107 |
+
"metric": "acc",
|
108 |
+
"aggregation": "mean",
|
109 |
+
"higher_is_better": true
|
110 |
+
}
|
111 |
+
],
|
112 |
+
"output_type": "multiple_choice",
|
113 |
+
"repeats": 1,
|
114 |
+
"should_decontaminate": false,
|
115 |
+
"metadata": {
|
116 |
+
"version": 1.0
|
117 |
+
}
|
118 |
+
},
|
119 |
+
"xnli_bg": {
|
120 |
+
"task": "xnli_bg",
|
121 |
+
"group": "xnli",
|
122 |
+
"dataset_path": "xnli",
|
123 |
+
"dataset_name": "bg",
|
124 |
+
"training_split": "train",
|
125 |
+
"validation_split": "validation",
|
126 |
+
"doc_to_text": "",
|
127 |
+
"doc_to_target": "label",
|
128 |
+
"doc_to_choice": "{{[premise+\", правилно? да, \"+hypothesis,premise+\", правилно? така, \"+hypothesis,premise+\", правилно? не, \"+hypothesis]}}",
|
129 |
+
"description": "",
|
130 |
+
"target_delimiter": " ",
|
131 |
+
"fewshot_delimiter": "\n\n",
|
132 |
+
"metric_list": [
|
133 |
+
{
|
134 |
+
"metric": "acc",
|
135 |
+
"aggregation": "mean",
|
136 |
+
"higher_is_better": true
|
137 |
+
}
|
138 |
+
],
|
139 |
+
"output_type": "multiple_choice",
|
140 |
+
"repeats": 1,
|
141 |
+
"should_decontaminate": false,
|
142 |
+
"metadata": {
|
143 |
+
"version": 1.0
|
144 |
+
}
|
145 |
+
},
|
146 |
+
"xnli_de": {
|
147 |
+
"task": "xnli_de",
|
148 |
+
"group": "xnli",
|
149 |
+
"dataset_path": "xnli",
|
150 |
+
"dataset_name": "de",
|
151 |
+
"training_split": "train",
|
152 |
+
"validation_split": "validation",
|
153 |
+
"doc_to_text": "",
|
154 |
+
"doc_to_target": "label",
|
155 |
+
"doc_to_choice": "{{[premise+\", richtig? Ja, \"+hypothesis,premise+\", richtig? Auch, \"+hypothesis,premise+\", richtig? Nein, \"+hypothesis]}}",
|
156 |
+
"description": "",
|
157 |
+
"target_delimiter": " ",
|
158 |
+
"fewshot_delimiter": "\n\n",
|
159 |
+
"metric_list": [
|
160 |
+
{
|
161 |
+
"metric": "acc",
|
162 |
+
"aggregation": "mean",
|
163 |
+
"higher_is_better": true
|
164 |
+
}
|
165 |
+
],
|
166 |
+
"output_type": "multiple_choice",
|
167 |
+
"repeats": 1,
|
168 |
+
"should_decontaminate": false,
|
169 |
+
"metadata": {
|
170 |
+
"version": 1.0
|
171 |
+
}
|
172 |
+
},
|
173 |
+
"xnli_el": {
|
174 |
+
"task": "xnli_el",
|
175 |
+
"group": "xnli",
|
176 |
+
"dataset_path": "xnli",
|
177 |
+
"dataset_name": "el",
|
178 |
+
"training_split": "train",
|
179 |
+
"validation_split": "validation",
|
180 |
+
"doc_to_text": "",
|
181 |
+
"doc_to_target": "label",
|
182 |
+
"doc_to_choice": "{{[premise+\", σωστός? Ναί, \"+hypothesis,premise+\", σωστός? Έτσι, \"+hypothesis,premise+\", σωστός? όχι, \"+hypothesis]}}",
|
183 |
+
"description": "",
|
184 |
+
"target_delimiter": " ",
|
185 |
+
"fewshot_delimiter": "\n\n",
|
186 |
+
"metric_list": [
|
187 |
+
{
|
188 |
+
"metric": "acc",
|
189 |
+
"aggregation": "mean",
|
190 |
+
"higher_is_better": true
|
191 |
+
}
|
192 |
+
],
|
193 |
+
"output_type": "multiple_choice",
|
194 |
+
"repeats": 1,
|
195 |
+
"should_decontaminate": false,
|
196 |
+
"metadata": {
|
197 |
+
"version": 1.0
|
198 |
+
}
|
199 |
+
},
|
200 |
+
"xnli_en": {
|
201 |
+
"task": "xnli_en",
|
202 |
+
"group": "xnli",
|
203 |
+
"dataset_path": "xnli",
|
204 |
+
"dataset_name": "en",
|
205 |
+
"training_split": "train",
|
206 |
+
"validation_split": "validation",
|
207 |
+
"doc_to_text": "",
|
208 |
+
"doc_to_target": "label",
|
209 |
+
"doc_to_choice": "{{[premise+\", right? Yes, \"+hypothesis,premise+\", right? Also, \"+hypothesis,premise+\", right? No, \"+hypothesis]}}",
|
210 |
+
"description": "",
|
211 |
+
"target_delimiter": " ",
|
212 |
+
"fewshot_delimiter": "\n\n",
|
213 |
+
"metric_list": [
|
214 |
+
{
|
215 |
+
"metric": "acc",
|
216 |
+
"aggregation": "mean",
|
217 |
+
"higher_is_better": true
|
218 |
+
}
|
219 |
+
],
|
220 |
+
"output_type": "multiple_choice",
|
221 |
+
"repeats": 1,
|
222 |
+
"should_decontaminate": false,
|
223 |
+
"metadata": {
|
224 |
+
"version": 1.0
|
225 |
+
}
|
226 |
+
},
|
227 |
+
"xnli_es": {
|
228 |
+
"task": "xnli_es",
|
229 |
+
"group": "xnli",
|
230 |
+
"dataset_path": "xnli",
|
231 |
+
"dataset_name": "es",
|
232 |
+
"training_split": "train",
|
233 |
+
"validation_split": "validation",
|
234 |
+
"doc_to_text": "",
|
235 |
+
"doc_to_target": "label",
|
236 |
+
"doc_to_choice": "{{[premise+\", correcto? Sí, \"+hypothesis,premise+\", correcto? Asi que, \"+hypothesis,premise+\", correcto? No, \"+hypothesis]}}",
|
237 |
+
"description": "",
|
238 |
+
"target_delimiter": " ",
|
239 |
+
"fewshot_delimiter": "\n\n",
|
240 |
+
"metric_list": [
|
241 |
+
{
|
242 |
+
"metric": "acc",
|
243 |
+
"aggregation": "mean",
|
244 |
+
"higher_is_better": true
|
245 |
+
}
|
246 |
+
],
|
247 |
+
"output_type": "multiple_choice",
|
248 |
+
"repeats": 1,
|
249 |
+
"should_decontaminate": false,
|
250 |
+
"metadata": {
|
251 |
+
"version": 1.0
|
252 |
+
}
|
253 |
+
},
|
254 |
+
"xnli_fr": {
|
255 |
+
"task": "xnli_fr",
|
256 |
+
"group": "xnli",
|
257 |
+
"dataset_path": "xnli",
|
258 |
+
"dataset_name": "fr",
|
259 |
+
"training_split": "train",
|
260 |
+
"validation_split": "validation",
|
261 |
+
"doc_to_text": "",
|
262 |
+
"doc_to_target": "label",
|
263 |
+
"doc_to_choice": "{{[premise+\", correct? Oui, \"+hypothesis,premise+\", correct? Aussi, \"+hypothesis,premise+\", correct? Non, \"+hypothesis]}}",
|
264 |
+
"description": "",
|
265 |
+
"target_delimiter": " ",
|
266 |
+
"fewshot_delimiter": "\n\n",
|
267 |
+
"metric_list": [
|
268 |
+
{
|
269 |
+
"metric": "acc",
|
270 |
+
"aggregation": "mean",
|
271 |
+
"higher_is_better": true
|
272 |
+
}
|
273 |
+
],
|
274 |
+
"output_type": "multiple_choice",
|
275 |
+
"repeats": 1,
|
276 |
+
"should_decontaminate": false,
|
277 |
+
"metadata": {
|
278 |
+
"version": 1.0
|
279 |
+
}
|
280 |
+
},
|
281 |
+
"xnli_hi": {
|
282 |
+
"task": "xnli_hi",
|
283 |
+
"group": "xnli",
|
284 |
+
"dataset_path": "xnli",
|
285 |
+
"dataset_name": "hi",
|
286 |
+
"training_split": "train",
|
287 |
+
"validation_split": "validation",
|
288 |
+
"doc_to_text": "",
|
289 |
+
"doc_to_target": "label",
|
290 |
+
"doc_to_choice": "{{[premise+\", सही? हाँ, \"+hypothesis,premise+\", सही? इसलिए, \"+hypothesis,premise+\", सही? नहीं, \"+hypothesis]}}",
|
291 |
+
"description": "",
|
292 |
+
"target_delimiter": " ",
|
293 |
+
"fewshot_delimiter": "\n\n",
|
294 |
+
"metric_list": [
|
295 |
+
{
|
296 |
+
"metric": "acc",
|
297 |
+
"aggregation": "mean",
|
298 |
+
"higher_is_better": true
|
299 |
+
}
|
300 |
+
],
|
301 |
+
"output_type": "multiple_choice",
|
302 |
+
"repeats": 1,
|
303 |
+
"should_decontaminate": false,
|
304 |
+
"metadata": {
|
305 |
+
"version": 1.0
|
306 |
+
}
|
307 |
+
},
|
308 |
+
"xnli_ru": {
|
309 |
+
"task": "xnli_ru",
|
310 |
+
"group": "xnli",
|
311 |
+
"dataset_path": "xnli",
|
312 |
+
"dataset_name": "ru",
|
313 |
+
"training_split": "train",
|
314 |
+
"validation_split": "validation",
|
315 |
+
"doc_to_text": "",
|
316 |
+
"doc_to_target": "label",
|
317 |
+
"doc_to_choice": "{{[premise+\", правильно? Да, \"+hypothesis,premise+\", правильно? Так, \"+hypothesis,premise+\", правильно? Нет, \"+hypothesis]}}",
|
318 |
+
"description": "",
|
319 |
+
"target_delimiter": " ",
|
320 |
+
"fewshot_delimiter": "\n\n",
|
321 |
+
"metric_list": [
|
322 |
+
{
|
323 |
+
"metric": "acc",
|
324 |
+
"aggregation": "mean",
|
325 |
+
"higher_is_better": true
|
326 |
+
}
|
327 |
+
],
|
328 |
+
"output_type": "multiple_choice",
|
329 |
+
"repeats": 1,
|
330 |
+
"should_decontaminate": false,
|
331 |
+
"metadata": {
|
332 |
+
"version": 1.0
|
333 |
+
}
|
334 |
+
},
|
335 |
+
"xnli_sw": {
|
336 |
+
"task": "xnli_sw",
|
337 |
+
"group": "xnli",
|
338 |
+
"dataset_path": "xnli",
|
339 |
+
"dataset_name": "sw",
|
340 |
+
"training_split": "train",
|
341 |
+
"validation_split": "validation",
|
342 |
+
"doc_to_text": "",
|
343 |
+
"doc_to_target": "label",
|
344 |
+
"doc_to_choice": "{{[premise+\", sahihi? Ndiyo, \"+hypothesis,premise+\", sahihi? Hivyo, \"+hypothesis,premise+\", sahihi? Hapana, \"+hypothesis]}}",
|
345 |
+
"description": "",
|
346 |
+
"target_delimiter": " ",
|
347 |
+
"fewshot_delimiter": "\n\n",
|
348 |
+
"metric_list": [
|
349 |
+
{
|
350 |
+
"metric": "acc",
|
351 |
+
"aggregation": "mean",
|
352 |
+
"higher_is_better": true
|
353 |
+
}
|
354 |
+
],
|
355 |
+
"output_type": "multiple_choice",
|
356 |
+
"repeats": 1,
|
357 |
+
"should_decontaminate": false,
|
358 |
+
"metadata": {
|
359 |
+
"version": 1.0
|
360 |
+
}
|
361 |
+
},
|
362 |
+
"xnli_th": {
|
363 |
+
"task": "xnli_th",
|
364 |
+
"group": "xnli",
|
365 |
+
"dataset_path": "xnli",
|
366 |
+
"dataset_name": "th",
|
367 |
+
"training_split": "train",
|
368 |
+
"validation_split": "validation",
|
369 |
+
"doc_to_text": "",
|
370 |
+
"doc_to_target": "label",
|
371 |
+
"doc_to_choice": "{{[premise+\", ถูกต้อง? ใช่, \"+hypothesis,premise+\", ถูกต้อง? ดังนั้น, \"+hypothesis,premise+\", ถูกต้อง? ไม่, \"+hypothesis]}}",
|
372 |
+
"description": "",
|
373 |
+
"target_delimiter": " ",
|
374 |
+
"fewshot_delimiter": "\n\n",
|
375 |
+
"metric_list": [
|
376 |
+
{
|
377 |
+
"metric": "acc",
|
378 |
+
"aggregation": "mean",
|
379 |
+
"higher_is_better": true
|
380 |
+
}
|
381 |
+
],
|
382 |
+
"output_type": "multiple_choice",
|
383 |
+
"repeats": 1,
|
384 |
+
"should_decontaminate": false,
|
385 |
+
"metadata": {
|
386 |
+
"version": 1.0
|
387 |
+
}
|
388 |
+
},
|
389 |
+
"xnli_tr": {
|
390 |
+
"task": "xnli_tr",
|
391 |
+
"group": "xnli",
|
392 |
+
"dataset_path": "xnli",
|
393 |
+
"dataset_name": "tr",
|
394 |
+
"training_split": "train",
|
395 |
+
"validation_split": "validation",
|
396 |
+
"doc_to_text": "",
|
397 |
+
"doc_to_target": "label",
|
398 |
+
"doc_to_choice": "{{[premise+\", doğru? Evet, \"+hypothesis,premise+\", doğru? Böylece, \"+hypothesis,premise+\", doğru? Hayır, \"+hypothesis]}}",
|
399 |
+
"description": "",
|
400 |
+
"target_delimiter": " ",
|
401 |
+
"fewshot_delimiter": "\n\n",
|
402 |
+
"metric_list": [
|
403 |
+
{
|
404 |
+
"metric": "acc",
|
405 |
+
"aggregation": "mean",
|
406 |
+
"higher_is_better": true
|
407 |
+
}
|
408 |
+
],
|
409 |
+
"output_type": "multiple_choice",
|
410 |
+
"repeats": 1,
|
411 |
+
"should_decontaminate": false,
|
412 |
+
"metadata": {
|
413 |
+
"version": 1.0
|
414 |
+
}
|
415 |
+
},
|
416 |
+
"xnli_ur": {
|
417 |
+
"task": "xnli_ur",
|
418 |
+
"group": "xnli",
|
419 |
+
"dataset_path": "xnli",
|
420 |
+
"dataset_name": "ur",
|
421 |
+
"training_split": "train",
|
422 |
+
"validation_split": "validation",
|
423 |
+
"doc_to_text": "",
|
424 |
+
"doc_to_target": "label",
|
425 |
+
"doc_to_choice": "{{[premise+\", صحیح? جی ہاں, \"+hypothesis,premise+\", صحیح? اس لئے, \"+hypothesis,premise+\", صحیح? نہیں, \"+hypothesis]}}",
|
426 |
+
"description": "",
|
427 |
+
"target_delimiter": " ",
|
428 |
+
"fewshot_delimiter": "\n\n",
|
429 |
+
"metric_list": [
|
430 |
+
{
|
431 |
+
"metric": "acc",
|
432 |
+
"aggregation": "mean",
|
433 |
+
"higher_is_better": true
|
434 |
+
}
|
435 |
+
],
|
436 |
+
"output_type": "multiple_choice",
|
437 |
+
"repeats": 1,
|
438 |
+
"should_decontaminate": false,
|
439 |
+
"metadata": {
|
440 |
+
"version": 1.0
|
441 |
+
}
|
442 |
+
},
|
443 |
+
"xnli_vi": {
|
444 |
+
"task": "xnli_vi",
|
445 |
+
"group": "xnli",
|
446 |
+
"dataset_path": "xnli",
|
447 |
+
"dataset_name": "vi",
|
448 |
+
"training_split": "train",
|
449 |
+
"validation_split": "validation",
|
450 |
+
"doc_to_text": "",
|
451 |
+
"doc_to_target": "label",
|
452 |
+
"doc_to_choice": "{{[premise+\", đúng? Vâng, \"+hypothesis,premise+\", đúng? Vì vậy, \"+hypothesis,premise+\", đúng? Không, \"+hypothesis]}}",
|
453 |
+
"description": "",
|
454 |
+
"target_delimiter": " ",
|
455 |
+
"fewshot_delimiter": "\n\n",
|
456 |
+
"metric_list": [
|
457 |
+
{
|
458 |
+
"metric": "acc",
|
459 |
+
"aggregation": "mean",
|
460 |
+
"higher_is_better": true
|
461 |
+
}
|
462 |
+
],
|
463 |
+
"output_type": "multiple_choice",
|
464 |
+
"repeats": 1,
|
465 |
+
"should_decontaminate": false,
|
466 |
+
"metadata": {
|
467 |
+
"version": 1.0
|
468 |
+
}
|
469 |
+
},
|
470 |
+
"xnli_zh": {
|
471 |
+
"task": "xnli_zh",
|
472 |
+
"group": "xnli",
|
473 |
+
"dataset_path": "xnli",
|
474 |
+
"dataset_name": "zh",
|
475 |
+
"training_split": "train",
|
476 |
+
"validation_split": "validation",
|
477 |
+
"doc_to_text": "",
|
478 |
+
"doc_to_target": "label",
|
479 |
+
"doc_to_choice": "{{[premise+\", 正确? 是的, \"+hypothesis,premise+\", 正确? 所以, \"+hypothesis,premise+\", 正确? 不是的, \"+hypothesis]}}",
|
480 |
+
"description": "",
|
481 |
+
"target_delimiter": " ",
|
482 |
+
"fewshot_delimiter": "\n\n",
|
483 |
+
"metric_list": [
|
484 |
+
{
|
485 |
+
"metric": "acc",
|
486 |
+
"aggregation": "mean",
|
487 |
+
"higher_is_better": true
|
488 |
+
}
|
489 |
+
],
|
490 |
+
"output_type": "multiple_choice",
|
491 |
+
"repeats": 1,
|
492 |
+
"should_decontaminate": false,
|
493 |
+
"metadata": {
|
494 |
+
"version": 1.0
|
495 |
+
}
|
496 |
+
}
|
497 |
+
},
|
498 |
+
"versions": {
|
499 |
+
"xnli": "N/A",
|
500 |
+
"xnli_ar": 1.0,
|
501 |
+
"xnli_bg": 1.0,
|
502 |
+
"xnli_de": 1.0,
|
503 |
+
"xnli_el": 1.0,
|
504 |
+
"xnli_en": 1.0,
|
505 |
+
"xnli_es": 1.0,
|
506 |
+
"xnli_fr": 1.0,
|
507 |
+
"xnli_hi": 1.0,
|
508 |
+
"xnli_ru": 1.0,
|
509 |
+
"xnli_sw": 1.0,
|
510 |
+
"xnli_th": 1.0,
|
511 |
+
"xnli_tr": 1.0,
|
512 |
+
"xnli_ur": 1.0,
|
513 |
+
"xnli_vi": 1.0,
|
514 |
+
"xnli_zh": 1.0
|
515 |
+
},
|
516 |
+
"n-shot": {
|
517 |
+
"xnli": 0,
|
518 |
+
"xnli_ar": 0,
|
519 |
+
"xnli_bg": 0,
|
520 |
+
"xnli_de": 0,
|
521 |
+
"xnli_el": 0,
|
522 |
+
"xnli_en": 0,
|
523 |
+
"xnli_es": 0,
|
524 |
+
"xnli_fr": 0,
|
525 |
+
"xnli_hi": 0,
|
526 |
+
"xnli_ru": 0,
|
527 |
+
"xnli_sw": 0,
|
528 |
+
"xnli_th": 0,
|
529 |
+
"xnli_tr": 0,
|
530 |
+
"xnli_ur": 0,
|
531 |
+
"xnli_vi": 0,
|
532 |
+
"xnli_zh": 0
|
533 |
+
},
|
534 |
+
"config": {
|
535 |
+
"model": "hf",
|
536 |
+
"model_args": "pretrained=EleutherAI/pythia-6.9b,dtype=bfloat16,trust_remote_code=True",
|
537 |
+
"batch_size": "auto",
|
538 |
+
"batch_sizes": [
|
539 |
+
32
|
540 |
+
],
|
541 |
+
"device": null,
|
542 |
+
"use_cache": null,
|
543 |
+
"limit": null,
|
544 |
+
"bootstrap_iters": 100000,
|
545 |
+
"gen_kwargs": null
|
546 |
+
},
|
547 |
+
"git_hash": "62513ca"
|
548 |
+
}
|
lm-eval-output/EleutherAI/pythia-6.9b/xnli/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:60166244f2791231b85090eb7321db0cda176fd303dc5c09c2409981ebc51ebf
|
3 |
+
size 339432
|
lm-eval-output/EleutherAI/pythia-6.9b/xstorycloze/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json
ADDED
@@ -0,0 +1,423 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"xstorycloze": {
|
4 |
+
"acc,none": 0.5417243246495398,
|
5 |
+
"acc_stderr,none": 0.05362261906116568,
|
6 |
+
"alias": "xstorycloze"
|
7 |
+
},
|
8 |
+
"xstorycloze_ar": {
|
9 |
+
"acc,none": 0.5056254136333554,
|
10 |
+
"acc_stderr,none": 0.01286631092307251,
|
11 |
+
"alias": " - xstorycloze_ar"
|
12 |
+
},
|
13 |
+
"xstorycloze_en": {
|
14 |
+
"acc,none": 0.7021839841164792,
|
15 |
+
"acc_stderr,none": 0.01176822629134189,
|
16 |
+
"alias": " - xstorycloze_en"
|
17 |
+
},
|
18 |
+
"xstorycloze_es": {
|
19 |
+
"acc,none": 0.598941098610192,
|
20 |
+
"acc_stderr,none": 0.01261268831876706,
|
21 |
+
"alias": " - xstorycloze_es"
|
22 |
+
},
|
23 |
+
"xstorycloze_eu": {
|
24 |
+
"acc,none": 0.5241561879549967,
|
25 |
+
"acc_stderr,none": 0.012852100057309615,
|
26 |
+
"alias": " - xstorycloze_eu"
|
27 |
+
},
|
28 |
+
"xstorycloze_hi": {
|
29 |
+
"acc,none": 0.5162144275314361,
|
30 |
+
"acc_stderr,none": 0.012860357805055855,
|
31 |
+
"alias": " - xstorycloze_hi"
|
32 |
+
},
|
33 |
+
"xstorycloze_id": {
|
34 |
+
"acc,none": 0.5221707478491066,
|
35 |
+
"acc_stderr,none": 0.012854469625936085,
|
36 |
+
"alias": " - xstorycloze_id"
|
37 |
+
},
|
38 |
+
"xstorycloze_my": {
|
39 |
+
"acc,none": 0.4884182660489742,
|
40 |
+
"acc_stderr,none": 0.012863672949335896,
|
41 |
+
"alias": " - xstorycloze_my"
|
42 |
+
},
|
43 |
+
"xstorycloze_ru": {
|
44 |
+
"acc,none": 0.5340833884844474,
|
45 |
+
"acc_stderr,none": 0.012837195610619434,
|
46 |
+
"alias": " - xstorycloze_ru"
|
47 |
+
},
|
48 |
+
"xstorycloze_sw": {
|
49 |
+
"acc,none": 0.4937127729980146,
|
50 |
+
"acc_stderr,none": 0.01286610802121821,
|
51 |
+
"alias": " - xstorycloze_sw"
|
52 |
+
},
|
53 |
+
"xstorycloze_te": {
|
54 |
+
"acc,none": 0.5354070152217075,
|
55 |
+
"acc_stderr,none": 0.012834822852860037,
|
56 |
+
"alias": " - xstorycloze_te"
|
57 |
+
},
|
58 |
+
"xstorycloze_zh": {
|
59 |
+
"acc,none": 0.5380542686962276,
|
60 |
+
"acc_stderr,none": 0.012829804720321693,
|
61 |
+
"alias": " - xstorycloze_zh"
|
62 |
+
}
|
63 |
+
},
|
64 |
+
"groups": {
|
65 |
+
"xstorycloze": {
|
66 |
+
"acc,none": 0.5417243246495398,
|
67 |
+
"acc_stderr,none": 0.05362261906116568,
|
68 |
+
"alias": "xstorycloze"
|
69 |
+
}
|
70 |
+
},
|
71 |
+
"configs": {
|
72 |
+
"xstorycloze_ar": {
|
73 |
+
"task": "xstorycloze_ar",
|
74 |
+
"group": "xstorycloze",
|
75 |
+
"dataset_path": "juletxara/xstory_cloze",
|
76 |
+
"dataset_name": "ar",
|
77 |
+
"training_split": "train",
|
78 |
+
"validation_split": "eval",
|
79 |
+
"doc_to_text": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}",
|
80 |
+
"doc_to_target": "{{answer_right_ending-1}}",
|
81 |
+
"doc_to_choice": "{{[sentence_quiz1, sentence_quiz2]}}",
|
82 |
+
"description": "",
|
83 |
+
"target_delimiter": " ",
|
84 |
+
"fewshot_delimiter": "\n\n",
|
85 |
+
"metric_list": [
|
86 |
+
{
|
87 |
+
"metric": "acc",
|
88 |
+
"aggregation": "mean",
|
89 |
+
"higher_is_better": true
|
90 |
+
}
|
91 |
+
],
|
92 |
+
"output_type": "multiple_choice",
|
93 |
+
"repeats": 1,
|
94 |
+
"should_decontaminate": true,
|
95 |
+
"doc_to_decontamination_query": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}",
|
96 |
+
"metadata": {
|
97 |
+
"version": 1.0
|
98 |
+
}
|
99 |
+
},
|
100 |
+
"xstorycloze_en": {
|
101 |
+
"task": "xstorycloze_en",
|
102 |
+
"group": "xstorycloze",
|
103 |
+
"dataset_path": "juletxara/xstory_cloze",
|
104 |
+
"dataset_name": "en",
|
105 |
+
"training_split": "train",
|
106 |
+
"validation_split": "eval",
|
107 |
+
"doc_to_text": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}",
|
108 |
+
"doc_to_target": "{{answer_right_ending-1}}",
|
109 |
+
"doc_to_choice": "{{[sentence_quiz1, sentence_quiz2]}}",
|
110 |
+
"description": "",
|
111 |
+
"target_delimiter": " ",
|
112 |
+
"fewshot_delimiter": "\n\n",
|
113 |
+
"metric_list": [
|
114 |
+
{
|
115 |
+
"metric": "acc",
|
116 |
+
"aggregation": "mean",
|
117 |
+
"higher_is_better": true
|
118 |
+
}
|
119 |
+
],
|
120 |
+
"output_type": "multiple_choice",
|
121 |
+
"repeats": 1,
|
122 |
+
"should_decontaminate": true,
|
123 |
+
"doc_to_decontamination_query": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}",
|
124 |
+
"metadata": {
|
125 |
+
"version": 1.0
|
126 |
+
}
|
127 |
+
},
|
128 |
+
"xstorycloze_es": {
|
129 |
+
"task": "xstorycloze_es",
|
130 |
+
"group": "xstorycloze",
|
131 |
+
"dataset_path": "juletxara/xstory_cloze",
|
132 |
+
"dataset_name": "es",
|
133 |
+
"training_split": "train",
|
134 |
+
"validation_split": "eval",
|
135 |
+
"doc_to_text": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}",
|
136 |
+
"doc_to_target": "{{answer_right_ending-1}}",
|
137 |
+
"doc_to_choice": "{{[sentence_quiz1, sentence_quiz2]}}",
|
138 |
+
"description": "",
|
139 |
+
"target_delimiter": " ",
|
140 |
+
"fewshot_delimiter": "\n\n",
|
141 |
+
"metric_list": [
|
142 |
+
{
|
143 |
+
"metric": "acc",
|
144 |
+
"aggregation": "mean",
|
145 |
+
"higher_is_better": true
|
146 |
+
}
|
147 |
+
],
|
148 |
+
"output_type": "multiple_choice",
|
149 |
+
"repeats": 1,
|
150 |
+
"should_decontaminate": true,
|
151 |
+
"doc_to_decontamination_query": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}",
|
152 |
+
"metadata": {
|
153 |
+
"version": 1.0
|
154 |
+
}
|
155 |
+
},
|
156 |
+
"xstorycloze_eu": {
|
157 |
+
"task": "xstorycloze_eu",
|
158 |
+
"group": "xstorycloze",
|
159 |
+
"dataset_path": "juletxara/xstory_cloze",
|
160 |
+
"dataset_name": "eu",
|
161 |
+
"training_split": "train",
|
162 |
+
"validation_split": "eval",
|
163 |
+
"doc_to_text": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}",
|
164 |
+
"doc_to_target": "{{answer_right_ending-1}}",
|
165 |
+
"doc_to_choice": "{{[sentence_quiz1, sentence_quiz2]}}",
|
166 |
+
"description": "",
|
167 |
+
"target_delimiter": " ",
|
168 |
+
"fewshot_delimiter": "\n\n",
|
169 |
+
"metric_list": [
|
170 |
+
{
|
171 |
+
"metric": "acc",
|
172 |
+
"aggregation": "mean",
|
173 |
+
"higher_is_better": true
|
174 |
+
}
|
175 |
+
],
|
176 |
+
"output_type": "multiple_choice",
|
177 |
+
"repeats": 1,
|
178 |
+
"should_decontaminate": true,
|
179 |
+
"doc_to_decontamination_query": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}",
|
180 |
+
"metadata": {
|
181 |
+
"version": 1.0
|
182 |
+
}
|
183 |
+
},
|
184 |
+
"xstorycloze_hi": {
|
185 |
+
"task": "xstorycloze_hi",
|
186 |
+
"group": "xstorycloze",
|
187 |
+
"dataset_path": "juletxara/xstory_cloze",
|
188 |
+
"dataset_name": "hi",
|
189 |
+
"training_split": "train",
|
190 |
+
"validation_split": "eval",
|
191 |
+
"doc_to_text": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}",
|
192 |
+
"doc_to_target": "{{answer_right_ending-1}}",
|
193 |
+
"doc_to_choice": "{{[sentence_quiz1, sentence_quiz2]}}",
|
194 |
+
"description": "",
|
195 |
+
"target_delimiter": " ",
|
196 |
+
"fewshot_delimiter": "\n\n",
|
197 |
+
"metric_list": [
|
198 |
+
{
|
199 |
+
"metric": "acc",
|
200 |
+
"aggregation": "mean",
|
201 |
+
"higher_is_better": true
|
202 |
+
}
|
203 |
+
],
|
204 |
+
"output_type": "multiple_choice",
|
205 |
+
"repeats": 1,
|
206 |
+
"should_decontaminate": true,
|
207 |
+
"doc_to_decontamination_query": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}",
|
208 |
+
"metadata": {
|
209 |
+
"version": 1.0
|
210 |
+
}
|
211 |
+
},
|
212 |
+
"xstorycloze_id": {
|
213 |
+
"task": "xstorycloze_id",
|
214 |
+
"group": "xstorycloze",
|
215 |
+
"dataset_path": "juletxara/xstory_cloze",
|
216 |
+
"dataset_name": "id",
|
217 |
+
"training_split": "train",
|
218 |
+
"validation_split": "eval",
|
219 |
+
"doc_to_text": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}",
|
220 |
+
"doc_to_target": "{{answer_right_ending-1}}",
|
221 |
+
"doc_to_choice": "{{[sentence_quiz1, sentence_quiz2]}}",
|
222 |
+
"description": "",
|
223 |
+
"target_delimiter": " ",
|
224 |
+
"fewshot_delimiter": "\n\n",
|
225 |
+
"metric_list": [
|
226 |
+
{
|
227 |
+
"metric": "acc",
|
228 |
+
"aggregation": "mean",
|
229 |
+
"higher_is_better": true
|
230 |
+
}
|
231 |
+
],
|
232 |
+
"output_type": "multiple_choice",
|
233 |
+
"repeats": 1,
|
234 |
+
"should_decontaminate": true,
|
235 |
+
"doc_to_decontamination_query": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}",
|
236 |
+
"metadata": {
|
237 |
+
"version": 1.0
|
238 |
+
}
|
239 |
+
},
|
240 |
+
"xstorycloze_my": {
|
241 |
+
"task": "xstorycloze_my",
|
242 |
+
"group": "xstorycloze",
|
243 |
+
"dataset_path": "juletxara/xstory_cloze",
|
244 |
+
"dataset_name": "my",
|
245 |
+
"training_split": "train",
|
246 |
+
"validation_split": "eval",
|
247 |
+
"doc_to_text": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}",
|
248 |
+
"doc_to_target": "{{answer_right_ending-1}}",
|
249 |
+
"doc_to_choice": "{{[sentence_quiz1, sentence_quiz2]}}",
|
250 |
+
"description": "",
|
251 |
+
"target_delimiter": " ",
|
252 |
+
"fewshot_delimiter": "\n\n",
|
253 |
+
"metric_list": [
|
254 |
+
{
|
255 |
+
"metric": "acc",
|
256 |
+
"aggregation": "mean",
|
257 |
+
"higher_is_better": true
|
258 |
+
}
|
259 |
+
],
|
260 |
+
"output_type": "multiple_choice",
|
261 |
+
"repeats": 1,
|
262 |
+
"should_decontaminate": true,
|
263 |
+
"doc_to_decontamination_query": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}",
|
264 |
+
"metadata": {
|
265 |
+
"version": 1.0
|
266 |
+
}
|
267 |
+
},
|
268 |
+
"xstorycloze_ru": {
|
269 |
+
"task": "xstorycloze_ru",
|
270 |
+
"group": "xstorycloze",
|
271 |
+
"dataset_path": "juletxara/xstory_cloze",
|
272 |
+
"dataset_name": "ru",
|
273 |
+
"training_split": "train",
|
274 |
+
"validation_split": "eval",
|
275 |
+
"doc_to_text": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}",
|
276 |
+
"doc_to_target": "{{answer_right_ending-1}}",
|
277 |
+
"doc_to_choice": "{{[sentence_quiz1, sentence_quiz2]}}",
|
278 |
+
"description": "",
|
279 |
+
"target_delimiter": " ",
|
280 |
+
"fewshot_delimiter": "\n\n",
|
281 |
+
"metric_list": [
|
282 |
+
{
|
283 |
+
"metric": "acc",
|
284 |
+
"aggregation": "mean",
|
285 |
+
"higher_is_better": true
|
286 |
+
}
|
287 |
+
],
|
288 |
+
"output_type": "multiple_choice",
|
289 |
+
"repeats": 1,
|
290 |
+
"should_decontaminate": true,
|
291 |
+
"doc_to_decontamination_query": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}",
|
292 |
+
"metadata": {
|
293 |
+
"version": 1.0
|
294 |
+
}
|
295 |
+
},
|
296 |
+
"xstorycloze_sw": {
|
297 |
+
"task": "xstorycloze_sw",
|
298 |
+
"group": "xstorycloze",
|
299 |
+
"dataset_path": "juletxara/xstory_cloze",
|
300 |
+
"dataset_name": "sw",
|
301 |
+
"training_split": "train",
|
302 |
+
"validation_split": "eval",
|
303 |
+
"doc_to_text": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}",
|
304 |
+
"doc_to_target": "{{answer_right_ending-1}}",
|
305 |
+
"doc_to_choice": "{{[sentence_quiz1, sentence_quiz2]}}",
|
306 |
+
"description": "",
|
307 |
+
"target_delimiter": " ",
|
308 |
+
"fewshot_delimiter": "\n\n",
|
309 |
+
"metric_list": [
|
310 |
+
{
|
311 |
+
"metric": "acc",
|
312 |
+
"aggregation": "mean",
|
313 |
+
"higher_is_better": true
|
314 |
+
}
|
315 |
+
],
|
316 |
+
"output_type": "multiple_choice",
|
317 |
+
"repeats": 1,
|
318 |
+
"should_decontaminate": true,
|
319 |
+
"doc_to_decontamination_query": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}",
|
320 |
+
"metadata": {
|
321 |
+
"version": 1.0
|
322 |
+
}
|
323 |
+
},
|
324 |
+
"xstorycloze_te": {
|
325 |
+
"task": "xstorycloze_te",
|
326 |
+
"group": "xstorycloze",
|
327 |
+
"dataset_path": "juletxara/xstory_cloze",
|
328 |
+
"dataset_name": "te",
|
329 |
+
"training_split": "train",
|
330 |
+
"validation_split": "eval",
|
331 |
+
"doc_to_text": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}",
|
332 |
+
"doc_to_target": "{{answer_right_ending-1}}",
|
333 |
+
"doc_to_choice": "{{[sentence_quiz1, sentence_quiz2]}}",
|
334 |
+
"description": "",
|
335 |
+
"target_delimiter": " ",
|
336 |
+
"fewshot_delimiter": "\n\n",
|
337 |
+
"metric_list": [
|
338 |
+
{
|
339 |
+
"metric": "acc",
|
340 |
+
"aggregation": "mean",
|
341 |
+
"higher_is_better": true
|
342 |
+
}
|
343 |
+
],
|
344 |
+
"output_type": "multiple_choice",
|
345 |
+
"repeats": 1,
|
346 |
+
"should_decontaminate": true,
|
347 |
+
"doc_to_decontamination_query": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}",
|
348 |
+
"metadata": {
|
349 |
+
"version": 1.0
|
350 |
+
}
|
351 |
+
},
|
352 |
+
"xstorycloze_zh": {
|
353 |
+
"task": "xstorycloze_zh",
|
354 |
+
"group": "xstorycloze",
|
355 |
+
"dataset_path": "juletxara/xstory_cloze",
|
356 |
+
"dataset_name": "zh",
|
357 |
+
"training_split": "train",
|
358 |
+
"validation_split": "eval",
|
359 |
+
"doc_to_text": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}",
|
360 |
+
"doc_to_target": "{{answer_right_ending-1}}",
|
361 |
+
"doc_to_choice": "{{[sentence_quiz1, sentence_quiz2]}}",
|
362 |
+
"description": "",
|
363 |
+
"target_delimiter": " ",
|
364 |
+
"fewshot_delimiter": "\n\n",
|
365 |
+
"metric_list": [
|
366 |
+
{
|
367 |
+
"metric": "acc",
|
368 |
+
"aggregation": "mean",
|
369 |
+
"higher_is_better": true
|
370 |
+
}
|
371 |
+
],
|
372 |
+
"output_type": "multiple_choice",
|
373 |
+
"repeats": 1,
|
374 |
+
"should_decontaminate": true,
|
375 |
+
"doc_to_decontamination_query": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}",
|
376 |
+
"metadata": {
|
377 |
+
"version": 1.0
|
378 |
+
}
|
379 |
+
}
|
380 |
+
},
|
381 |
+
"versions": {
|
382 |
+
"xstorycloze": "N/A",
|
383 |
+
"xstorycloze_ar": 1.0,
|
384 |
+
"xstorycloze_en": 1.0,
|
385 |
+
"xstorycloze_es": 1.0,
|
386 |
+
"xstorycloze_eu": 1.0,
|
387 |
+
"xstorycloze_hi": 1.0,
|
388 |
+
"xstorycloze_id": 1.0,
|
389 |
+
"xstorycloze_my": 1.0,
|
390 |
+
"xstorycloze_ru": 1.0,
|
391 |
+
"xstorycloze_sw": 1.0,
|
392 |
+
"xstorycloze_te": 1.0,
|
393 |
+
"xstorycloze_zh": 1.0
|
394 |
+
},
|
395 |
+
"n-shot": {
|
396 |
+
"xstorycloze": 0,
|
397 |
+
"xstorycloze_ar": 0,
|
398 |
+
"xstorycloze_en": 0,
|
399 |
+
"xstorycloze_es": 0,
|
400 |
+
"xstorycloze_eu": 0,
|
401 |
+
"xstorycloze_hi": 0,
|
402 |
+
"xstorycloze_id": 0,
|
403 |
+
"xstorycloze_my": 0,
|
404 |
+
"xstorycloze_ru": 0,
|
405 |
+
"xstorycloze_sw": 0,
|
406 |
+
"xstorycloze_te": 0,
|
407 |
+
"xstorycloze_zh": 0
|
408 |
+
},
|
409 |
+
"config": {
|
410 |
+
"model": "hf",
|
411 |
+
"model_args": "pretrained=EleutherAI/pythia-6.9b,dtype=bfloat16,trust_remote_code=True",
|
412 |
+
"batch_size": "auto",
|
413 |
+
"batch_sizes": [
|
414 |
+
4
|
415 |
+
],
|
416 |
+
"device": null,
|
417 |
+
"use_cache": null,
|
418 |
+
"limit": null,
|
419 |
+
"bootstrap_iters": 100000,
|
420 |
+
"gen_kwargs": null
|
421 |
+
},
|
422 |
+
"git_hash": "62513ca"
|
423 |
+
}
|
lm-eval-output/EleutherAI/pythia-6.9b/xstorycloze/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b1ad63cf4b7c4bfa21fead737938476065089e48f86055b1d05d39ffc2e709d7
|
3 |
+
size 59814
|
lm-eval-output/EleutherAI/pythia-6.9b/xwinograd/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json
ADDED
@@ -0,0 +1,248 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"xwinograd": {
|
4 |
+
"acc,none": 0.7091481231737469,
|
5 |
+
"acc_stderr,none": 0.0723679949993312,
|
6 |
+
"alias": "xwinograd"
|
7 |
+
},
|
8 |
+
"xwinograd_en": {
|
9 |
+
"acc,none": 0.8163440860215053,
|
10 |
+
"acc_stderr,none": 0.008031950484676923,
|
11 |
+
"alias": " - xwinograd_en"
|
12 |
+
},
|
13 |
+
"xwinograd_fr": {
|
14 |
+
"acc,none": 0.6506024096385542,
|
15 |
+
"acc_stderr,none": 0.052651513564404694,
|
16 |
+
"alias": " - xwinograd_fr"
|
17 |
+
},
|
18 |
+
"xwinograd_jp": {
|
19 |
+
"acc,none": 0.556830031282586,
|
20 |
+
"acc_stderr,none": 0.016049582215584283,
|
21 |
+
"alias": " - xwinograd_jp"
|
22 |
+
},
|
23 |
+
"xwinograd_pt": {
|
24 |
+
"acc,none": 0.6311787072243346,
|
25 |
+
"acc_stderr,none": 0.029808046634490215,
|
26 |
+
"alias": " - xwinograd_pt"
|
27 |
+
},
|
28 |
+
"xwinograd_ru": {
|
29 |
+
"acc,none": 0.5904761904761905,
|
30 |
+
"acc_stderr,none": 0.027750828240174344,
|
31 |
+
"alias": " - xwinograd_ru"
|
32 |
+
},
|
33 |
+
"xwinograd_zh": {
|
34 |
+
"acc,none": 0.628968253968254,
|
35 |
+
"acc_stderr,none": 0.02153951426767635,
|
36 |
+
"alias": " - xwinograd_zh"
|
37 |
+
}
|
38 |
+
},
|
39 |
+
"groups": {
|
40 |
+
"xwinograd": {
|
41 |
+
"acc,none": 0.7091481231737469,
|
42 |
+
"acc_stderr,none": 0.0723679949993312,
|
43 |
+
"alias": "xwinograd"
|
44 |
+
}
|
45 |
+
},
|
46 |
+
"configs": {
|
47 |
+
"xwinograd_en": {
|
48 |
+
"task": "xwinograd_en",
|
49 |
+
"group": [
|
50 |
+
"xwinograd"
|
51 |
+
],
|
52 |
+
"dataset_path": "Muennighoff/xwinograd",
|
53 |
+
"dataset_name": "en",
|
54 |
+
"test_split": "test",
|
55 |
+
"doc_to_text": "def doc_to_text(doc: Dict) -> int:\n \"\"\"\n Return index of the correct choice.\n\n Note: We are using the \"multiple input\" mode of the multiple-choice\n output-type, which means we use different contexts with the same target\n for the different choices, rather than the same context and different targets.\n \"\"\"\n answer_to_num = {\"1\": 0, \"2\": 1}\n return answer_to_num[doc[\"answer\"]]\n",
|
56 |
+
"doc_to_target": "def doc_to_target(doc: Dict) -> str:\n \"\"\"\n Return the target completion.\n\n Note that this does not depend on the correct choice as we are using\n \"multiple input\" mode.\n \"\"\"\n idx = doc[\"sentence\"].index(\"_\") + 1\n return doc[\"sentence\"][idx:].strip()\n",
|
57 |
+
"doc_to_choice": "def doc_to_choice(doc: Dict) -> List[str]:\n \"\"\"Return the choices that will be used as contexts in \"multiple input\" mode.\"\"\"\n idx = doc[\"sentence\"].index(\"_\")\n options = [doc[\"option1\"], doc[\"option2\"]]\n return [doc[\"sentence\"][:idx] + opt for opt in options]\n",
|
58 |
+
"description": "",
|
59 |
+
"target_delimiter": " ",
|
60 |
+
"fewshot_delimiter": "\n\n",
|
61 |
+
"metric_list": [
|
62 |
+
{
|
63 |
+
"metric": "acc",
|
64 |
+
"aggregation": "mean",
|
65 |
+
"higher_is_better": true
|
66 |
+
}
|
67 |
+
],
|
68 |
+
"output_type": "multiple_choice",
|
69 |
+
"repeats": 1,
|
70 |
+
"should_decontaminate": false,
|
71 |
+
"metadata": {
|
72 |
+
"version": 1.0
|
73 |
+
}
|
74 |
+
},
|
75 |
+
"xwinograd_fr": {
|
76 |
+
"task": "xwinograd_fr",
|
77 |
+
"group": [
|
78 |
+
"xwinograd"
|
79 |
+
],
|
80 |
+
"dataset_path": "Muennighoff/xwinograd",
|
81 |
+
"dataset_name": "fr",
|
82 |
+
"test_split": "test",
|
83 |
+
"doc_to_text": "def doc_to_text(doc: Dict) -> int:\n \"\"\"\n Return index of the correct choice.\n\n Note: We are using the \"multiple input\" mode of the multiple-choice\n output-type, which means we use different contexts with the same target\n for the different choices, rather than the same context and different targets.\n \"\"\"\n answer_to_num = {\"1\": 0, \"2\": 1}\n return answer_to_num[doc[\"answer\"]]\n",
|
84 |
+
"doc_to_target": "def doc_to_target(doc: Dict) -> str:\n \"\"\"\n Return the target completion.\n\n Note that this does not depend on the correct choice as we are using\n \"multiple input\" mode.\n \"\"\"\n idx = doc[\"sentence\"].index(\"_\") + 1\n return doc[\"sentence\"][idx:].strip()\n",
|
85 |
+
"doc_to_choice": "def doc_to_choice(doc: Dict) -> List[str]:\n \"\"\"Return the choices that will be used as contexts in \"multiple input\" mode.\"\"\"\n idx = doc[\"sentence\"].index(\"_\")\n options = [doc[\"option1\"], doc[\"option2\"]]\n return [doc[\"sentence\"][:idx] + opt for opt in options]\n",
|
86 |
+
"description": "",
|
87 |
+
"target_delimiter": " ",
|
88 |
+
"fewshot_delimiter": "\n\n",
|
89 |
+
"metric_list": [
|
90 |
+
{
|
91 |
+
"metric": "acc",
|
92 |
+
"aggregation": "mean",
|
93 |
+
"higher_is_better": true
|
94 |
+
}
|
95 |
+
],
|
96 |
+
"output_type": "multiple_choice",
|
97 |
+
"repeats": 1,
|
98 |
+
"should_decontaminate": false,
|
99 |
+
"metadata": {
|
100 |
+
"version": 1.0
|
101 |
+
}
|
102 |
+
},
|
103 |
+
"xwinograd_jp": {
|
104 |
+
"task": "xwinograd_jp",
|
105 |
+
"group": [
|
106 |
+
"xwinograd"
|
107 |
+
],
|
108 |
+
"dataset_path": "Muennighoff/xwinograd",
|
109 |
+
"dataset_name": "jp",
|
110 |
+
"test_split": "test",
|
111 |
+
"doc_to_text": "def doc_to_text(doc: Dict) -> int:\n \"\"\"\n Return index of the correct choice.\n\n Note: We are using the \"multiple input\" mode of the multiple-choice\n output-type, which means we use different contexts with the same target\n for the different choices, rather than the same context and different targets.\n \"\"\"\n answer_to_num = {\"1\": 0, \"2\": 1}\n return answer_to_num[doc[\"answer\"]]\n",
|
112 |
+
"doc_to_target": "def doc_to_target(doc: Dict) -> str:\n \"\"\"\n Return the target completion.\n\n Note that this does not depend on the correct choice as we are using\n \"multiple input\" mode.\n \"\"\"\n idx = doc[\"sentence\"].index(\"_\") + 1\n return doc[\"sentence\"][idx:].strip()\n",
|
113 |
+
"doc_to_choice": "def doc_to_choice(doc: Dict) -> List[str]:\n \"\"\"Return the choices that will be used as contexts in \"multiple input\" mode.\"\"\"\n idx = doc[\"sentence\"].index(\"_\")\n options = [doc[\"option1\"], doc[\"option2\"]]\n return [doc[\"sentence\"][:idx] + opt for opt in options]\n",
|
114 |
+
"description": "",
|
115 |
+
"target_delimiter": " ",
|
116 |
+
"fewshot_delimiter": "\n\n",
|
117 |
+
"metric_list": [
|
118 |
+
{
|
119 |
+
"metric": "acc",
|
120 |
+
"aggregation": "mean",
|
121 |
+
"higher_is_better": true
|
122 |
+
}
|
123 |
+
],
|
124 |
+
"output_type": "multiple_choice",
|
125 |
+
"repeats": 1,
|
126 |
+
"should_decontaminate": false,
|
127 |
+
"metadata": {
|
128 |
+
"version": 1.0
|
129 |
+
}
|
130 |
+
},
|
131 |
+
"xwinograd_pt": {
|
132 |
+
"task": "xwinograd_pt",
|
133 |
+
"group": [
|
134 |
+
"xwinograd"
|
135 |
+
],
|
136 |
+
"dataset_path": "Muennighoff/xwinograd",
|
137 |
+
"dataset_name": "pt",
|
138 |
+
"test_split": "test",
|
139 |
+
"doc_to_text": "def doc_to_text(doc: Dict) -> int:\n \"\"\"\n Return index of the correct choice.\n\n Note: We are using the \"multiple input\" mode of the multiple-choice\n output-type, which means we use different contexts with the same target\n for the different choices, rather than the same context and different targets.\n \"\"\"\n answer_to_num = {\"1\": 0, \"2\": 1}\n return answer_to_num[doc[\"answer\"]]\n",
|
140 |
+
"doc_to_target": "def doc_to_target(doc: Dict) -> str:\n \"\"\"\n Return the target completion.\n\n Note that this does not depend on the correct choice as we are using\n \"multiple input\" mode.\n \"\"\"\n idx = doc[\"sentence\"].index(\"_\") + 1\n return doc[\"sentence\"][idx:].strip()\n",
|
141 |
+
"doc_to_choice": "def doc_to_choice(doc: Dict) -> List[str]:\n \"\"\"Return the choices that will be used as contexts in \"multiple input\" mode.\"\"\"\n idx = doc[\"sentence\"].index(\"_\")\n options = [doc[\"option1\"], doc[\"option2\"]]\n return [doc[\"sentence\"][:idx] + opt for opt in options]\n",
|
142 |
+
"description": "",
|
143 |
+
"target_delimiter": " ",
|
144 |
+
"fewshot_delimiter": "\n\n",
|
145 |
+
"metric_list": [
|
146 |
+
{
|
147 |
+
"metric": "acc",
|
148 |
+
"aggregation": "mean",
|
149 |
+
"higher_is_better": true
|
150 |
+
}
|
151 |
+
],
|
152 |
+
"output_type": "multiple_choice",
|
153 |
+
"repeats": 1,
|
154 |
+
"should_decontaminate": false,
|
155 |
+
"metadata": {
|
156 |
+
"version": 1.0
|
157 |
+
}
|
158 |
+
},
|
159 |
+
"xwinograd_ru": {
|
160 |
+
"task": "xwinograd_ru",
|
161 |
+
"group": [
|
162 |
+
"xwinograd"
|
163 |
+
],
|
164 |
+
"dataset_path": "Muennighoff/xwinograd",
|
165 |
+
"dataset_name": "ru",
|
166 |
+
"test_split": "test",
|
167 |
+
"doc_to_text": "def doc_to_text(doc: Dict) -> int:\n \"\"\"\n Return index of the correct choice.\n\n Note: We are using the \"multiple input\" mode of the multiple-choice\n output-type, which means we use different contexts with the same target\n for the different choices, rather than the same context and different targets.\n \"\"\"\n answer_to_num = {\"1\": 0, \"2\": 1}\n return answer_to_num[doc[\"answer\"]]\n",
|
168 |
+
"doc_to_target": "def doc_to_target(doc: Dict) -> str:\n \"\"\"\n Return the target completion.\n\n Note that this does not depend on the correct choice as we are using\n \"multiple input\" mode.\n \"\"\"\n idx = doc[\"sentence\"].index(\"_\") + 1\n return doc[\"sentence\"][idx:].strip()\n",
|
169 |
+
"doc_to_choice": "def doc_to_choice(doc: Dict) -> List[str]:\n \"\"\"Return the choices that will be used as contexts in \"multiple input\" mode.\"\"\"\n idx = doc[\"sentence\"].index(\"_\")\n options = [doc[\"option1\"], doc[\"option2\"]]\n return [doc[\"sentence\"][:idx] + opt for opt in options]\n",
|
170 |
+
"description": "",
|
171 |
+
"target_delimiter": " ",
|
172 |
+
"fewshot_delimiter": "\n\n",
|
173 |
+
"metric_list": [
|
174 |
+
{
|
175 |
+
"metric": "acc",
|
176 |
+
"aggregation": "mean",
|
177 |
+
"higher_is_better": true
|
178 |
+
}
|
179 |
+
],
|
180 |
+
"output_type": "multiple_choice",
|
181 |
+
"repeats": 1,
|
182 |
+
"should_decontaminate": false,
|
183 |
+
"metadata": {
|
184 |
+
"version": 1.0
|
185 |
+
}
|
186 |
+
},
|
187 |
+
"xwinograd_zh": {
|
188 |
+
"task": "xwinograd_zh",
|
189 |
+
"group": [
|
190 |
+
"xwinograd"
|
191 |
+
],
|
192 |
+
"dataset_path": "Muennighoff/xwinograd",
|
193 |
+
"dataset_name": "zh",
|
194 |
+
"test_split": "test",
|
195 |
+
"doc_to_text": "def doc_to_text(doc: Dict) -> int:\n \"\"\"\n Return index of the correct choice.\n\n Note: We are using the \"multiple input\" mode of the multiple-choice\n output-type, which means we use different contexts with the same target\n for the different choices, rather than the same context and different targets.\n \"\"\"\n answer_to_num = {\"1\": 0, \"2\": 1}\n return answer_to_num[doc[\"answer\"]]\n",
|
196 |
+
"doc_to_target": "def doc_to_target(doc: Dict) -> str:\n \"\"\"\n Return the target completion.\n\n Note that this does not depend on the correct choice as we are using\n \"multiple input\" mode.\n \"\"\"\n idx = doc[\"sentence\"].index(\"_\") + 1\n return doc[\"sentence\"][idx:].strip()\n",
|
197 |
+
"doc_to_choice": "def doc_to_choice(doc: Dict) -> List[str]:\n \"\"\"Return the choices that will be used as contexts in \"multiple input\" mode.\"\"\"\n idx = doc[\"sentence\"].index(\"_\")\n options = [doc[\"option1\"], doc[\"option2\"]]\n return [doc[\"sentence\"][:idx] + opt for opt in options]\n",
|
198 |
+
"description": "",
|
199 |
+
"target_delimiter": " ",
|
200 |
+
"fewshot_delimiter": "\n\n",
|
201 |
+
"metric_list": [
|
202 |
+
{
|
203 |
+
"metric": "acc",
|
204 |
+
"aggregation": "mean",
|
205 |
+
"higher_is_better": true
|
206 |
+
}
|
207 |
+
],
|
208 |
+
"output_type": "multiple_choice",
|
209 |
+
"repeats": 1,
|
210 |
+
"should_decontaminate": false,
|
211 |
+
"metadata": {
|
212 |
+
"version": 1.0
|
213 |
+
}
|
214 |
+
}
|
215 |
+
},
|
216 |
+
"versions": {
|
217 |
+
"xwinograd": "N/A",
|
218 |
+
"xwinograd_en": 1.0,
|
219 |
+
"xwinograd_fr": 1.0,
|
220 |
+
"xwinograd_jp": 1.0,
|
221 |
+
"xwinograd_pt": 1.0,
|
222 |
+
"xwinograd_ru": 1.0,
|
223 |
+
"xwinograd_zh": 1.0
|
224 |
+
},
|
225 |
+
"n-shot": {
|
226 |
+
"xwinograd": 0,
|
227 |
+
"xwinograd_en": 0,
|
228 |
+
"xwinograd_fr": 0,
|
229 |
+
"xwinograd_jp": 0,
|
230 |
+
"xwinograd_pt": 0,
|
231 |
+
"xwinograd_ru": 0,
|
232 |
+
"xwinograd_zh": 0
|
233 |
+
},
|
234 |
+
"config": {
|
235 |
+
"model": "hf",
|
236 |
+
"model_args": "pretrained=EleutherAI/pythia-6.9b,dtype=bfloat16,trust_remote_code=True",
|
237 |
+
"batch_size": "auto",
|
238 |
+
"batch_sizes": [
|
239 |
+
16
|
240 |
+
],
|
241 |
+
"device": null,
|
242 |
+
"use_cache": null,
|
243 |
+
"limit": null,
|
244 |
+
"bootstrap_iters": 100000,
|
245 |
+
"gen_kwargs": null
|
246 |
+
},
|
247 |
+
"git_hash": "62513ca"
|
248 |
+
}
|
lm-eval-output/EleutherAI/pythia-6.9b/xwinograd/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:df7120b7f16ec00b3545bf1351568864df1d6e1c26e417615b3efd4e0482c3a0
|
3 |
+
size 41752
|
lm-eval-output/allenai/OLMo-7B/lambada_multilingual/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json
CHANGED
@@ -1,54 +1,54 @@
|
|
1 |
{
|
2 |
"results": {
|
3 |
"lambada_multilingual": {
|
4 |
-
"perplexity,none": 69.
|
5 |
-
"perplexity_stderr,none": 21.
|
6 |
-
"acc,none": 0.
|
7 |
-
"acc_stderr,none": 0.
|
8 |
"alias": "lambada_multilingual"
|
9 |
},
|
10 |
"lambada_openai_mt_de": {
|
11 |
-
"perplexity,none": 99.
|
12 |
-
"perplexity_stderr,none": 5.
|
13 |
-
"acc,none": 0.
|
14 |
-
"acc_stderr,none": 0.
|
15 |
"alias": " - lambada_openai_mt_de"
|
16 |
},
|
17 |
"lambada_openai_mt_en": {
|
18 |
-
"perplexity,none": 4.
|
19 |
-
"perplexity_stderr,none": 0.
|
20 |
-
"acc,none": 0.
|
21 |
-
"acc_stderr,none": 0.
|
22 |
"alias": " - lambada_openai_mt_en"
|
23 |
},
|
24 |
"lambada_openai_mt_es": {
|
25 |
-
"perplexity,none": 99.
|
26 |
-
"perplexity_stderr,none": 5.
|
27 |
-
"acc,none": 0.
|
28 |
-
"acc_stderr,none": 0.
|
29 |
"alias": " - lambada_openai_mt_es"
|
30 |
},
|
31 |
"lambada_openai_mt_fr": {
|
32 |
-
"perplexity,none": 57.
|
33 |
-
"perplexity_stderr,none": 3.
|
34 |
-
"acc,none": 0.
|
35 |
-
"acc_stderr,none": 0.
|
36 |
"alias": " - lambada_openai_mt_fr"
|
37 |
},
|
38 |
"lambada_openai_mt_it": {
|
39 |
-
"perplexity,none": 88.
|
40 |
-
"perplexity_stderr,none": 5.
|
41 |
-
"acc,none": 0.
|
42 |
-
"acc_stderr,none": 0.
|
43 |
"alias": " - lambada_openai_mt_it"
|
44 |
}
|
45 |
},
|
46 |
"groups": {
|
47 |
"lambada_multilingual": {
|
48 |
-
"perplexity,none": 69.
|
49 |
-
"perplexity_stderr,none": 21.
|
50 |
-
"acc,none": 0.
|
51 |
-
"acc_stderr,none": 0.
|
52 |
"alias": "lambada_multilingual"
|
53 |
}
|
54 |
},
|
@@ -238,13 +238,15 @@
|
|
238 |
"config": {
|
239 |
"model": "hf",
|
240 |
"model_args": "pretrained=allenai/OLMo-7B,dtype=bfloat16,trust_remote_code=True",
|
241 |
-
"batch_size": "
|
242 |
-
"batch_sizes": [
|
|
|
|
|
243 |
"device": null,
|
244 |
"use_cache": null,
|
245 |
"limit": null,
|
246 |
"bootstrap_iters": 100000,
|
247 |
"gen_kwargs": null
|
248 |
},
|
249 |
-
"git_hash": "
|
250 |
}
|
|
|
1 |
{
|
2 |
"results": {
|
3 |
"lambada_multilingual": {
|
4 |
+
"perplexity,none": 69.87405628148183,
|
5 |
+
"perplexity_stderr,none": 21.087915987921274,
|
6 |
+
"acc,none": 0.41979429458567824,
|
7 |
+
"acc_stderr,none": 0.0786758552445782,
|
8 |
"alias": "lambada_multilingual"
|
9 |
},
|
10 |
"lambada_openai_mt_de": {
|
11 |
+
"perplexity,none": 99.92414618865641,
|
12 |
+
"perplexity_stderr,none": 5.700808935368859,
|
13 |
+
"acc,none": 0.3081699980593829,
|
14 |
+
"acc_stderr,none": 0.006432902165497003,
|
15 |
"alias": " - lambada_openai_mt_de"
|
16 |
},
|
17 |
"lambada_openai_mt_en": {
|
18 |
+
"perplexity,none": 4.133057321175017,
|
19 |
+
"perplexity_stderr,none": 0.0870658360677331,
|
20 |
+
"acc,none": 0.6883368911313797,
|
21 |
+
"acc_stderr,none": 0.006452905350982656,
|
22 |
"alias": " - lambada_openai_mt_en"
|
23 |
},
|
24 |
"lambada_openai_mt_es": {
|
25 |
+
"perplexity,none": 99.06944427500518,
|
26 |
+
"perplexity_stderr,none": 5.386476720774928,
|
27 |
+
"acc,none": 0.33300989714729284,
|
28 |
+
"acc_stderr,none": 0.006565991832762937,
|
29 |
"alias": " - lambada_openai_mt_es"
|
30 |
},
|
31 |
"lambada_openai_mt_fr": {
|
32 |
+
"perplexity,none": 57.56632329787498,
|
33 |
+
"perplexity_stderr,none": 3.1300259314596053,
|
34 |
+
"acc,none": 0.40520085387153115,
|
35 |
+
"acc_stderr,none": 0.006839626982658154,
|
36 |
"alias": " - lambada_openai_mt_fr"
|
37 |
},
|
38 |
"lambada_openai_mt_it": {
|
39 |
+
"perplexity,none": 88.6773103246975,
|
40 |
+
"perplexity_stderr,none": 5.191034069516995,
|
41 |
+
"acc,none": 0.36425383271880457,
|
42 |
+
"acc_stderr,none": 0.006704339729528898,
|
43 |
"alias": " - lambada_openai_mt_it"
|
44 |
}
|
45 |
},
|
46 |
"groups": {
|
47 |
"lambada_multilingual": {
|
48 |
+
"perplexity,none": 69.87405628148183,
|
49 |
+
"perplexity_stderr,none": 21.087915987921274,
|
50 |
+
"acc,none": 0.41979429458567824,
|
51 |
+
"acc_stderr,none": 0.0786758552445782,
|
52 |
"alias": "lambada_multilingual"
|
53 |
}
|
54 |
},
|
|
|
238 |
"config": {
|
239 |
"model": "hf",
|
240 |
"model_args": "pretrained=allenai/OLMo-7B,dtype=bfloat16,trust_remote_code=True",
|
241 |
+
"batch_size": "auto",
|
242 |
+
"batch_sizes": [
|
243 |
+
16
|
244 |
+
],
|
245 |
"device": null,
|
246 |
"use_cache": null,
|
247 |
"limit": null,
|
248 |
"bootstrap_iters": 100000,
|
249 |
"gen_kwargs": null
|
250 |
},
|
251 |
+
"git_hash": "2e3ceb0"
|
252 |
}
|
lm-eval-output/allenai/OLMo-7B/lambada_multilingual/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1cf4bd31d8b86f97bffb1e7a1a55d18ffed3f626c716a8e8bd58a93abce51d76
|
3 |
+
size 155925
|
lm-eval-output/allenai/OLMo-7B/pawsx/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json
CHANGED
@@ -1,28 +1,28 @@
|
|
1 |
{
|
2 |
"results": {
|
3 |
"pawsx": {
|
4 |
-
"acc,none": 0.
|
5 |
-
"acc_stderr,none": 0.
|
6 |
"alias": "pawsx"
|
7 |
},
|
8 |
"paws_de": {
|
9 |
-
"acc,none": 0.
|
10 |
-
"acc_stderr,none": 0.
|
11 |
"alias": " - paws_de"
|
12 |
},
|
13 |
"paws_en": {
|
14 |
-
"acc,none": 0.
|
15 |
-
"acc_stderr,none": 0.
|
16 |
"alias": " - paws_en"
|
17 |
},
|
18 |
"paws_es": {
|
19 |
-
"acc,none": 0.
|
20 |
-
"acc_stderr,none": 0.
|
21 |
"alias": " - paws_es"
|
22 |
},
|
23 |
"paws_fr": {
|
24 |
-
"acc,none": 0.
|
25 |
-
"acc_stderr,none": 0.
|
26 |
"alias": " - paws_fr"
|
27 |
},
|
28 |
"paws_ja": {
|
@@ -31,20 +31,20 @@
|
|
31 |
"alias": " - paws_ja"
|
32 |
},
|
33 |
"paws_ko": {
|
34 |
-
"acc,none": 0.
|
35 |
-
"acc_stderr,none": 0.
|
36 |
"alias": " - paws_ko"
|
37 |
},
|
38 |
"paws_zh": {
|
39 |
-
"acc,none": 0.
|
40 |
-
"acc_stderr,none": 0.
|
41 |
"alias": " - paws_zh"
|
42 |
}
|
43 |
},
|
44 |
"groups": {
|
45 |
"pawsx": {
|
46 |
-
"acc,none": 0.
|
47 |
-
"acc_stderr,none": 0.
|
48 |
"alias": "pawsx"
|
49 |
}
|
50 |
},
|
@@ -269,13 +269,15 @@
|
|
269 |
"config": {
|
270 |
"model": "hf",
|
271 |
"model_args": "pretrained=allenai/OLMo-7B,dtype=bfloat16,trust_remote_code=True",
|
272 |
-
"batch_size": "
|
273 |
-
"batch_sizes": [
|
|
|
|
|
274 |
"device": null,
|
275 |
"use_cache": null,
|
276 |
"limit": null,
|
277 |
"bootstrap_iters": 100000,
|
278 |
"gen_kwargs": null
|
279 |
},
|
280 |
-
"git_hash": "
|
281 |
}
|
|
|
1 |
{
|
2 |
"results": {
|
3 |
"pawsx": {
|
4 |
+
"acc,none": 0.48028571428571426,
|
5 |
+
"acc_stderr,none": 0.046502665494444026,
|
6 |
"alias": "pawsx"
|
7 |
},
|
8 |
"paws_de": {
|
9 |
+
"acc,none": 0.421,
|
10 |
+
"acc_stderr,none": 0.011042665902539793,
|
11 |
"alias": " - paws_de"
|
12 |
},
|
13 |
"paws_en": {
|
14 |
+
"acc,none": 0.4,
|
15 |
+
"acc_stderr,none": 0.010957190790298967,
|
16 |
"alias": " - paws_en"
|
17 |
},
|
18 |
"paws_es": {
|
19 |
+
"acc,none": 0.4115,
|
20 |
+
"acc_stderr,none": 0.0110065638245373,
|
21 |
"alias": " - paws_es"
|
22 |
},
|
23 |
"paws_fr": {
|
24 |
+
"acc,none": 0.5225,
|
25 |
+
"acc_stderr,none": 0.011171807357801175,
|
26 |
"alias": " - paws_fr"
|
27 |
},
|
28 |
"paws_ja": {
|
|
|
31 |
"alias": " - paws_ja"
|
32 |
},
|
33 |
"paws_ko": {
|
34 |
+
"acc,none": 0.537,
|
35 |
+
"acc_stderr,none": 0.011152474561478175,
|
36 |
"alias": " - paws_ko"
|
37 |
},
|
38 |
"paws_zh": {
|
39 |
+
"acc,none": 0.5185,
|
40 |
+
"acc_stderr,none": 0.011175478542788575,
|
41 |
"alias": " - paws_zh"
|
42 |
}
|
43 |
},
|
44 |
"groups": {
|
45 |
"pawsx": {
|
46 |
+
"acc,none": 0.48028571428571426,
|
47 |
+
"acc_stderr,none": 0.046502665494444026,
|
48 |
"alias": "pawsx"
|
49 |
}
|
50 |
},
|
|
|
269 |
"config": {
|
270 |
"model": "hf",
|
271 |
"model_args": "pretrained=allenai/OLMo-7B,dtype=bfloat16,trust_remote_code=True",
|
272 |
+
"batch_size": "auto",
|
273 |
+
"batch_sizes": [
|
274 |
+
16
|
275 |
+
],
|
276 |
"device": null,
|
277 |
"use_cache": null,
|
278 |
"limit": null,
|
279 |
"bootstrap_iters": 100000,
|
280 |
"gen_kwargs": null
|
281 |
},
|
282 |
+
"git_hash": "2e3ceb0"
|
283 |
}
|
lm-eval-output/allenai/OLMo-7B/pawsx/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2b01ff419b0bf953956354b76d92fd90625345a6ff8d2beb26dbae154ba2877c
|
3 |
+
size 149208
|
lm-eval-output/allenai/OLMo-7B/xcopa/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json
CHANGED
@@ -1,13 +1,13 @@
|
|
1 |
{
|
2 |
"results": {
|
3 |
"xcopa": {
|
4 |
-
"acc,none": 0.
|
5 |
-
"acc_stderr,none": 0.
|
6 |
"alias": "xcopa"
|
7 |
},
|
8 |
"xcopa_et": {
|
9 |
-
"acc,none": 0.
|
10 |
-
"acc_stderr,none": 0.
|
11 |
"alias": " - xcopa_et"
|
12 |
},
|
13 |
"xcopa_ht": {
|
@@ -16,38 +16,38 @@
|
|
16 |
"alias": " - xcopa_ht"
|
17 |
},
|
18 |
"xcopa_id": {
|
19 |
-
"acc,none": 0.
|
20 |
-
"acc_stderr,none": 0.
|
21 |
"alias": " - xcopa_id"
|
22 |
},
|
23 |
"xcopa_it": {
|
24 |
-
"acc,none": 0.
|
25 |
-
"acc_stderr,none": 0.
|
26 |
"alias": " - xcopa_it"
|
27 |
},
|
28 |
"xcopa_qu": {
|
29 |
-
"acc,none": 0.
|
30 |
-
"acc_stderr,none": 0.
|
31 |
"alias": " - xcopa_qu"
|
32 |
},
|
33 |
"xcopa_sw": {
|
34 |
-
"acc,none": 0.
|
35 |
-
"acc_stderr,none": 0.
|
36 |
"alias": " - xcopa_sw"
|
37 |
},
|
38 |
"xcopa_ta": {
|
39 |
-
"acc,none": 0.
|
40 |
-
"acc_stderr,none": 0.
|
41 |
"alias": " - xcopa_ta"
|
42 |
},
|
43 |
"xcopa_th": {
|
44 |
"acc,none": 0.56,
|
45 |
-
"acc_stderr,none": 0.
|
46 |
"alias": " - xcopa_th"
|
47 |
},
|
48 |
"xcopa_tr": {
|
49 |
-
"acc,none": 0.
|
50 |
-
"acc_stderr,none": 0.
|
51 |
"alias": " - xcopa_tr"
|
52 |
},
|
53 |
"xcopa_vi": {
|
@@ -56,15 +56,15 @@
|
|
56 |
"alias": " - xcopa_vi"
|
57 |
},
|
58 |
"xcopa_zh": {
|
59 |
-
"acc,none": 0.
|
60 |
-
"acc_stderr,none": 0.
|
61 |
"alias": " - xcopa_zh"
|
62 |
}
|
63 |
},
|
64 |
"groups": {
|
65 |
"xcopa": {
|
66 |
-
"acc,none": 0.
|
67 |
-
"acc_stderr,none": 0.
|
68 |
"alias": "xcopa"
|
69 |
}
|
70 |
},
|
@@ -76,7 +76,7 @@
|
|
76 |
"dataset_name": "et",
|
77 |
"validation_split": "validation",
|
78 |
"test_split": "test",
|
79 |
-
"doc_to_text": "functools.partial(<function doc_to_text at
|
80 |
"doc_to_target": "label",
|
81 |
"doc_to_choice": "def doc_to_choice(doc):\n return [convert_choice(doc[\"choice1\"]), convert_choice(doc[\"choice2\"])]\n",
|
82 |
"description": "",
|
@@ -101,7 +101,7 @@
|
|
101 |
"dataset_name": "ht",
|
102 |
"validation_split": "validation",
|
103 |
"test_split": "test",
|
104 |
-
"doc_to_text": "functools.partial(<function doc_to_text at
|
105 |
"doc_to_target": "label",
|
106 |
"doc_to_choice": "def doc_to_choice(doc):\n return [convert_choice(doc[\"choice1\"]), convert_choice(doc[\"choice2\"])]\n",
|
107 |
"description": "",
|
@@ -126,7 +126,7 @@
|
|
126 |
"dataset_name": "id",
|
127 |
"validation_split": "validation",
|
128 |
"test_split": "test",
|
129 |
-
"doc_to_text": "functools.partial(<function doc_to_text at
|
130 |
"doc_to_target": "label",
|
131 |
"doc_to_choice": "def doc_to_choice(doc):\n return [convert_choice(doc[\"choice1\"]), convert_choice(doc[\"choice2\"])]\n",
|
132 |
"description": "",
|
@@ -151,7 +151,7 @@
|
|
151 |
"dataset_name": "it",
|
152 |
"validation_split": "validation",
|
153 |
"test_split": "test",
|
154 |
-
"doc_to_text": "functools.partial(<function doc_to_text at
|
155 |
"doc_to_target": "label",
|
156 |
"doc_to_choice": "def doc_to_choice(doc):\n return [convert_choice(doc[\"choice1\"]), convert_choice(doc[\"choice2\"])]\n",
|
157 |
"description": "",
|
@@ -176,7 +176,7 @@
|
|
176 |
"dataset_name": "qu",
|
177 |
"validation_split": "validation",
|
178 |
"test_split": "test",
|
179 |
-
"doc_to_text": "functools.partial(<function doc_to_text at
|
180 |
"doc_to_target": "label",
|
181 |
"doc_to_choice": "def doc_to_choice(doc):\n return [convert_choice(doc[\"choice1\"]), convert_choice(doc[\"choice2\"])]\n",
|
182 |
"description": "",
|
@@ -201,7 +201,7 @@
|
|
201 |
"dataset_name": "sw",
|
202 |
"validation_split": "validation",
|
203 |
"test_split": "test",
|
204 |
-
"doc_to_text": "functools.partial(<function doc_to_text at
|
205 |
"doc_to_target": "label",
|
206 |
"doc_to_choice": "def doc_to_choice(doc):\n return [convert_choice(doc[\"choice1\"]), convert_choice(doc[\"choice2\"])]\n",
|
207 |
"description": "",
|
@@ -226,7 +226,7 @@
|
|
226 |
"dataset_name": "ta",
|
227 |
"validation_split": "validation",
|
228 |
"test_split": "test",
|
229 |
-
"doc_to_text": "functools.partial(<function doc_to_text at
|
230 |
"doc_to_target": "label",
|
231 |
"doc_to_choice": "def doc_to_choice(doc):\n return [convert_choice(doc[\"choice1\"]), convert_choice(doc[\"choice2\"])]\n",
|
232 |
"description": "",
|
@@ -251,7 +251,7 @@
|
|
251 |
"dataset_name": "th",
|
252 |
"validation_split": "validation",
|
253 |
"test_split": "test",
|
254 |
-
"doc_to_text": "functools.partial(<function doc_to_text at
|
255 |
"doc_to_target": "label",
|
256 |
"doc_to_choice": "def doc_to_choice(doc):\n return [convert_choice(doc[\"choice1\"]), convert_choice(doc[\"choice2\"])]\n",
|
257 |
"description": "",
|
@@ -276,7 +276,7 @@
|
|
276 |
"dataset_name": "tr",
|
277 |
"validation_split": "validation",
|
278 |
"test_split": "test",
|
279 |
-
"doc_to_text": "functools.partial(<function doc_to_text at
|
280 |
"doc_to_target": "label",
|
281 |
"doc_to_choice": "def doc_to_choice(doc):\n return [convert_choice(doc[\"choice1\"]), convert_choice(doc[\"choice2\"])]\n",
|
282 |
"description": "",
|
@@ -301,7 +301,7 @@
|
|
301 |
"dataset_name": "vi",
|
302 |
"validation_split": "validation",
|
303 |
"test_split": "test",
|
304 |
-
"doc_to_text": "functools.partial(<function doc_to_text at
|
305 |
"doc_to_target": "label",
|
306 |
"doc_to_choice": "def doc_to_choice(doc):\n return [convert_choice(doc[\"choice1\"]), convert_choice(doc[\"choice2\"])]\n",
|
307 |
"description": "",
|
@@ -326,7 +326,7 @@
|
|
326 |
"dataset_name": "zh",
|
327 |
"validation_split": "validation",
|
328 |
"test_split": "test",
|
329 |
-
"doc_to_text": "functools.partial(<function doc_to_text at
|
330 |
"doc_to_target": "label",
|
331 |
"doc_to_choice": "def doc_to_choice(doc):\n return [convert_choice(doc[\"choice1\"]), convert_choice(doc[\"choice2\"])]\n",
|
332 |
"description": "",
|
@@ -376,13 +376,15 @@
|
|
376 |
"config": {
|
377 |
"model": "hf",
|
378 |
"model_args": "pretrained=allenai/OLMo-7B,dtype=bfloat16,trust_remote_code=True",
|
379 |
-
"batch_size": "
|
380 |
-
"batch_sizes": [
|
|
|
|
|
381 |
"device": null,
|
382 |
"use_cache": null,
|
383 |
"limit": null,
|
384 |
"bootstrap_iters": 100000,
|
385 |
"gen_kwargs": null
|
386 |
},
|
387 |
-
"git_hash": "
|
388 |
}
|
|
|
1 |
{
|
2 |
"results": {
|
3 |
"xcopa": {
|
4 |
+
"acc,none": 0.5378181818181818,
|
5 |
+
"acc_stderr,none": 0.03414712992987977,
|
6 |
"alias": "xcopa"
|
7 |
},
|
8 |
"xcopa_et": {
|
9 |
+
"acc,none": 0.488,
|
10 |
+
"acc_stderr,none": 0.02237662679792717,
|
11 |
"alias": " - xcopa_et"
|
12 |
},
|
13 |
"xcopa_ht": {
|
|
|
16 |
"alias": " - xcopa_ht"
|
17 |
},
|
18 |
"xcopa_id": {
|
19 |
+
"acc,none": 0.56,
|
20 |
+
"acc_stderr,none": 0.022221331534143022,
|
21 |
"alias": " - xcopa_id"
|
22 |
},
|
23 |
"xcopa_it": {
|
24 |
+
"acc,none": 0.536,
|
25 |
+
"acc_stderr,none": 0.022324981738385253,
|
26 |
"alias": " - xcopa_it"
|
27 |
},
|
28 |
"xcopa_qu": {
|
29 |
+
"acc,none": 0.492,
|
30 |
+
"acc_stderr,none": 0.022380208834928035,
|
31 |
"alias": " - xcopa_qu"
|
32 |
},
|
33 |
"xcopa_sw": {
|
34 |
+
"acc,none": 0.538,
|
35 |
+
"acc_stderr,none": 0.022318338119870527,
|
36 |
"alias": " - xcopa_sw"
|
37 |
},
|
38 |
"xcopa_ta": {
|
39 |
+
"acc,none": 0.53,
|
40 |
+
"acc_stderr,none": 0.022342748192502846,
|
41 |
"alias": " - xcopa_ta"
|
42 |
},
|
43 |
"xcopa_th": {
|
44 |
"acc,none": 0.56,
|
45 |
+
"acc_stderr,none": 0.022221331534143008,
|
46 |
"alias": " - xcopa_th"
|
47 |
},
|
48 |
"xcopa_tr": {
|
49 |
+
"acc,none": 0.548,
|
50 |
+
"acc_stderr,none": 0.02227969410784342,
|
51 |
"alias": " - xcopa_tr"
|
52 |
},
|
53 |
"xcopa_vi": {
|
|
|
56 |
"alias": " - xcopa_vi"
|
57 |
},
|
58 |
"xcopa_zh": {
|
59 |
+
"acc,none": 0.6,
|
60 |
+
"acc_stderr,none": 0.021930844120728505,
|
61 |
"alias": " - xcopa_zh"
|
62 |
}
|
63 |
},
|
64 |
"groups": {
|
65 |
"xcopa": {
|
66 |
+
"acc,none": 0.5378181818181818,
|
67 |
+
"acc_stderr,none": 0.03414712992987977,
|
68 |
"alias": "xcopa"
|
69 |
}
|
70 |
},
|
|
|
76 |
"dataset_name": "et",
|
77 |
"validation_split": "validation",
|
78 |
"test_split": "test",
|
79 |
+
"doc_to_text": "functools.partial(<function doc_to_text at 0x7f15e0d53740>, connector={'cause': 'sest', 'effect': 'seetõttu'})",
|
80 |
"doc_to_target": "label",
|
81 |
"doc_to_choice": "def doc_to_choice(doc):\n return [convert_choice(doc[\"choice1\"]), convert_choice(doc[\"choice2\"])]\n",
|
82 |
"description": "",
|
|
|
101 |
"dataset_name": "ht",
|
102 |
"validation_split": "validation",
|
103 |
"test_split": "test",
|
104 |
+
"doc_to_text": "functools.partial(<function doc_to_text at 0x7f15db779c60>, connector={'cause': 'poukisa', 'effect': 'donk sa'})",
|
105 |
"doc_to_target": "label",
|
106 |
"doc_to_choice": "def doc_to_choice(doc):\n return [convert_choice(doc[\"choice1\"]), convert_choice(doc[\"choice2\"])]\n",
|
107 |
"description": "",
|
|
|
126 |
"dataset_name": "id",
|
127 |
"validation_split": "validation",
|
128 |
"test_split": "test",
|
129 |
+
"doc_to_text": "functools.partial(<function doc_to_text at 0x7f15db77bf60>, connector={'cause': 'karena', 'effect': 'maka'})",
|
130 |
"doc_to_target": "label",
|
131 |
"doc_to_choice": "def doc_to_choice(doc):\n return [convert_choice(doc[\"choice1\"]), convert_choice(doc[\"choice2\"])]\n",
|
132 |
"description": "",
|
|
|
151 |
"dataset_name": "it",
|
152 |
"validation_split": "validation",
|
153 |
"test_split": "test",
|
154 |
+
"doc_to_text": "functools.partial(<function doc_to_text at 0x7f15db778860>, connector={'cause': 'perché', 'effect': 'quindi'})",
|
155 |
"doc_to_target": "label",
|
156 |
"doc_to_choice": "def doc_to_choice(doc):\n return [convert_choice(doc[\"choice1\"]), convert_choice(doc[\"choice2\"])]\n",
|
157 |
"description": "",
|
|
|
176 |
"dataset_name": "qu",
|
177 |
"validation_split": "validation",
|
178 |
"test_split": "test",
|
179 |
+
"doc_to_text": "functools.partial(<function doc_to_text at 0x7f15db77aa20>, connector={'cause': 'imataq', 'effect': 'chaymi'})",
|
180 |
"doc_to_target": "label",
|
181 |
"doc_to_choice": "def doc_to_choice(doc):\n return [convert_choice(doc[\"choice1\"]), convert_choice(doc[\"choice2\"])]\n",
|
182 |
"description": "",
|
|
|
201 |
"dataset_name": "sw",
|
202 |
"validation_split": "validation",
|
203 |
"test_split": "test",
|
204 |
+
"doc_to_text": "functools.partial(<function doc_to_text at 0x7f15db77a520>, connector={'cause': 'kwa sababu', 'effect': 'kwa hiyo'})",
|
205 |
"doc_to_target": "label",
|
206 |
"doc_to_choice": "def doc_to_choice(doc):\n return [convert_choice(doc[\"choice1\"]), convert_choice(doc[\"choice2\"])]\n",
|
207 |
"description": "",
|
|
|
226 |
"dataset_name": "ta",
|
227 |
"validation_split": "validation",
|
228 |
"test_split": "test",
|
229 |
+
"doc_to_text": "functools.partial(<function doc_to_text at 0x7f15db77b6a0>, connector={'cause': 'காரணமாக', 'effect': 'எனவே'})",
|
230 |
"doc_to_target": "label",
|
231 |
"doc_to_choice": "def doc_to_choice(doc):\n return [convert_choice(doc[\"choice1\"]), convert_choice(doc[\"choice2\"])]\n",
|
232 |
"description": "",
|
|
|
251 |
"dataset_name": "th",
|
252 |
"validation_split": "validation",
|
253 |
"test_split": "test",
|
254 |
+
"doc_to_text": "functools.partial(<function doc_to_text at 0x7f15e0b33600>, connector={'cause': 'เพราะ', 'effect': 'ดังนั้น'})",
|
255 |
"doc_to_target": "label",
|
256 |
"doc_to_choice": "def doc_to_choice(doc):\n return [convert_choice(doc[\"choice1\"]), convert_choice(doc[\"choice2\"])]\n",
|
257 |
"description": "",
|
|
|
276 |
"dataset_name": "tr",
|
277 |
"validation_split": "validation",
|
278 |
"test_split": "test",
|
279 |
+
"doc_to_text": "functools.partial(<function doc_to_text at 0x7f15db77a340>, connector={'cause': 'çünkü', 'effect': 'bu yüzden'})",
|
280 |
"doc_to_target": "label",
|
281 |
"doc_to_choice": "def doc_to_choice(doc):\n return [convert_choice(doc[\"choice1\"]), convert_choice(doc[\"choice2\"])]\n",
|
282 |
"description": "",
|
|
|
301 |
"dataset_name": "vi",
|
302 |
"validation_split": "validation",
|
303 |
"test_split": "test",
|
304 |
+
"doc_to_text": "functools.partial(<function doc_to_text at 0x7f15e0b30220>, connector={'cause': 'bởi vì', 'effect': 'vì vậy'})",
|
305 |
"doc_to_target": "label",
|
306 |
"doc_to_choice": "def doc_to_choice(doc):\n return [convert_choice(doc[\"choice1\"]), convert_choice(doc[\"choice2\"])]\n",
|
307 |
"description": "",
|
|
|
326 |
"dataset_name": "zh",
|
327 |
"validation_split": "validation",
|
328 |
"test_split": "test",
|
329 |
+
"doc_to_text": "functools.partial(<function doc_to_text at 0x7f15e0b30ae0>, connector={'cause': '因为', 'effect': '所以'})",
|
330 |
"doc_to_target": "label",
|
331 |
"doc_to_choice": "def doc_to_choice(doc):\n return [convert_choice(doc[\"choice1\"]), convert_choice(doc[\"choice2\"])]\n",
|
332 |
"description": "",
|
|
|
376 |
"config": {
|
377 |
"model": "hf",
|
378 |
"model_args": "pretrained=allenai/OLMo-7B,dtype=bfloat16,trust_remote_code=True",
|
379 |
+
"batch_size": "auto",
|
380 |
+
"batch_sizes": [
|
381 |
+
64
|
382 |
+
],
|
383 |
"device": null,
|
384 |
"use_cache": null,
|
385 |
"limit": null,
|
386 |
"bootstrap_iters": 100000,
|
387 |
"gen_kwargs": null
|
388 |
},
|
389 |
+
"git_hash": "2e3ceb0"
|
390 |
}
|
lm-eval-output/allenai/OLMo-7B/xcopa/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8f13b3767f5315c2800cfd5b6967fd3b561ce2cffd72a130329f097c9f8733dd
|
3 |
+
size 141623
|
lm-eval-output/allenai/OLMo-7B/xnli/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json
CHANGED
@@ -1,90 +1,90 @@
|
|
1 |
{
|
2 |
"results": {
|
3 |
"xnli": {
|
4 |
-
"acc,none": 0.
|
5 |
-
"acc_stderr,none": 0.
|
6 |
"alias": "xnli"
|
7 |
},
|
8 |
"xnli_ar": {
|
9 |
-
"acc,none": 0.
|
10 |
-
"acc_stderr,none": 0.
|
11 |
"alias": " - xnli_ar"
|
12 |
},
|
13 |
"xnli_bg": {
|
14 |
-
"acc,none": 0.
|
15 |
-
"acc_stderr,none": 0.
|
16 |
"alias": " - xnli_bg"
|
17 |
},
|
18 |
"xnli_de": {
|
19 |
-
"acc,none": 0.
|
20 |
-
"acc_stderr,none": 0.
|
21 |
"alias": " - xnli_de"
|
22 |
},
|
23 |
"xnli_el": {
|
24 |
-
"acc,none": 0.
|
25 |
-
"acc_stderr,none": 0.
|
26 |
"alias": " - xnli_el"
|
27 |
},
|
28 |
"xnli_en": {
|
29 |
-
"acc,none": 0.
|
30 |
-
"acc_stderr,none": 0.
|
31 |
"alias": " - xnli_en"
|
32 |
},
|
33 |
"xnli_es": {
|
34 |
-
"acc,none": 0.
|
35 |
-
"acc_stderr,none": 0.
|
36 |
"alias": " - xnli_es"
|
37 |
},
|
38 |
"xnli_fr": {
|
39 |
-
"acc,none": 0.
|
40 |
-
"acc_stderr,none": 0.
|
41 |
"alias": " - xnli_fr"
|
42 |
},
|
43 |
"xnli_hi": {
|
44 |
-
"acc,none": 0.
|
45 |
-
"acc_stderr,none": 0.
|
46 |
"alias": " - xnli_hi"
|
47 |
},
|
48 |
"xnli_ru": {
|
49 |
-
"acc,none": 0.
|
50 |
-
"acc_stderr,none": 0.
|
51 |
"alias": " - xnli_ru"
|
52 |
},
|
53 |
"xnli_sw": {
|
54 |
-
"acc,none": 0.
|
55 |
-
"acc_stderr,none": 0.
|
56 |
"alias": " - xnli_sw"
|
57 |
},
|
58 |
"xnli_th": {
|
59 |
-
"acc,none": 0.
|
60 |
-
"acc_stderr,none": 0.
|
61 |
"alias": " - xnli_th"
|
62 |
},
|
63 |
"xnli_tr": {
|
64 |
-
"acc,none": 0.
|
65 |
-
"acc_stderr,none": 0.
|
66 |
"alias": " - xnli_tr"
|
67 |
},
|
68 |
"xnli_ur": {
|
69 |
-
"acc,none": 0.
|
70 |
-
"acc_stderr,none": 0.
|
71 |
"alias": " - xnli_ur"
|
72 |
},
|
73 |
"xnli_vi": {
|
74 |
-
"acc,none": 0.
|
75 |
-
"acc_stderr,none": 0.
|
76 |
"alias": " - xnli_vi"
|
77 |
},
|
78 |
"xnli_zh": {
|
79 |
-
"acc,none": 0.
|
80 |
-
"acc_stderr,none": 0.
|
81 |
"alias": " - xnli_zh"
|
82 |
}
|
83 |
},
|
84 |
"groups": {
|
85 |
"xnli": {
|
86 |
-
"acc,none": 0.
|
87 |
-
"acc_stderr,none": 0.
|
88 |
"alias": "xnli"
|
89 |
}
|
90 |
},
|
@@ -534,13 +534,15 @@
|
|
534 |
"config": {
|
535 |
"model": "hf",
|
536 |
"model_args": "pretrained=allenai/OLMo-7B,dtype=bfloat16,trust_remote_code=True",
|
537 |
-
"batch_size": "
|
538 |
-
"batch_sizes": [
|
|
|
|
|
539 |
"device": null,
|
540 |
"use_cache": null,
|
541 |
"limit": null,
|
542 |
"bootstrap_iters": 100000,
|
543 |
"gen_kwargs": null
|
544 |
},
|
545 |
-
"git_hash": "
|
546 |
}
|
|
|
1 |
{
|
2 |
"results": {
|
3 |
"xnli": {
|
4 |
+
"acc,none": 0.39435073627844713,
|
5 |
+
"acc_stderr,none": 0.05742628184405443,
|
6 |
"alias": "xnli"
|
7 |
},
|
8 |
"xnli_ar": {
|
9 |
+
"acc,none": 0.3349397590361446,
|
10 |
+
"acc_stderr,none": 0.009460223484996469,
|
11 |
"alias": " - xnli_ar"
|
12 |
},
|
13 |
"xnli_bg": {
|
14 |
+
"acc,none": 0.3859437751004016,
|
15 |
+
"acc_stderr,none": 0.009757838842063344,
|
16 |
"alias": " - xnli_bg"
|
17 |
},
|
18 |
"xnli_de": {
|
19 |
+
"acc,none": 0.4602409638554217,
|
20 |
+
"acc_stderr,none": 0.009990337216722657,
|
21 |
"alias": " - xnli_de"
|
22 |
},
|
23 |
"xnli_el": {
|
24 |
+
"acc,none": 0.3514056224899598,
|
25 |
+
"acc_stderr,none": 0.009569263079823961,
|
26 |
"alias": " - xnli_el"
|
27 |
},
|
28 |
"xnli_en": {
|
29 |
+
"acc,none": 0.5642570281124498,
|
30 |
+
"acc_stderr,none": 0.009938966706641357,
|
31 |
"alias": " - xnli_en"
|
32 |
},
|
33 |
"xnli_es": {
|
34 |
+
"acc,none": 0.4610441767068273,
|
35 |
+
"acc_stderr,none": 0.009991608448389063,
|
36 |
"alias": " - xnli_es"
|
37 |
},
|
38 |
"xnli_fr": {
|
39 |
+
"acc,none": 0.4895582329317269,
|
40 |
+
"acc_stderr,none": 0.010019887205677435,
|
41 |
"alias": " - xnli_fr"
|
42 |
},
|
43 |
"xnli_hi": {
|
44 |
+
"acc,none": 0.35943775100401604,
|
45 |
+
"acc_stderr,none": 0.009617895762902744,
|
46 |
"alias": " - xnli_hi"
|
47 |
},
|
48 |
"xnli_ru": {
|
49 |
+
"acc,none": 0.41767068273092367,
|
50 |
+
"acc_stderr,none": 0.00988527772784018,
|
51 |
"alias": " - xnli_ru"
|
52 |
},
|
53 |
"xnli_sw": {
|
54 |
+
"acc,none": 0.3389558232931727,
|
55 |
+
"acc_stderr,none": 0.009487992732201522,
|
56 |
"alias": " - xnli_sw"
|
57 |
},
|
58 |
"xnli_th": {
|
59 |
+
"acc,none": 0.3405622489959839,
|
60 |
+
"acc_stderr,none": 0.00949888669027444,
|
61 |
"alias": " - xnli_th"
|
62 |
},
|
63 |
"xnli_tr": {
|
64 |
+
"acc,none": 0.3506024096385542,
|
65 |
+
"acc_stderr,none": 0.009564237156206103,
|
66 |
"alias": " - xnli_tr"
|
67 |
},
|
68 |
"xnli_ur": {
|
69 |
+
"acc,none": 0.3413654618473896,
|
70 |
+
"acc_stderr,none": 0.00950428807888022,
|
71 |
"alias": " - xnli_ur"
|
72 |
},
|
73 |
"xnli_vi": {
|
74 |
+
"acc,none": 0.36586345381526103,
|
75 |
+
"acc_stderr,none": 0.00965469276557259,
|
76 |
"alias": " - xnli_vi"
|
77 |
},
|
78 |
"xnli_zh": {
|
79 |
+
"acc,none": 0.3534136546184739,
|
80 |
+
"acc_stderr,none": 0.009581698005070973,
|
81 |
"alias": " - xnli_zh"
|
82 |
}
|
83 |
},
|
84 |
"groups": {
|
85 |
"xnli": {
|
86 |
+
"acc,none": 0.39435073627844713,
|
87 |
+
"acc_stderr,none": 0.05742628184405443,
|
88 |
"alias": "xnli"
|
89 |
}
|
90 |
},
|
|
|
534 |
"config": {
|
535 |
"model": "hf",
|
536 |
"model_args": "pretrained=allenai/OLMo-7B,dtype=bfloat16,trust_remote_code=True",
|
537 |
+
"batch_size": "auto",
|
538 |
+
"batch_sizes": [
|
539 |
+
16
|
540 |
+
],
|
541 |
"device": null,
|
542 |
"use_cache": null,
|
543 |
"limit": null,
|
544 |
"bootstrap_iters": 100000,
|
545 |
"gen_kwargs": null
|
546 |
},
|
547 |
+
"git_hash": "2e3ceb0"
|
548 |
}
|
lm-eval-output/allenai/OLMo-7B/xnli/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c3c526358b8965202584578c79cc764bc64bcc0d40daef34fb6a9fc251ef6cdc
|
3 |
+
size 75027
|
lm-eval-output/allenai/OLMo-7B/xstorycloze/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json
CHANGED
@@ -1,70 +1,70 @@
|
|
1 |
{
|
2 |
"results": {
|
3 |
"xstorycloze": {
|
4 |
-
"acc,none": 0.
|
5 |
-
"acc_stderr,none": 0.
|
6 |
"alias": "xstorycloze"
|
7 |
},
|
8 |
"xstorycloze_ar": {
|
9 |
-
"acc,none": 0.
|
10 |
-
"acc_stderr,none": 0.
|
11 |
"alias": " - xstorycloze_ar"
|
12 |
},
|
13 |
"xstorycloze_en": {
|
14 |
-
"acc,none": 0.
|
15 |
-
"acc_stderr,none": 0.
|
16 |
"alias": " - xstorycloze_en"
|
17 |
},
|
18 |
"xstorycloze_es": {
|
19 |
-
"acc,none": 0.
|
20 |
-
"acc_stderr,none": 0.
|
21 |
"alias": " - xstorycloze_es"
|
22 |
},
|
23 |
"xstorycloze_eu": {
|
24 |
"acc,none": 0.5016545334215751,
|
25 |
-
"acc_stderr,none": 0.
|
26 |
"alias": " - xstorycloze_eu"
|
27 |
},
|
28 |
"xstorycloze_hi": {
|
29 |
-
"acc,none": 0.
|
30 |
-
"acc_stderr,none": 0.
|
31 |
"alias": " - xstorycloze_hi"
|
32 |
},
|
33 |
"xstorycloze_id": {
|
34 |
-
"acc,none": 0.
|
35 |
-
"acc_stderr,none": 0.
|
36 |
"alias": " - xstorycloze_id"
|
37 |
},
|
38 |
"xstorycloze_my": {
|
39 |
-
"acc,none": 0.
|
40 |
-
"acc_stderr,none": 0.
|
41 |
"alias": " - xstorycloze_my"
|
42 |
},
|
43 |
"xstorycloze_ru": {
|
44 |
-
"acc,none": 0.
|
45 |
-
"acc_stderr,none": 0.
|
46 |
"alias": " - xstorycloze_ru"
|
47 |
},
|
48 |
"xstorycloze_sw": {
|
49 |
-
"acc,none": 0.
|
50 |
-
"acc_stderr,none": 0.
|
51 |
"alias": " - xstorycloze_sw"
|
52 |
},
|
53 |
"xstorycloze_te": {
|
54 |
-
"acc,none": 0.
|
55 |
-
"acc_stderr,none": 0.
|
56 |
"alias": " - xstorycloze_te"
|
57 |
},
|
58 |
"xstorycloze_zh": {
|
59 |
-
"acc,none": 0.
|
60 |
-
"acc_stderr,none": 0.
|
61 |
"alias": " - xstorycloze_zh"
|
62 |
}
|
63 |
},
|
64 |
"groups": {
|
65 |
"xstorycloze": {
|
66 |
-
"acc,none": 0.
|
67 |
-
"acc_stderr,none": 0.
|
68 |
"alias": "xstorycloze"
|
69 |
}
|
70 |
},
|
@@ -409,13 +409,15 @@
|
|
409 |
"config": {
|
410 |
"model": "hf",
|
411 |
"model_args": "pretrained=allenai/OLMo-7B,dtype=bfloat16,trust_remote_code=True",
|
412 |
-
"batch_size": "
|
413 |
-
"batch_sizes": [
|
|
|
|
|
414 |
"device": null,
|
415 |
"use_cache": null,
|
416 |
"limit": null,
|
417 |
"bootstrap_iters": 100000,
|
418 |
"gen_kwargs": null
|
419 |
},
|
420 |
-
"git_hash": "
|
421 |
}
|
|
|
1 |
{
|
2 |
"results": {
|
3 |
"xstorycloze": {
|
4 |
+
"acc,none": 0.5533361410264123,
|
5 |
+
"acc_stderr,none": 0.05534570647659908,
|
6 |
"alias": "xstorycloze"
|
7 |
},
|
8 |
"xstorycloze_ar": {
|
9 |
+
"acc,none": 0.46657842488418266,
|
10 |
+
"acc_stderr,none": 0.012838347934731665,
|
11 |
"alias": " - xstorycloze_ar"
|
12 |
},
|
13 |
"xstorycloze_en": {
|
14 |
+
"acc,none": 0.7743216412971542,
|
15 |
+
"acc_stderr,none": 0.01075764435168656,
|
16 |
"alias": " - xstorycloze_en"
|
17 |
},
|
18 |
"xstorycloze_es": {
|
19 |
+
"acc,none": 0.6115155526141628,
|
20 |
+
"acc_stderr,none": 0.012543019523160325,
|
21 |
"alias": " - xstorycloze_es"
|
22 |
},
|
23 |
"xstorycloze_eu": {
|
24 |
"acc,none": 0.5016545334215751,
|
25 |
+
"acc_stderr,none": 0.012867054869163341,
|
26 |
"alias": " - xstorycloze_eu"
|
27 |
},
|
28 |
"xstorycloze_hi": {
|
29 |
+
"acc,none": 0.5056254136333554,
|
30 |
+
"acc_stderr,none": 0.01286631092307251,
|
31 |
"alias": " - xstorycloze_hi"
|
32 |
},
|
33 |
"xstorycloze_id": {
|
34 |
+
"acc,none": 0.5493050959629384,
|
35 |
+
"acc_stderr,none": 0.012804412720126671,
|
36 |
"alias": " - xstorycloze_id"
|
37 |
},
|
38 |
"xstorycloze_my": {
|
39 |
+
"acc,none": 0.48974189278623426,
|
40 |
+
"acc_stderr,none": 0.012864417047980477,
|
41 |
"alias": " - xstorycloze_my"
|
42 |
},
|
43 |
"xstorycloze_ru": {
|
44 |
+
"acc,none": 0.5519523494374586,
|
45 |
+
"acc_stderr,none": 0.012797478885304733,
|
46 |
"alias": " - xstorycloze_ru"
|
47 |
},
|
48 |
"xstorycloze_sw": {
|
49 |
+
"acc,none": 0.514228987425546,
|
50 |
+
"acc_stderr,none": 0.012861913999596129,
|
51 |
"alias": " - xstorycloze_sw"
|
52 |
},
|
53 |
"xstorycloze_te": {
|
54 |
+
"acc,none": 0.5459960291197882,
|
55 |
+
"acc_stderr,none": 0.012812565368728933,
|
56 |
"alias": " - xstorycloze_te"
|
57 |
},
|
58 |
"xstorycloze_zh": {
|
59 |
+
"acc,none": 0.5757776307081403,
|
60 |
+
"acc_stderr,none": 0.012718494399531067,
|
61 |
"alias": " - xstorycloze_zh"
|
62 |
}
|
63 |
},
|
64 |
"groups": {
|
65 |
"xstorycloze": {
|
66 |
+
"acc,none": 0.5533361410264123,
|
67 |
+
"acc_stderr,none": 0.05534570647659908,
|
68 |
"alias": "xstorycloze"
|
69 |
}
|
70 |
},
|
|
|
409 |
"config": {
|
410 |
"model": "hf",
|
411 |
"model_args": "pretrained=allenai/OLMo-7B,dtype=bfloat16,trust_remote_code=True",
|
412 |
+
"batch_size": "auto",
|
413 |
+
"batch_sizes": [
|
414 |
+
8
|
415 |
+
],
|
416 |
"device": null,
|
417 |
"use_cache": null,
|
418 |
"limit": null,
|
419 |
"bootstrap_iters": 100000,
|
420 |
"gen_kwargs": null
|
421 |
},
|
422 |
+
"git_hash": "2e3ceb0"
|
423 |
}
|
lm-eval-output/allenai/OLMo-7B/xstorycloze/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0d7e9b56c613f0af42a35b3afe0a26e6c85c64469a87ddb48dc64bb3cba1f1ae
|
3 |
+
size 44883
|
lm-eval-output/allenai/OLMo-7B/xwinograd/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json
CHANGED
@@ -1,13 +1,13 @@
|
|
1 |
{
|
2 |
"results": {
|
3 |
"xwinograd": {
|
4 |
-
"acc,none": 0.
|
5 |
-
"acc_stderr,none": 0.
|
6 |
"alias": "xwinograd"
|
7 |
},
|
8 |
"xwinograd_en": {
|
9 |
-
"acc,none": 0.
|
10 |
-
"acc_stderr,none": 0.
|
11 |
"alias": " - xwinograd_en"
|
12 |
},
|
13 |
"xwinograd_fr": {
|
@@ -16,30 +16,30 @@
|
|
16 |
"alias": " - xwinograd_fr"
|
17 |
},
|
18 |
"xwinograd_jp": {
|
19 |
-
"acc,none": 0.
|
20 |
-
"acc_stderr,none": 0.
|
21 |
"alias": " - xwinograd_jp"
|
22 |
},
|
23 |
"xwinograd_pt": {
|
24 |
-
"acc,none": 0.
|
25 |
-
"acc_stderr,none": 0.
|
26 |
"alias": " - xwinograd_pt"
|
27 |
},
|
28 |
"xwinograd_ru": {
|
29 |
-
"acc,none": 0.
|
30 |
-
"acc_stderr,none": 0.
|
31 |
"alias": " - xwinograd_ru"
|
32 |
},
|
33 |
"xwinograd_zh": {
|
34 |
-
"acc,none": 0.
|
35 |
-
"acc_stderr,none": 0.
|
36 |
"alias": " - xwinograd_zh"
|
37 |
}
|
38 |
},
|
39 |
"groups": {
|
40 |
"xwinograd": {
|
41 |
-
"acc,none": 0.
|
42 |
-
"acc_stderr,none": 0.
|
43 |
"alias": "xwinograd"
|
44 |
}
|
45 |
},
|
@@ -234,13 +234,15 @@
|
|
234 |
"config": {
|
235 |
"model": "hf",
|
236 |
"model_args": "pretrained=allenai/OLMo-7B,dtype=bfloat16,trust_remote_code=True",
|
237 |
-
"batch_size": "
|
238 |
-
"batch_sizes": [
|
|
|
|
|
239 |
"device": null,
|
240 |
"use_cache": null,
|
241 |
"limit": null,
|
242 |
"bootstrap_iters": 100000,
|
243 |
"gen_kwargs": null
|
244 |
},
|
245 |
-
"git_hash": "
|
246 |
}
|
|
|
1 |
{
|
2 |
"results": {
|
3 |
"xwinograd": {
|
4 |
+
"acc,none": 0.7473589570690042,
|
5 |
+
"acc_stderr,none": 0.0647846885953495,
|
6 |
"alias": "xwinograd"
|
7 |
},
|
8 |
"xwinograd_en": {
|
9 |
+
"acc,none": 0.864516129032258,
|
10 |
+
"acc_stderr,none": 0.007099246998788207,
|
11 |
"alias": " - xwinograd_en"
|
12 |
},
|
13 |
"xwinograd_fr": {
|
|
|
16 |
"alias": " - xwinograd_fr"
|
17 |
},
|
18 |
"xwinograd_jp": {
|
19 |
+
"acc,none": 0.5766423357664233,
|
20 |
+
"acc_stderr,none": 0.015963356799273146,
|
21 |
"alias": " - xwinograd_jp"
|
22 |
},
|
23 |
"xwinograd_pt": {
|
24 |
+
"acc,none": 0.6159695817490495,
|
25 |
+
"acc_stderr,none": 0.03004773912243715,
|
26 |
"alias": " - xwinograd_pt"
|
27 |
},
|
28 |
"xwinograd_ru": {
|
29 |
+
"acc,none": 0.6,
|
30 |
+
"acc_stderr,none": 0.02764654065504541,
|
31 |
"alias": " - xwinograd_ru"
|
32 |
},
|
33 |
"xwinograd_zh": {
|
34 |
+
"acc,none": 0.7123015873015873,
|
35 |
+
"acc_stderr,none": 0.020184439611834477,
|
36 |
"alias": " - xwinograd_zh"
|
37 |
}
|
38 |
},
|
39 |
"groups": {
|
40 |
"xwinograd": {
|
41 |
+
"acc,none": 0.7473589570690042,
|
42 |
+
"acc_stderr,none": 0.0647846885953495,
|
43 |
"alias": "xwinograd"
|
44 |
}
|
45 |
},
|
|
|
234 |
"config": {
|
235 |
"model": "hf",
|
236 |
"model_args": "pretrained=allenai/OLMo-7B,dtype=bfloat16,trust_remote_code=True",
|
237 |
+
"batch_size": "auto",
|
238 |
+
"batch_sizes": [
|
239 |
+
64
|
240 |
+
],
|
241 |
"device": null,
|
242 |
"use_cache": null,
|
243 |
"limit": null,
|
244 |
"bootstrap_iters": 100000,
|
245 |
"gen_kwargs": null
|
246 |
},
|
247 |
+
"git_hash": "2e3ceb0"
|
248 |
}
|
lm-eval-output/allenai/OLMo-7B/xwinograd/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ee9fab933a096a07bcfee135c4b05813fda5d0bf280ef380424492fa71f56f96
|
3 |
+
size 16328
|