import Mathlib open Real set_option linter.unusedVariables.analyzeTactics true theorem imo_1962_p2 (x : ℝ) (h₀ : 0 ≤ 3 - x) (h₁ : 0 ≤ x + 1) (h₂ : 1 / 2 < Real.sqrt (3 - x) - Real.sqrt (x + 1)) : -1 ≤ x ∧ x < 1 - Real.sqrt 31 / 8 := by constructor . exact neg_le_iff_add_nonneg.mpr h₁ have h₃: (2 *sqrt (3 - x) * sqrt (x + 1)) ^ 2 < (4 - 1 / 4) ^ 2 := by refine' pow_lt_pow_left₀ _ _ (by norm_num) . refine lt_tsub_iff_left.mpr ?_ refine lt_tsub_iff_right.mp ?_ suffices g₀: 4 - 2 * sqrt (3 - x) * sqrt (x + 1) = (sqrt (3 - x) - sqrt (x + 1)) ^ 2 . rw [g₀] have g₁: (1:ℝ) / 4 = (1/2)^2 := by norm_num rw [g₁] exact pow_lt_pow_left₀ h₂ (by norm_num) (by norm_num) rw [sub_sq] rw [sq_sqrt h₀, sq_sqrt h₁] ring_nf . refine' mul_nonneg _ _ . refine mul_nonneg (by norm_num) ?_ exact sqrt_nonneg (3 - x) . exact sqrt_nonneg (x + 1) have h₄: 4 * (x + 1) * (3 - x) < 225 / 16 := by norm_num at h₃ suffices g₀: 4 * (x + 1) * (3 - x) = (2 * sqrt (3 - x) * sqrt (x + 1)) ^ 2 . exact Eq.trans_lt g₀ h₃ . rw [mul_pow, mul_pow, sq_sqrt h₀, sq_sqrt h₁] norm_num exact mul_right_comm 4 (x + 1) (3 - x) have hx1: x < 1 := by suffices g₀: x + 1 < 3 - x . linarith . rw [← sq_sqrt h₀, ← sq_sqrt h₁] refine' pow_lt_pow_left₀ _ _ (by norm_num) . linarith exact sqrt_nonneg (x + 1) have h₅: x < 1 - sqrt 31 / 8 ∨ 1 + sqrt 31 / 8 < x := by ring_nf at h₄ have g₀: 0 < x * x + -2 * x + 33 / 64 := by linarith let a:ℝ := sqrt 31 / 8 have g₁: x * x + -2 * x + 33 / 64 = (x - (1 + a)) * (x - (1 - a)) := by simp ring_nf norm_num linarith rw [g₁] at g₀ by_cases g₂: (x - (1 - a)) < 0 . left exact sub_neg.mp g₂ push_neg at g₂ right have g₃: 0 < (x - (1 + a)) := by exact pos_of_mul_pos_left g₀ g₂ exact sub_pos.mp g₃ cases h₅ with | inl h₅ => exact h₅ | inr h₅ => linarith