File size: 20,281 Bytes
1c3ffd8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
import Mathlib
set_option linter.unusedVariables.analyzeTactics true

open Nat


lemma mylemma_1
  (b p: β„•)
  (hβ‚€: 0 < b)
  (hbp: b < p) :
  (1 + (b * p + b ^ p) ≀ (1 + b) ^ p) := by
  refine Nat.le_induction ?_ ?_ p hbp
  . rw [add_pow 1 b b.succ]
    rw [Finset.sum_range_succ _ b.succ]
    simp
    rw [Finset.sum_range_succ _ b]
    simp
    rw [add_comm _ (b * (b + 1))]
    have gb: b = b - 1 + 1 := by exact (Nat.sub_eq_iff_eq_add hβ‚€).mp rfl
    nth_rewrite 7 [gb]
    rw [Finset.sum_range_succ' _ (b-1)]
    simp
    omega
  . intros n _ hβ‚‚
    nth_rewrite 2 [pow_add]
    rw [pow_one]
    have h₃: (1 + (b * n + b ^ n)) * (1 + b) ≀ ((1 + b) ^ n) * (1 + b) := by
      exact mul_le_mul_right' hβ‚‚ (1 + b)
    have hβ‚„: 1 + (b * (n + 1) + b ^ (n + 1)) ≀ (1 + (b * n + b ^ n)) * (1 + b) := by
      ring_nf
      rw [Nat.add_assoc _ (b ^ 2 * n) (b ^ n)]
      exact Nat.le_add_right (1 + b + b * b ^ n + b * n) (b ^ 2 * n + b ^ n)
    exact le_trans hβ‚„ h₃


lemma mylemma_2
  (b: β„•) :
  (b.factorial ≀ b ^ b) := by
  -- exact factorial_le_pow b
  -- lean 4 has the lemma factorial_le_pow
  induction' b with n hi
  . norm_num
  . by_cases hnp: 0 < n
    . rw [ factorial_succ, pow_add, pow_one, mul_comm ]
      refine mul_le_mul_right (n + 1) ?_
      have hβ‚‚: n^ n ≀ (n + 1)^n := by
        refine (Nat.pow_le_pow_iff_left ?_).mpr ?_
        . linarith
        . linarith
      exact le_trans hi hβ‚‚
    . push_neg at hnp
      interval_cases n
      simp


lemma mylemma_3
  (a b p: β„•)
  (hp: Nat.Prime p)
  (h₁: a ^ p = b.factorial + p)
  (hbp: p ≀ b) :
  (p ∣ a) := by
  have hβ‚‚: p ∣ b.factorial := by exact Nat.dvd_factorial (Nat.Prime.pos hp) hbp
  have h₃: p ∣ b.factorial + p := by exact Nat.dvd_add_self_right.mpr hβ‚‚
  have hβ‚„: p ∣ a^p := by
    rw [h₁]
    exact h₃
  exact Nat.Prime.dvd_of_dvd_pow hp hβ‚„


lemma mylemma_42
  (a b : β„•)
  (hβ‚€: 2 ≀ a)
  (h₁: a < b) :
  (a + b < a * b ) := by
  have hβ‚‚: a + b < b + b := by exact add_lt_add_right h₁ b
  have h₃: b + b ≀ a * b := by
    rw [← two_mul]
    exact mul_le_mul_right' hβ‚€ b
  exact gt_of_ge_of_gt h₃ hβ‚‚


lemma mylemma_43
  (p: β„•) :
  (Finset.Ico p (2 * p - 1)).prod (fun x => x + 1)
    = (Finset.range (p - 1)).prod (fun x => p + (x + 1)) := by
  rw [Finset.prod_Ico_eq_prod_range _ (p) (2 * p - 1)]
  have hβ‚€: 2 * p - 1 - p = p - 1 := by omega
  rw [hβ‚€]
  exact rfl


lemma mylemma_44
  (p: β„•)
  (hp: 2 ≀ p) :
  (Finset.range (p - 1)).prod (fun (x : β„•) => x + 1)
      = (Finset.range (p - 1)).prod (fun (x : β„•) => p - (x + 1)) := by
  refine Nat.le_induction ?_ ?_ p hp
  . norm_num
  . intros n hn2 hβ‚€
    simp at *
    have hn: 0 < n := by exact lt_of_succ_lt hn2
    rw [← Nat.mul_factorial_pred hn, hβ‚€]
    let f: (β„• β†’ β„•) := fun (x : β„•) => n - x
    have h₁: (Finset.range n).prod f =
        (Finset.range 1).prod f * (Finset.Ico 1 n).prod f := by
      exact (Finset.prod_range_mul_prod_Ico (fun k => n - k) hn).symm
    rw [h₁]
    have hβ‚‚: (Finset.range 1).prod f = n := by
      exact Finset.prod_range_one fun k => n - k
    rw [hβ‚‚]
    simp
    left
    rw [Finset.prod_Ico_eq_prod_range f 1 n]
    ring_nf
    exact rfl


lemma mylemma_41
  (b p: β„•)
  -- (hβ‚€: 0 < b)
  (hp: Nat.Prime p)
  (hb2p: b < 2 * p) :
  b.factorial + p < p ^ (2 * p) := by
  have h₁: b.factorial ≀ (2*p - 1).factorial := by
    refine factorial_le ?_
    exact le_pred_of_lt hb2p
  have gp: 2 ≀ p := by exact Prime.two_le hp
  have gp1: (p - 1) + 1 = p := by
    refine Nat.sub_add_cancel ?_
    exact one_le_of_lt gp
  let f: (β„• β†’ β„•) := (fun (x : β„•) => x + 1)
  have hβ‚‚: (Finset.range (2 * p - 1)).prod f =
      (Finset.range (p - 1)).prod (fun (x : β„•) => p^2 - (x+1)^2) * p := by
    -- break the prod into three segments rang(p-1) + p + (p+1) until 2p-1
    have gβ‚€: (Finset.range (2 * p - 1)).prod f = (Finset.range ((p - 1) + 1)).prod f
           * (Finset.Ico ((p - 1) + 1) (2 * p - 1)).prod f := by
      symm
      refine Finset.prod_range_mul_prod_Ico f ?_
      rw [gp1]
      have ggβ‚€: p + 2 - 1 ≀ 2 * p - 1 := by
        refine Nat.sub_le_sub_right ?_ 1
        rw [add_comm]
        exact add_le_mul (by norm_num) gp
      exact le_of_lt ggβ‚€
    have g₁: (Finset.range ((p - 1) + 1)).prod (fun (x : β„•) => x + 1) =
       (Finset.range (p - 1)).prod (fun (x : β„•) => x + 1) * ((p - 1) + 1) := by
      exact Finset.prod_range_succ _ (p - 1)
    rw [g₁] at gβ‚€
    nth_rewrite 2 [mul_comm] at gβ‚€
    rw [← mul_assoc] at gβ‚€
    rw [gp1] at gβ‚€ g₁
    have gβ‚‚: (Finset.Ico ((p - 1) + 1) (2 * p - 1)).prod (fun (x : β„•) => x + 1)
              = (Finset.range (p - 1)).prod (fun (x : β„•) => p + (x+1)) := by
      rw [gp1]
      exact mylemma_43 p
    have g₃: (Finset.range (p - 1)).prod (fun (x : β„•) => x + 1)
              = (Finset.range (p - 1)).prod (fun (x : β„•) => p - (x+1)) := by
      exact mylemma_44 p gp
    rw [gp1] at gβ‚‚
    rw [gβ‚‚,g₃] at gβ‚€
    have gβ‚„: (Finset.range (p - 1)).prod (fun (x : β„•) => p + (x+1))
      * (Finset.range (p - 1)).prod (fun (x : β„•) => p - (x+1))
            = (Finset.range (p - 1)).prod (fun (x : β„•) => (p + (x+1)) * (p - (x+1))) := by
      symm
      exact Finset.prod_mul_distrib
    have gβ‚…: (fun (x : β„•) => p ^ 2 - (x+1) ^ 2) = (fun (x : β„•) => (p + (x+1)) * (p - (x+1))) := by
      ext1 x
      exact Nat.sq_sub_sq p (x + 1)
    rw [gβ‚„,← gβ‚…] at gβ‚€
    exact gβ‚€
  have h₃: (Finset.range (p - 1)).prod (fun (x : β„•) => p^2 - (x+1)^2) * p
      ≀ (p^2)^(Finset.range (p - 1)).card * p := by
    refine Nat.mul_le_mul_right ?_ ?_
    refine Finset.prod_le_pow_card (Finset.range (p - 1)) ?_ (p^2) ?_
    intros x _
    exact (p ^ 2).sub_le ((x + 1) ^ 2)
  simp at *
  have hβ‚„: b.factorial + p ≀ (p ^ 2) ^ (p - 1) * p + p := by
    refine add_le_add_right ?_ p
    refine le_trans ?_ h₃
    rw [← hβ‚‚]
    rw [Finset.prod_range_add_one_eq_factorial]
    exact h₁
  have hβ‚…: b.factorial + p < (p ^ 2) ^ (p - 1) * p * p := by
    refine lt_of_le_of_lt hβ‚„ ?_
    rw [add_comm]
    nth_rewrite 2 [mul_comm]
    refine mylemma_42 p ((p ^ 2) ^ (p - 1) * p) gp ?_
    refine lt_mul_left (by linarith) ?_
    rw [← pow_mul]
    refine Nat.one_lt_pow ?_ (Nat.lt_of_succ_le gp)
    refine Nat.mul_ne_zero (by norm_num) ?_
    exact Nat.sub_ne_zero_iff_lt.mpr gp
  rw [mul_assoc _ p p, ← pow_two p] at hβ‚…
  rw [← Nat.pow_succ, succ_eq_add_one, gp1] at hβ‚…
  rw [Nat.pow_mul]
  exact hβ‚…


lemma mylemma_4
  (a b p: β„•)
  (hβ‚€: 0 < a ∧ 0 < b)
  (hp: Nat.Prime p)
  (h₁: a ^ p = b.factorial + p)
  (hbp: p ≀ b)
  (hβ‚‚: p ∣ a)
  (hb2p: b < 2 * p) :
  (a = p) := by
  have gp: p ≀ a := by exact Nat.le_of_dvd hβ‚€.1 hβ‚‚
  cases' lt_or_eq_of_le gp with h₃ h₃
  . exfalso
    cases' hβ‚‚ with c hβ‚‚
    have gc: 0 < c := by
      by_contra! hc0
      interval_cases c
      simp at *
      linarith
    by_cases hc: c < p
    . have g₁: c ∣ c^p := by exact dvd_pow_self c (by linarith)
      have hβ‚„: c ∣ a^p := by
        rw [hβ‚‚, mul_pow]
        exact dvd_mul_of_dvd_right g₁ (p ^ p)
      have hβ‚…: c ∣ b.factorial := by exact Nat.dvd_factorial gc (by linarith)
      have gβ‚‚: p = a ^ p - b.factorial := by
        symm
        rw [add_comm] at h₁
        refine (Nat.sub_eq_iff_eq_add ?_).mpr h₁
        rw [add_comm] at h₁
        exact le.intro (h₁.symm)
      have h₆: c ∣ p := by
        rw [gβ‚‚]
        exact dvd_sub' hβ‚„ hβ‚…
      have h₇: c = 1 ∨ c = p := by exact (dvd_prime hp).mp h₆
      cases' h₇ with h₇₀ h₇₁
      . rw [h₇₀, mul_one] at hβ‚‚
        rw [hβ‚‚] at h₃
        linarith [h₃]
      . rw [h₇₁] at hc
        simp at hc
    . push_neg at hc
      have g₃: p^2 ≀ a := by
        rw [hβ‚‚, pow_two]
        exact mul_le_mul_left' hc p
      have h₃: p^(2*p) ≀ a^p := by
        rw [pow_mul]
        exact pow_left_mono p g₃
      have h₇: b.factorial + p < p^(2*p) := by exact mylemma_41 b p hp hb2p
      rw [←h₁] at h₇
      linarith
  exact h₃.symm


lemma mylemma_53
  (p: β„•)
  (hp5: 5 ≀ p) :
  ((↑p:β„€) ^ p ≑ ↑p * (↑p + 1) * (-1) ^ (p - 1) + (-1) ^ p [ZMOD (↑p + 1) ^ 2]) := by
  -- have h₁: ↑p ^ p = Finset.range -- binomial expansion
  -- take the first two elements out
  -- show that all the other elements are individually divisible by (p+1)^2
  -- conclude that their sum is divisible by (p+1)^2
  -- summation ≑ 0 [ZMOD (↑p + 1) ^ 2]
  -- now show that Nat.modeq.add
  have hβ‚€: (↑p:β„€) = (↑p + 1) - 1 := by simp
  have h₁: ↑p ^ p ≑ ((↑p + 1) - 1) ^ p [ZMOD (↑p + 1) ^ 2] := by rw [← hβ‚€]
  have hβ‚‚: (((↑p:β„€) + 1) - 1) ^ p = (↑p * (↑p + 1) * (-1:β„€) ^ (p - 1) + (-1) ^ p)
           + (Finset.Ico 2 (p + 1)).sum (fun (k : β„•) =>
           (↑p + 1) ^ k * (-1:β„€) ^ (p - k) * ↑(p.choose k)) := by
    rw [sub_eq_add_neg]
    rw [add_pow ((↑p:β„€) + 1) (-1:β„€)]
    have gβ‚€: 2 ≀ p + 1 := by
      have ggβ‚€: 5 + 1 ≀ p + 1 := by exact add_le_add_right hp5 1
      refine le_trans ?_ ggβ‚€
      norm_num
    have g₁: 1 ≀ 2 := by norm_num
    rw [← Finset.sum_range_add_sum_Ico _ gβ‚€]
    rw [← Finset.sum_range_add_sum_Ico _ g₁]
    simp
    rw [add_comm]
    simp
    rw [mul_comm]
    rw [mul_assoc]
  have h₃: 0 ≑ (Finset.Ico 2 (p + 1)).sum (fun (k : β„•) => (↑p + 1) ^ k * (-1) ^ (p - k) * ↑(p.choose k))
                [ZMOD (↑p + 1) ^ 2] := by
    refine Int.modEq_of_dvd ?_
    simp
    refine Finset.dvd_sum ?_
    intros x gβ‚€
    have gx: 2 ≀ x := by exact (Finset.mem_Ico.mp gβ‚€).left
    rw [mul_assoc]
    refine dvd_mul_of_dvd_left ?_ ((-1:β„€) ^ (p - x) * ↑(p.choose x))
    refine pow_dvd_pow ((↑p:β„€) + 1) gx
  rw [hβ‚‚] at h₁
  rw [← add_zero ((↑p:β„€) ^ p)] at h₁
  exact Int.ModEq.add_right_cancel h₃ h₁


lemma mylemma_52
  (p: β„•)
  (hp: Nat.Prime p)
  (hp5: 5 ≀ p)
  (hβ‚€: (p + 1) ^ 2 ∣ p ^ p - p) :
  False := by
  have h₁: ((↑p^p - ↑p):β„€) ≑ (↑(p.choose 1) * ↑(p + 1) * (-1:β„€)^(p-1) + (-1:β„€)^p) - ↑p
      [ZMOD ↑(p+1)^2] := by
    refine Int.ModEq.sub_right (↑p) ?_
    simp
    exact mylemma_53 p hp5
  have gpo: Odd p := by
    refine Nat.Prime.odd_of_ne_two hp ?_
    linarith [hp5]
  have gpe: Even (p - 1) := by
    refine hp.even_sub_one ?_
    linarith [hp5]
  have g₁: (-1:β„€) ^ (p - 1) = 1 := by exact Even.neg_one_pow gpe
  have gβ‚‚: (-1:β„€) ^ (p) = -1 := by exact Odd.neg_one_pow gpo
  rw [g₁,gβ‚‚] at h₁
  simp at h₁
  have hβ‚‚: (p ^ p - p) ≑ (p * (p + 1)) - 1 - p [MOD ((p + 1) ^ 2)] := by
    refine Int.natCast_modEq_iff.mp ?_
    have g₃: p ≀ p^p := by
      refine Nat.le_self_pow (by linarith) _
    rw [Nat.cast_sub g₃]
    have gβ‚„: p ≀ p * (p + 1) - 1 := by
      rw [mul_add]
      simp
      rw [add_comm, Nat.add_sub_assoc]
      . simp
      . rw [← pow_two]
        refine Nat.one_le_pow 2 p (by linarith)
    rw [Nat.cast_sub gβ‚„]
    have gβ‚…: 1 ≀ p * (p + 1) := by
      rw [← mul_one (p * (p + 1))]
      refine Nat.le_mul_of_pos_left ?_ ?_
      refine Nat.mul_pos (by linarith) (by linarith)
    rw [Nat.cast_sub gβ‚…]
    rw [← sub_eq_add_neg] at h₁
    norm_cast
    norm_cast at h₁
  have h₃: p * (p + 1) - 1 - p = p^2 - 1 := by
    rw [Nat.sub_sub, mul_add]
    simp
    rw [← pow_two]
    exact Nat.add_sub_add_right (p^2) p 1
  rw [h₃] at hβ‚‚
  clear h₃ gpo gpe g₁ gβ‚‚
  -- now derive a line of contradictions from hβ‚€
  have hc₁: (p ^ p - p) ≑ 0 [MOD (p+1)^2] := by exact modEq_zero_iff_dvd.mpr hβ‚€
  -- mix the contradiction with what we had in hβ‚‚
  have hβ‚„: p ^ 2 - 1 ≑ 0 [MOD (p+1)^2] := by
    apply Nat.ModEq.symm at hβ‚‚
    exact Nat.ModEq.trans hβ‚‚ hc₁
  have hβ‚…: p - 1 ≑ 0 [MOD (p+1)] := by
    rw [pow_two] at hβ‚„
    have gβ‚€: p^2 - 1^2 = (p-1) * (p+1) := by
      rw [mul_comm]
      exact Nat.sq_sub_sq p 1
    simp at gβ‚€
    rw [gβ‚€] at hβ‚„
    have g₁: p + 1 β‰  0 := by linarith
    refine Nat.ModEq.mul_right_cancel' g₁ ?_
    rw [zero_mul]
    exact hβ‚„
  have h₆: p - 1 ≀ 0 := by
    refine Nat.ModEq.le_of_lt_add hβ‚… ?_
    simp
    rw [← succ_eq_add_one]
    refine Nat.sub_lt_succ p 1
  have h₇: 0 < p - 1 := by
    simp
    linarith
  linarith [h₆,h₇]


lemma mylemma_51
  (p: β„•)
  (hpl: 5 ≀ p) :
  (p + p.factorial < p ^ p) := by
  -- we use induction
  refine Nat.le_induction ?_ ?_ p (hpl)
  . exact Nat.lt_of_sub_eq_succ rfl
  . intros n hn h₁
    have hβ‚‚: n + 1 + (n + 1).factorial = (n.factorial + 1) * (n + 1) := by
      rw[add_mul, one_mul, Nat.factorial_succ]
      rw [add_comm (n + 1)]
      rw [mul_comm (n + 1)]
    rw [hβ‚‚, pow_add, pow_one ]
    refine Nat.mul_lt_mul_of_pos_right ?_ (by linarith)
    have hβ‚…: n ^ n < (n + 1) ^ n := by
      refine Nat.pow_lt_pow_left ?_ ?_
      . exact lt_add_one n
      . refine Nat.ne_of_gt ?_
        linarith
    linarith


lemma mylemma_5
  (b p: β„•)
  (hp: Nat.Prime p)
  (hbp: p ≀ b)
  (h₁: p ^ p = b.factorial + p)
  (hp5: 5 ≀ p) :
  (False) := by
  -- first prove that b = p cannot be
  by_cases hβ‚„: b = p
  . have hβ‚…: p + p.factorial < p^p := by exact mylemma_51 p hp5
    rw [hβ‚„] at h₁
    linarith
  . have hpb: p < b := by exact lt_of_le_of_ne' hbp hβ‚„
    clear hbp hβ‚„
    have hβ‚‚: (p + 1) ^ 2 ∣ b.factorial := by
      have g₁: p + 1 ≀ b := by exact succ_le_iff.mpr hpb
      have gβ‚‚: 2 ∣ (p + 1) := by
        have gg₁: Odd p := by
          refine hp.odd_of_ne_two ?_
          linarith
        have ggβ‚‚: Even (p + 1) := by
          refine gg₁.add_odd ?_
          norm_num
        exact even_iff_two_dvd.mp ggβ‚‚
      have g₃: 2 * ((p+1)/2) * (p + 1) ∣ b.factorial := by
        have gg₁: (p + 1).factorial ∣ b.factorial := by exact Nat.factorial_dvd_factorial g₁
        have ggβ‚‚: (p + 1).factorial = (p + 1) * p.factorial := by exact factorial_succ p
        rw [mul_comm] at ggβ‚‚
        have gg₃: 6/2 ≀ (p + 1)/2 := by
          refine Nat.div_le_div_right ?_
          linarith
        norm_num at gg₃
        have ggβ‚„: 2 + (p+1)/2 ≀ p := by -- strong induction
          refine Nat.le_induction ?_ ?_ p (hp5)
          . norm_num
          . intros n _ hβ‚‚
            ring_nf
            have ggg₁: (n / 2).succ ≀ (n + 1) / 2 + 1 := by
              rw [← succ_eq_add_one]
              refine Nat.succ_le_succ ?_
              refine Nat.div_le_div_right ?_
              linarith
            simp
            nth_rewrite 1 [← mul_one 2]
            rw [Nat.two_mul 1, add_assoc]
            refine Nat.add_le_add_left ?_ 1
            refine le_trans ?_ hβ‚‚
            rw [add_comm 2 _]
            nth_rewrite 3 [← mul_one 2]
            rw [Nat.two_mul 1, ← add_assoc, add_comm 1]
            exact Nat.add_le_add_right ggg₁ 1
        have ggβ‚…: (2+(p+1)/2).factorial ∣ p.factorial := by
          exact factorial_dvd_factorial ggβ‚„
        have gg₆: (2:β„•).factorial * ((p+1)/2).factorial ∣ p.factorial := by
          refine dvd_trans ?_ ggβ‚…
          exact (2:β„•).factorial_mul_factorial_dvd_factorial_add ((p + 1) / 2)
        have gg₇: 2 * ((p+1)/2) ∣ p.factorial := by
          refine dvd_trans ?_ gg₆
          simp
          refine mul_dvd_mul_left 2 ?_
          refine Nat.dvd_factorial (by linarith[gg₃]) (by linarith)
        have ggβ‚ˆ: 2 * ((p+1)/2) * (p + 1) ∣ p.factorial * (p + 1) := by
          refine mul_dvd_mul_right ?_ (p + 1)
          exact gg₇
        rw [ggβ‚‚] at gg₁
        exact dvd_trans ggβ‚ˆ gg₁
      have gβ‚„: 2 * ((p+1)/2) = (p + 1) := by
        exact Nat.mul_div_cancel' gβ‚‚
      rw [gβ‚„] at g₃
      ring_nf at *
      exact g₃
    have h₃: b.factorial = p ^ p - p := by exact eq_tsub_of_add_eq (h₁.symm)
    rw [h₃] at hβ‚‚
    exact mylemma_52 p hp hp5 hβ‚‚


lemma mylemma_6
  (a b p: β„•)
  (hp: Nat.Prime p)
  (hβ‚‚: p ∣ a)
  (hb2p: 2 * p ≀ b) :
  (p ^ 2 ∣ a ^ p - b.factorial) := by
  have g₁: p^p ∣ a^p := by exact pow_dvd_pow_of_dvd hβ‚‚ p
  have gβ‚‚: 2 ≀ p := by exact Prime.two_le hp
  have h₃: p^2 ∣ a^p := by exact pow_dvd_of_le_of_pow_dvd gβ‚‚ g₁
  have g₃: (2*p).factorial ∣ b.factorial := by exact factorial_dvd_factorial hb2p
  have gβ‚„: p.factorial * p.factorial ∣ (p+p).factorial := by
    exact factorial_mul_factorial_dvd_factorial_add p p
  rw [← pow_two, ← two_mul] at gβ‚„
  have gβ‚…: p ∣ p.factorial := by exact Nat.dvd_factorial (by linarith) (by linarith)
  have hβ‚„: p ^ 2 ∣ p.factorial ^ 2 := by exact pow_dvd_pow_of_dvd gβ‚… 2
  have g₆: p ^ 2 ∣ (2 * p).factorial := by exact dvd_trans hβ‚„ gβ‚„
  have hβ‚…: p^2 ∣ b.factorial := by exact dvd_trans g₆ g₃
  exact dvd_sub' h₃ hβ‚…


theorem imo_2022_p5
  (a b p : β„•)
  (hβ‚€: 0 < a ∧ 0 < b)
  (hp: Nat.Prime p)
  (h₁: a^p = Nat.factorial b + p) :
  (a, b, p) = (2, 2, 2) ∨ (a, b, p) = (3, 4, 3) := by
  by_cases hbp: b < p -- no solution
  . exfalso
    by_cases hab: a ≀ b
    . have hβ‚‚: a ∣ b.factorial := by exact Nat.dvd_factorial hβ‚€.1 hab
      have g₃: a ∣ b.factorial + p := by
        rw [← h₁]
        refine dvd_pow_self a ?_
        exact Nat.Prime.ne_zero hp
      have h₃: a ∣ p := by exact (Nat.dvd_add_right hβ‚‚).mp g₃
      have hβ‚„: a = 1 := by
        have gβ‚„: a = 1 ∨ a = p := by
          exact (Nat.dvd_prime hp).mp h₃
        cases' gβ‚„ with gβ‚„β‚€ g₄₁
        . exact gβ‚„β‚€
        . exfalso
          rw [← g₄₁] at hbp
          linarith[hbp,hab]
      rw [hβ‚„] at h₁
      simp at h₁
      have hβ‚…: 2 ≀ p := by exact Nat.Prime.two_le hp
      have g₆: 0 < b.factorial := by exact Nat.factorial_pos b
      have h₇: 1+2 ≀ b.factorial + p := by exact Nat.add_le_add g₆ hβ‚…
      rw [← h₁] at h₇
      linarith
    . push_neg at hab
      have hβ‚‚: (b+1)^p ≀ a^p := by
        refine (Nat.pow_le_pow_iff_left ?_).mpr hab
        exact Nat.Prime.ne_zero hp
      have h₃: b^p + p*b + 1 ≀ (b+1)^p := by
        ring_nf
        rw [add_assoc]
        exact mylemma_1 b p hβ‚€.2 hbp
      have gβ‚„: p * 1 ≀ p * b := by
        refine mul_le_mul ?_ ?_ ?_ ?_
        . exact rfl.ge
        . exact hβ‚€.2
        . norm_num
        . exact Nat.zero_le p
      have gβ‚„: b.factorial ≀ b^b := by exact Nat.factorial_le_pow b
      have gβ‚…: b^b ≀ b^p := by
        refine Nat.pow_le_pow_of_le_right hβ‚€.2 ?_
        exact le_of_lt hbp
      linarith
  . push_neg at hbp
    have hβ‚‚: p ∣ a := by exact mylemma_3 a b p hp h₁ hbp
    by_cases hb2p: b < 2*p
    . have h₃: a = p := by exact mylemma_4 a b p hβ‚€ hp h₁ hbp hβ‚‚ hb2p
      rw [h₃] at h₁
      by_cases hp5: p < 5
      . have hβ‚„: 2 ≀ p := by exact Prime.two_le hp
        interval_cases p
        . left
          norm_num at h₁
          have hβ‚„: b.factorial = 2 := by linarith
          have gβ‚…: (2:β„•).factorial = 2 := by norm_num
          rw [← gβ‚…] at hβ‚„
          have hβ‚…: b = 2 := by
            refine (Nat.factorial_inj ?_).mp hβ‚„
            linarith
          rw [h₃,hβ‚…]
        . right
          norm_num at h₁
          rw [h₃]
          have hβ‚„: b.factorial = 24 := by linarith
          have gβ‚…: (4:β„•).factorial = 24 := by exact rfl
          rw [← gβ‚…] at hβ‚„
          have hβ‚…: b = 4 := by
            refine (Nat.factorial_inj ?_).mp hβ‚„
            linarith
          rw [hβ‚…]
        . exfalso
          contradiction
      . push_neg at hp5
        exfalso -- lifting the exponent
        exact mylemma_5 b p hp hbp h₁ hp5
    . push_neg at hb2p
      exfalso
      have h₃: p^2 ∣ a^p - b.factorial := by exact mylemma_6 a b p hp hβ‚‚ hb2p
      have g₃: b.factorial ≀ a^p := by exact le.intro (h₁.symm)
      have gβ‚„: a^p - b.factorial = p := by
        rw [add_comm] at h₁
        exact (Nat.sub_eq_iff_eq_add g₃).mpr h₁
      have hβ‚„: p^2 ∣ p := by
        rw [gβ‚„] at h₃
        exact h₃
      have gp: 0 < p := by exact Prime.pos hp
      have hβ‚…: p^2 ≀ p := by exact Nat.le_of_dvd gp hβ‚„
      have g₆: 1 < p := by exact Prime.one_lt hp
      have h₆: p^1 < p^2 := by exact Nat.pow_lt_pow_succ g₆
      linarith