File size: 20,281 Bytes
1c3ffd8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 |
import Mathlib
set_option linter.unusedVariables.analyzeTactics true
open Nat
lemma mylemma_1
(b p: β)
(hβ: 0 < b)
(hbp: b < p) :
(1 + (b * p + b ^ p) β€ (1 + b) ^ p) := by
refine Nat.le_induction ?_ ?_ p hbp
. rw [add_pow 1 b b.succ]
rw [Finset.sum_range_succ _ b.succ]
simp
rw [Finset.sum_range_succ _ b]
simp
rw [add_comm _ (b * (b + 1))]
have gb: b = b - 1 + 1 := by exact (Nat.sub_eq_iff_eq_add hβ).mp rfl
nth_rewrite 7 [gb]
rw [Finset.sum_range_succ' _ (b-1)]
simp
omega
. intros n _ hβ
nth_rewrite 2 [pow_add]
rw [pow_one]
have hβ: (1 + (b * n + b ^ n)) * (1 + b) β€ ((1 + b) ^ n) * (1 + b) := by
exact mul_le_mul_right' hβ (1 + b)
have hβ: 1 + (b * (n + 1) + b ^ (n + 1)) β€ (1 + (b * n + b ^ n)) * (1 + b) := by
ring_nf
rw [Nat.add_assoc _ (b ^ 2 * n) (b ^ n)]
exact Nat.le_add_right (1 + b + b * b ^ n + b * n) (b ^ 2 * n + b ^ n)
exact le_trans hβ hβ
lemma mylemma_2
(b: β) :
(b.factorial β€ b ^ b) := by
-- exact factorial_le_pow b
-- lean 4 has the lemma factorial_le_pow
induction' b with n hi
. norm_num
. by_cases hnp: 0 < n
. rw [ factorial_succ, pow_add, pow_one, mul_comm ]
refine mul_le_mul_right (n + 1) ?_
have hβ: n^ n β€ (n + 1)^n := by
refine (Nat.pow_le_pow_iff_left ?_).mpr ?_
. linarith
. linarith
exact le_trans hi hβ
. push_neg at hnp
interval_cases n
simp
lemma mylemma_3
(a b p: β)
(hp: Nat.Prime p)
(hβ: a ^ p = b.factorial + p)
(hbp: p β€ b) :
(p β£ a) := by
have hβ: p β£ b.factorial := by exact Nat.dvd_factorial (Nat.Prime.pos hp) hbp
have hβ: p β£ b.factorial + p := by exact Nat.dvd_add_self_right.mpr hβ
have hβ: p β£ a^p := by
rw [hβ]
exact hβ
exact Nat.Prime.dvd_of_dvd_pow hp hβ
lemma mylemma_42
(a b : β)
(hβ: 2 β€ a)
(hβ: a < b) :
(a + b < a * b ) := by
have hβ: a + b < b + b := by exact add_lt_add_right hβ b
have hβ: b + b β€ a * b := by
rw [β two_mul]
exact mul_le_mul_right' hβ b
exact gt_of_ge_of_gt hβ hβ
lemma mylemma_43
(p: β) :
(Finset.Ico p (2 * p - 1)).prod (fun x => x + 1)
= (Finset.range (p - 1)).prod (fun x => p + (x + 1)) := by
rw [Finset.prod_Ico_eq_prod_range _ (p) (2 * p - 1)]
have hβ: 2 * p - 1 - p = p - 1 := by omega
rw [hβ]
exact rfl
lemma mylemma_44
(p: β)
(hp: 2 β€ p) :
(Finset.range (p - 1)).prod (fun (x : β) => x + 1)
= (Finset.range (p - 1)).prod (fun (x : β) => p - (x + 1)) := by
refine Nat.le_induction ?_ ?_ p hp
. norm_num
. intros n hn2 hβ
simp at *
have hn: 0 < n := by exact lt_of_succ_lt hn2
rw [β Nat.mul_factorial_pred hn, hβ]
let f: (β β β) := fun (x : β) => n - x
have hβ: (Finset.range n).prod f =
(Finset.range 1).prod f * (Finset.Ico 1 n).prod f := by
exact (Finset.prod_range_mul_prod_Ico (fun k => n - k) hn).symm
rw [hβ]
have hβ: (Finset.range 1).prod f = n := by
exact Finset.prod_range_one fun k => n - k
rw [hβ]
simp
left
rw [Finset.prod_Ico_eq_prod_range f 1 n]
ring_nf
exact rfl
lemma mylemma_41
(b p: β)
-- (hβ: 0 < b)
(hp: Nat.Prime p)
(hb2p: b < 2 * p) :
b.factorial + p < p ^ (2 * p) := by
have hβ: b.factorial β€ (2*p - 1).factorial := by
refine factorial_le ?_
exact le_pred_of_lt hb2p
have gp: 2 β€ p := by exact Prime.two_le hp
have gp1: (p - 1) + 1 = p := by
refine Nat.sub_add_cancel ?_
exact one_le_of_lt gp
let f: (β β β) := (fun (x : β) => x + 1)
have hβ: (Finset.range (2 * p - 1)).prod f =
(Finset.range (p - 1)).prod (fun (x : β) => p^2 - (x+1)^2) * p := by
-- break the prod into three segments rang(p-1) + p + (p+1) until 2p-1
have gβ: (Finset.range (2 * p - 1)).prod f = (Finset.range ((p - 1) + 1)).prod f
* (Finset.Ico ((p - 1) + 1) (2 * p - 1)).prod f := by
symm
refine Finset.prod_range_mul_prod_Ico f ?_
rw [gp1]
have ggβ: p + 2 - 1 β€ 2 * p - 1 := by
refine Nat.sub_le_sub_right ?_ 1
rw [add_comm]
exact add_le_mul (by norm_num) gp
exact le_of_lt ggβ
have gβ: (Finset.range ((p - 1) + 1)).prod (fun (x : β) => x + 1) =
(Finset.range (p - 1)).prod (fun (x : β) => x + 1) * ((p - 1) + 1) := by
exact Finset.prod_range_succ _ (p - 1)
rw [gβ] at gβ
nth_rewrite 2 [mul_comm] at gβ
rw [β mul_assoc] at gβ
rw [gp1] at gβ gβ
have gβ: (Finset.Ico ((p - 1) + 1) (2 * p - 1)).prod (fun (x : β) => x + 1)
= (Finset.range (p - 1)).prod (fun (x : β) => p + (x+1)) := by
rw [gp1]
exact mylemma_43 p
have gβ: (Finset.range (p - 1)).prod (fun (x : β) => x + 1)
= (Finset.range (p - 1)).prod (fun (x : β) => p - (x+1)) := by
exact mylemma_44 p gp
rw [gp1] at gβ
rw [gβ,gβ] at gβ
have gβ: (Finset.range (p - 1)).prod (fun (x : β) => p + (x+1))
* (Finset.range (p - 1)).prod (fun (x : β) => p - (x+1))
= (Finset.range (p - 1)).prod (fun (x : β) => (p + (x+1)) * (p - (x+1))) := by
symm
exact Finset.prod_mul_distrib
have gβ
: (fun (x : β) => p ^ 2 - (x+1) ^ 2) = (fun (x : β) => (p + (x+1)) * (p - (x+1))) := by
ext1 x
exact Nat.sq_sub_sq p (x + 1)
rw [gβ,β gβ
] at gβ
exact gβ
have hβ: (Finset.range (p - 1)).prod (fun (x : β) => p^2 - (x+1)^2) * p
β€ (p^2)^(Finset.range (p - 1)).card * p := by
refine Nat.mul_le_mul_right ?_ ?_
refine Finset.prod_le_pow_card (Finset.range (p - 1)) ?_ (p^2) ?_
intros x _
exact (p ^ 2).sub_le ((x + 1) ^ 2)
simp at *
have hβ: b.factorial + p β€ (p ^ 2) ^ (p - 1) * p + p := by
refine add_le_add_right ?_ p
refine le_trans ?_ hβ
rw [β hβ]
rw [Finset.prod_range_add_one_eq_factorial]
exact hβ
have hβ
: b.factorial + p < (p ^ 2) ^ (p - 1) * p * p := by
refine lt_of_le_of_lt hβ ?_
rw [add_comm]
nth_rewrite 2 [mul_comm]
refine mylemma_42 p ((p ^ 2) ^ (p - 1) * p) gp ?_
refine lt_mul_left (by linarith) ?_
rw [β pow_mul]
refine Nat.one_lt_pow ?_ (Nat.lt_of_succ_le gp)
refine Nat.mul_ne_zero (by norm_num) ?_
exact Nat.sub_ne_zero_iff_lt.mpr gp
rw [mul_assoc _ p p, β pow_two p] at hβ
rw [β Nat.pow_succ, succ_eq_add_one, gp1] at hβ
rw [Nat.pow_mul]
exact hβ
lemma mylemma_4
(a b p: β)
(hβ: 0 < a β§ 0 < b)
(hp: Nat.Prime p)
(hβ: a ^ p = b.factorial + p)
(hbp: p β€ b)
(hβ: p β£ a)
(hb2p: b < 2 * p) :
(a = p) := by
have gp: p β€ a := by exact Nat.le_of_dvd hβ.1 hβ
cases' lt_or_eq_of_le gp with hβ hβ
. exfalso
cases' hβ with c hβ
have gc: 0 < c := by
by_contra! hc0
interval_cases c
simp at *
linarith
by_cases hc: c < p
. have gβ: c β£ c^p := by exact dvd_pow_self c (by linarith)
have hβ: c β£ a^p := by
rw [hβ, mul_pow]
exact dvd_mul_of_dvd_right gβ (p ^ p)
have hβ
: c β£ b.factorial := by exact Nat.dvd_factorial gc (by linarith)
have gβ: p = a ^ p - b.factorial := by
symm
rw [add_comm] at hβ
refine (Nat.sub_eq_iff_eq_add ?_).mpr hβ
rw [add_comm] at hβ
exact le.intro (hβ.symm)
have hβ: c β£ p := by
rw [gβ]
exact dvd_sub' hβ hβ
have hβ: c = 1 β¨ c = p := by exact (dvd_prime hp).mp hβ
cases' hβ with hββ hββ
. rw [hββ, mul_one] at hβ
rw [hβ] at hβ
linarith [hβ]
. rw [hββ] at hc
simp at hc
. push_neg at hc
have gβ: p^2 β€ a := by
rw [hβ, pow_two]
exact mul_le_mul_left' hc p
have hβ: p^(2*p) β€ a^p := by
rw [pow_mul]
exact pow_left_mono p gβ
have hβ: b.factorial + p < p^(2*p) := by exact mylemma_41 b p hp hb2p
rw [βhβ] at hβ
linarith
exact hβ.symm
lemma mylemma_53
(p: β)
(hp5: 5 β€ p) :
((βp:β€) ^ p β‘ βp * (βp + 1) * (-1) ^ (p - 1) + (-1) ^ p [ZMOD (βp + 1) ^ 2]) := by
-- have hβ: βp ^ p = Finset.range -- binomial expansion
-- take the first two elements out
-- show that all the other elements are individually divisible by (p+1)^2
-- conclude that their sum is divisible by (p+1)^2
-- summation β‘ 0 [ZMOD (βp + 1) ^ 2]
-- now show that Nat.modeq.add
have hβ: (βp:β€) = (βp + 1) - 1 := by simp
have hβ: βp ^ p β‘ ((βp + 1) - 1) ^ p [ZMOD (βp + 1) ^ 2] := by rw [β hβ]
have hβ: (((βp:β€) + 1) - 1) ^ p = (βp * (βp + 1) * (-1:β€) ^ (p - 1) + (-1) ^ p)
+ (Finset.Ico 2 (p + 1)).sum (fun (k : β) =>
(βp + 1) ^ k * (-1:β€) ^ (p - k) * β(p.choose k)) := by
rw [sub_eq_add_neg]
rw [add_pow ((βp:β€) + 1) (-1:β€)]
have gβ: 2 β€ p + 1 := by
have ggβ: 5 + 1 β€ p + 1 := by exact add_le_add_right hp5 1
refine le_trans ?_ ggβ
norm_num
have gβ: 1 β€ 2 := by norm_num
rw [β Finset.sum_range_add_sum_Ico _ gβ]
rw [β Finset.sum_range_add_sum_Ico _ gβ]
simp
rw [add_comm]
simp
rw [mul_comm]
rw [mul_assoc]
have hβ: 0 β‘ (Finset.Ico 2 (p + 1)).sum (fun (k : β) => (βp + 1) ^ k * (-1) ^ (p - k) * β(p.choose k))
[ZMOD (βp + 1) ^ 2] := by
refine Int.modEq_of_dvd ?_
simp
refine Finset.dvd_sum ?_
intros x gβ
have gx: 2 β€ x := by exact (Finset.mem_Ico.mp gβ).left
rw [mul_assoc]
refine dvd_mul_of_dvd_left ?_ ((-1:β€) ^ (p - x) * β(p.choose x))
refine pow_dvd_pow ((βp:β€) + 1) gx
rw [hβ] at hβ
rw [β add_zero ((βp:β€) ^ p)] at hβ
exact Int.ModEq.add_right_cancel hβ hβ
lemma mylemma_52
(p: β)
(hp: Nat.Prime p)
(hp5: 5 β€ p)
(hβ: (p + 1) ^ 2 β£ p ^ p - p) :
False := by
have hβ: ((βp^p - βp):β€) β‘ (β(p.choose 1) * β(p + 1) * (-1:β€)^(p-1) + (-1:β€)^p) - βp
[ZMOD β(p+1)^2] := by
refine Int.ModEq.sub_right (βp) ?_
simp
exact mylemma_53 p hp5
have gpo: Odd p := by
refine Nat.Prime.odd_of_ne_two hp ?_
linarith [hp5]
have gpe: Even (p - 1) := by
refine hp.even_sub_one ?_
linarith [hp5]
have gβ: (-1:β€) ^ (p - 1) = 1 := by exact Even.neg_one_pow gpe
have gβ: (-1:β€) ^ (p) = -1 := by exact Odd.neg_one_pow gpo
rw [gβ,gβ] at hβ
simp at hβ
have hβ: (p ^ p - p) β‘ (p * (p + 1)) - 1 - p [MOD ((p + 1) ^ 2)] := by
refine Int.natCast_modEq_iff.mp ?_
have gβ: p β€ p^p := by
refine Nat.le_self_pow (by linarith) _
rw [Nat.cast_sub gβ]
have gβ: p β€ p * (p + 1) - 1 := by
rw [mul_add]
simp
rw [add_comm, Nat.add_sub_assoc]
. simp
. rw [β pow_two]
refine Nat.one_le_pow 2 p (by linarith)
rw [Nat.cast_sub gβ]
have gβ
: 1 β€ p * (p + 1) := by
rw [β mul_one (p * (p + 1))]
refine Nat.le_mul_of_pos_left ?_ ?_
refine Nat.mul_pos (by linarith) (by linarith)
rw [Nat.cast_sub gβ
]
rw [β sub_eq_add_neg] at hβ
norm_cast
norm_cast at hβ
have hβ: p * (p + 1) - 1 - p = p^2 - 1 := by
rw [Nat.sub_sub, mul_add]
simp
rw [β pow_two]
exact Nat.add_sub_add_right (p^2) p 1
rw [hβ] at hβ
clear hβ gpo gpe gβ gβ
-- now derive a line of contradictions from hβ
have hcβ: (p ^ p - p) β‘ 0 [MOD (p+1)^2] := by exact modEq_zero_iff_dvd.mpr hβ
-- mix the contradiction with what we had in hβ
have hβ: p ^ 2 - 1 β‘ 0 [MOD (p+1)^2] := by
apply Nat.ModEq.symm at hβ
exact Nat.ModEq.trans hβ hcβ
have hβ
: p - 1 β‘ 0 [MOD (p+1)] := by
rw [pow_two] at hβ
have gβ: p^2 - 1^2 = (p-1) * (p+1) := by
rw [mul_comm]
exact Nat.sq_sub_sq p 1
simp at gβ
rw [gβ] at hβ
have gβ: p + 1 β 0 := by linarith
refine Nat.ModEq.mul_right_cancel' gβ ?_
rw [zero_mul]
exact hβ
have hβ: p - 1 β€ 0 := by
refine Nat.ModEq.le_of_lt_add hβ
?_
simp
rw [β succ_eq_add_one]
refine Nat.sub_lt_succ p 1
have hβ: 0 < p - 1 := by
simp
linarith
linarith [hβ,hβ]
lemma mylemma_51
(p: β)
(hpl: 5 β€ p) :
(p + p.factorial < p ^ p) := by
-- we use induction
refine Nat.le_induction ?_ ?_ p (hpl)
. exact Nat.lt_of_sub_eq_succ rfl
. intros n hn hβ
have hβ: n + 1 + (n + 1).factorial = (n.factorial + 1) * (n + 1) := by
rw[add_mul, one_mul, Nat.factorial_succ]
rw [add_comm (n + 1)]
rw [mul_comm (n + 1)]
rw [hβ, pow_add, pow_one ]
refine Nat.mul_lt_mul_of_pos_right ?_ (by linarith)
have hβ
: n ^ n < (n + 1) ^ n := by
refine Nat.pow_lt_pow_left ?_ ?_
. exact lt_add_one n
. refine Nat.ne_of_gt ?_
linarith
linarith
lemma mylemma_5
(b p: β)
(hp: Nat.Prime p)
(hbp: p β€ b)
(hβ: p ^ p = b.factorial + p)
(hp5: 5 β€ p) :
(False) := by
-- first prove that b = p cannot be
by_cases hβ: b = p
. have hβ
: p + p.factorial < p^p := by exact mylemma_51 p hp5
rw [hβ] at hβ
linarith
. have hpb: p < b := by exact lt_of_le_of_ne' hbp hβ
clear hbp hβ
have hβ: (p + 1) ^ 2 β£ b.factorial := by
have gβ: p + 1 β€ b := by exact succ_le_iff.mpr hpb
have gβ: 2 β£ (p + 1) := by
have ggβ: Odd p := by
refine hp.odd_of_ne_two ?_
linarith
have ggβ: Even (p + 1) := by
refine ggβ.add_odd ?_
norm_num
exact even_iff_two_dvd.mp ggβ
have gβ: 2 * ((p+1)/2) * (p + 1) β£ b.factorial := by
have ggβ: (p + 1).factorial β£ b.factorial := by exact Nat.factorial_dvd_factorial gβ
have ggβ: (p + 1).factorial = (p + 1) * p.factorial := by exact factorial_succ p
rw [mul_comm] at ggβ
have ggβ: 6/2 β€ (p + 1)/2 := by
refine Nat.div_le_div_right ?_
linarith
norm_num at ggβ
have ggβ: 2 + (p+1)/2 β€ p := by -- strong induction
refine Nat.le_induction ?_ ?_ p (hp5)
. norm_num
. intros n _ hβ
ring_nf
have gggβ: (n / 2).succ β€ (n + 1) / 2 + 1 := by
rw [β succ_eq_add_one]
refine Nat.succ_le_succ ?_
refine Nat.div_le_div_right ?_
linarith
simp
nth_rewrite 1 [β mul_one 2]
rw [Nat.two_mul 1, add_assoc]
refine Nat.add_le_add_left ?_ 1
refine le_trans ?_ hβ
rw [add_comm 2 _]
nth_rewrite 3 [β mul_one 2]
rw [Nat.two_mul 1, β add_assoc, add_comm 1]
exact Nat.add_le_add_right gggβ 1
have ggβ
: (2+(p+1)/2).factorial β£ p.factorial := by
exact factorial_dvd_factorial ggβ
have ggβ: (2:β).factorial * ((p+1)/2).factorial β£ p.factorial := by
refine dvd_trans ?_ ggβ
exact (2:β).factorial_mul_factorial_dvd_factorial_add ((p + 1) / 2)
have ggβ: 2 * ((p+1)/2) β£ p.factorial := by
refine dvd_trans ?_ ggβ
simp
refine mul_dvd_mul_left 2 ?_
refine Nat.dvd_factorial (by linarith[ggβ]) (by linarith)
have ggβ: 2 * ((p+1)/2) * (p + 1) β£ p.factorial * (p + 1) := by
refine mul_dvd_mul_right ?_ (p + 1)
exact ggβ
rw [ggβ] at ggβ
exact dvd_trans ggβ ggβ
have gβ: 2 * ((p+1)/2) = (p + 1) := by
exact Nat.mul_div_cancel' gβ
rw [gβ] at gβ
ring_nf at *
exact gβ
have hβ: b.factorial = p ^ p - p := by exact eq_tsub_of_add_eq (hβ.symm)
rw [hβ] at hβ
exact mylemma_52 p hp hp5 hβ
lemma mylemma_6
(a b p: β)
(hp: Nat.Prime p)
(hβ: p β£ a)
(hb2p: 2 * p β€ b) :
(p ^ 2 β£ a ^ p - b.factorial) := by
have gβ: p^p β£ a^p := by exact pow_dvd_pow_of_dvd hβ p
have gβ: 2 β€ p := by exact Prime.two_le hp
have hβ: p^2 β£ a^p := by exact pow_dvd_of_le_of_pow_dvd gβ gβ
have gβ: (2*p).factorial β£ b.factorial := by exact factorial_dvd_factorial hb2p
have gβ: p.factorial * p.factorial β£ (p+p).factorial := by
exact factorial_mul_factorial_dvd_factorial_add p p
rw [β pow_two, β two_mul] at gβ
have gβ
: p β£ p.factorial := by exact Nat.dvd_factorial (by linarith) (by linarith)
have hβ: p ^ 2 β£ p.factorial ^ 2 := by exact pow_dvd_pow_of_dvd gβ
2
have gβ: p ^ 2 β£ (2 * p).factorial := by exact dvd_trans hβ gβ
have hβ
: p^2 β£ b.factorial := by exact dvd_trans gβ gβ
exact dvd_sub' hβ hβ
theorem imo_2022_p5
(a b p : β)
(hβ: 0 < a β§ 0 < b)
(hp: Nat.Prime p)
(hβ: a^p = Nat.factorial b + p) :
(a, b, p) = (2, 2, 2) β¨ (a, b, p) = (3, 4, 3) := by
by_cases hbp: b < p -- no solution
. exfalso
by_cases hab: a β€ b
. have hβ: a β£ b.factorial := by exact Nat.dvd_factorial hβ.1 hab
have gβ: a β£ b.factorial + p := by
rw [β hβ]
refine dvd_pow_self a ?_
exact Nat.Prime.ne_zero hp
have hβ: a β£ p := by exact (Nat.dvd_add_right hβ).mp gβ
have hβ: a = 1 := by
have gβ: a = 1 β¨ a = p := by
exact (Nat.dvd_prime hp).mp hβ
cases' gβ with gββ gββ
. exact gββ
. exfalso
rw [β gββ] at hbp
linarith[hbp,hab]
rw [hβ] at hβ
simp at hβ
have hβ
: 2 β€ p := by exact Nat.Prime.two_le hp
have gβ: 0 < b.factorial := by exact Nat.factorial_pos b
have hβ: 1+2 β€ b.factorial + p := by exact Nat.add_le_add gβ hβ
rw [β hβ] at hβ
linarith
. push_neg at hab
have hβ: (b+1)^p β€ a^p := by
refine (Nat.pow_le_pow_iff_left ?_).mpr hab
exact Nat.Prime.ne_zero hp
have hβ: b^p + p*b + 1 β€ (b+1)^p := by
ring_nf
rw [add_assoc]
exact mylemma_1 b p hβ.2 hbp
have gβ: p * 1 β€ p * b := by
refine mul_le_mul ?_ ?_ ?_ ?_
. exact rfl.ge
. exact hβ.2
. norm_num
. exact Nat.zero_le p
have gβ: b.factorial β€ b^b := by exact Nat.factorial_le_pow b
have gβ
: b^b β€ b^p := by
refine Nat.pow_le_pow_of_le_right hβ.2 ?_
exact le_of_lt hbp
linarith
. push_neg at hbp
have hβ: p β£ a := by exact mylemma_3 a b p hp hβ hbp
by_cases hb2p: b < 2*p
. have hβ: a = p := by exact mylemma_4 a b p hβ hp hβ hbp hβ hb2p
rw [hβ] at hβ
by_cases hp5: p < 5
. have hβ: 2 β€ p := by exact Prime.two_le hp
interval_cases p
. left
norm_num at hβ
have hβ: b.factorial = 2 := by linarith
have gβ
: (2:β).factorial = 2 := by norm_num
rw [β gβ
] at hβ
have hβ
: b = 2 := by
refine (Nat.factorial_inj ?_).mp hβ
linarith
rw [hβ,hβ
]
. right
norm_num at hβ
rw [hβ]
have hβ: b.factorial = 24 := by linarith
have gβ
: (4:β).factorial = 24 := by exact rfl
rw [β gβ
] at hβ
have hβ
: b = 4 := by
refine (Nat.factorial_inj ?_).mp hβ
linarith
rw [hβ
]
. exfalso
contradiction
. push_neg at hp5
exfalso -- lifting the exponent
exact mylemma_5 b p hp hbp hβ hp5
. push_neg at hb2p
exfalso
have hβ: p^2 β£ a^p - b.factorial := by exact mylemma_6 a b p hp hβ hb2p
have gβ: b.factorial β€ a^p := by exact le.intro (hβ.symm)
have gβ: a^p - b.factorial = p := by
rw [add_comm] at hβ
exact (Nat.sub_eq_iff_eq_add gβ).mpr hβ
have hβ: p^2 β£ p := by
rw [gβ] at hβ
exact hβ
have gp: 0 < p := by exact Prime.pos hp
have hβ
: p^2 β€ p := by exact Nat.le_of_dvd gp hβ
have gβ: 1 < p := by exact Prime.one_lt hp
have hβ: p^1 < p^2 := by exact Nat.pow_lt_pow_succ gβ
linarith
|