File size: 25,304 Bytes
1c3ffd8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
import Mathlib
set_option linter.unusedVariables.analyzeTactics true

open NNReal Nat BigOperators Finset

-- imo-official.org/problems/IMO2007SL.pdf


lemma aux1
  (a : ℕ → NNReal)
  (m : ℕ)
  (hm₀ : Nat.succ 4 ≤ m) :
  a (m - 1) ^ 2 + a m ^ 2 + a 1 ^ 2 + a 2 ^ 2 ≤ ∑ x ∈ Finset.range m, a (x + 1) ^ 2 := by
  let fs: Finset ℕ := {0, 1, m-2, m-1}
  have h₀: fs = {0, 1, m-2, m-1} := by rfl
  have h₁: fs ⊆ Finset.range m := by
    refine insert_subset ?_ ?_
    . refine mem_range.mpr ?_
      exact zero_lt_of_lt hm₀
    . refine insert_subset ?_ ?_
      . refine mem_range.mpr ?_
        linarith
      . refine insert_subset ?_ ?_
        . refine mem_range.mpr ?_
          refine sub_lt ?_ (by norm_num)
          exact zero_lt_of_lt hm₀
        . refine singleton_subset_iff.mpr ?_
          refine mem_range.mpr ?_
          exact sub_one_lt_of_lt hm₀
  rw [← Finset.sum_sdiff h₁]
  have h₂: ∑ x ∈ fs, a (x + 1) ^ 2 = a (m - 1) ^ 2 + a m ^ 2 + a 1 ^ 2 + a 2 ^ 2 := by
    rw [h₀]
    have g₀: 0 ∈ fs := by exact mem_insert_self 0 {1, m - 2, m - 1}
    rw [← Finset.add_sum_erase fs _ g₀]
    simp
    have g₁: 4 ≤ m - 1 := by exact Nat.le_sub_one_of_lt hm₀
    have g₂: 3 ≤ m - 2 := by exact le_sub_of_add_le hm₀
    have g₃: fs.erase 0 = ({1, m - 2, m - 1}:(Finset ℕ)) := by
      rw [h₀]
      refine erase_insert ?h
      refine forall_mem_not_eq'.mp ?_
      intros b hb₀ hb₁
      rw [hb₁] at hb₀
      norm_num at hb₀
      cases' hb₀ with hb₀ hb₀
      . rw [← hb₀] at g₂
        linarith
      . rw [← hb₀] at g₁
        linarith
    rw [g₃]
    have g₄: (1:ℕ) ∈ ({1, m - 2, m - 1}:(Finset ℕ)) := by
      exact mem_insert_self 1 {m - 2, m - 1}
    rw [← Finset.add_sum_erase _ _ g₄]
    simp
    rw [Finset.erase_eq_self.mpr ?_]
    . have g₅: (m - 2) ∈ ({m - 2, m - 1}:(Finset ℕ)) := by
        exact mem_insert_self (m - 2) {m - 1}
      rw [← Finset.add_sum_erase _ _ g₅]
      simp
      rw [Finset.erase_eq_self.mpr ?_]
      . rw [Finset.sum_singleton, Nat.sub_add_cancel (by linarith)]
        rw [← Nat.sub_add_comm (by linarith)]
        simp
        ring_nf
      . refine Finset.not_mem_singleton.mpr ?_
        omega
    . refine forall_mem_not_eq'.mp ?_
      intros b hb₀ hb₁
      rw [hb₁] at hb₀
      simp at hb₀
      cases' hb₀ with hb₀ hb₀
      . rw [← hb₀] at g₂
        linarith
      . rw [← hb₀] at g₁
        linarith
  rw [add_comm _ (∑ x ∈ fs, a (x + 1) ^ 2), h₂]
  exact le_self_add



lemma aux2
  (a : ℕ → NNReal) :
  ∀ (n : ℕ),
    4 < n ∧ n < 101 →
      (∀ (x y : ℕ), x % n = y % n → a (x + 1) = a (y + 1)) →
        ∑ x ∈ range n, (a (x + 1) ^ 4 + 2 * a (x + 1) ^ 2 * a (x + 2) ^ 2 + 2 * a (x + 1) ^ 2 * a (x + 3) ^ 2) ≤
          (∑ x ∈ range n, a (x + 1) ^ 2) ^ 2 := by
  intro n hn₀ hn₂
  cases' hn₀ with hn₀ hn₁
  have hn₃: n = (n - 2) + 1 + 1 := by omega
  nth_rw 1 [hn₃,]
  rw [Finset.sum_range_succ, sum_range_succ]
  have hn₄: a (n - 2 + 1) = a (n - 1) := by
    refine congrArg a (by omega)
  have hn₅: a (n - 2 + 3) = a 1 := by
    refine hn₂ (n - 2 + 2) 0 ?_
    rw [Nat.zero_mod, Nat.sub_add_cancel ?_]
    . rw [Nat.mod_self n]
    . linarith
  have hn₆: a (n - 2 + 1 + 3) = a 2 := by
    refine hn₂ (n - 2 + 3) 1 ?_
    symm
    rw [Nat.mod_eq_of_lt (by linarith)]
    have g₀: n - 2 + 3 = n + 1 := by linarith
    rw [g₀]
    refine Eq.symm (mod_eq_of_modEq ?_ (by linarith))
    exact Nat.add_modEq_left
  rw [← hn₃, hn₄, hn₅, hn₆]
  refine le_induction ?_ ?_ n hn₀
  . repeat rw [Finset.sum_range_succ]
    simp
    ring_nf
    repeat refine add_le_add_right ?_ _
    refine le_of_eq ?_
    rfl
  . intros m hm₀ hm₁
    have hm₂: m + 1 - 2 = m - 2 + 1 := by
      rw [add_comm, add_comm _ 1, Nat.add_sub_assoc ?_ 1]
      omega
    rw [hm₂, Finset.sum_range_succ, sum_range_succ]
    have hm₃: m - 2 + 1 = m - 1 := by exact id (Eq.symm hm₂)
    have hm₄: m - 2 + 2 = m := by exact Eq.symm ((fun {m n} => pred_eq_succ_iff.mp) hm₂)
    have hm₅: m - 2 + 3 = m + 1 := by omega
    have hm₆: m + 1 - 1 = m := by exact rfl
    rw [hm₃, hm₄, hm₅, hm₆]
    clear hm₃ hm₄ hm₅ hm₆
    rw [add_sq, add_assoc ((∑ x ∈ Finset.range m, a (x + 1) ^ 2) ^ 2)]
    have h₅₀: 2 * a (m - 1) ^ 2 * a (m + 1) ^ 2 + 2 * a m ^ 2 * a (m + 1) ^ 2
      + 2 * a (m + 1) ^ 2 * a 1 ^ 2 + 2 * a (m + 1) ^ 2 * a 2 ^ 2 + a (m + 1) ^ 4 ≤
      (2 * ∑ x ∈ Finset.range m, a (x + 1) ^ 2) * a (m + 1) ^ 2 + (a (m + 1) ^ 2) ^ 2 := by
      rw [← pow_mul]
      simp
      have h₅₁: 2 * a (m - 1) ^ 2 * a (m + 1) ^ 2 + 2 * a m ^ 2 * a (m + 1) ^ 2 + 2 * a (m + 1) ^ 2 * a 1 ^ 2 +
        2 * a (m + 1) ^ 2 * a 2 ^ 2 =
        2 * a (m + 1) ^ 2 * (a (m - 1) ^ 2 + a m ^ 2 + a 1 ^ 2 + a 2 ^ 2) := by
        ring_nf
      rw [h₅₁, mul_assoc 2 _ (a (m + 1) ^ 2), mul_comm (∑ x ∈ Finset.range m, a (x + 1) ^ 2), ← mul_assoc 2]
      have h₅₂: a (m - 1) ^ 2 + a m ^ 2 + a 1 ^ 2 + a 2 ^ 2 ≤ ∑ x ∈ Finset.range m, a (x + 1) ^ 2 := by
        exact aux1 a m hm₀
      refine mul_le_mul ?_ ?_ ?_ ?_
      . exact le_of_eq (by rfl)
      . exact h₅₂
      . exact _root_.zero_le (a (m - 1) ^ 2 + a m ^ 2 + a 1 ^ 2 + a 2 ^ 2)
      . exact _root_.zero_le (2 * a (m + 1) ^ 2)
    have h₅₃: ∑ x ∈ Finset.range (m - 2), (a (x + 1) ^ 4 + 2 * a (x + 1) ^ 2 * a (x + 2) ^ 2 + 2 * a (x + 1) ^ 2 * a (x + 3) ^ 2) +
        a (m - 1) ^ 4 + 2 * a (m - 1) ^ 2 * a m ^ 2 + a m ^ 4 + 2 * a m ^ 2 * a 1 ^ 2
      ≤ (∑ x ∈ Finset.range m, a (x + 1) ^ 2) ^ 2 := by
      have h₅₄: ∑ x ∈ Finset.range (m - 2), (a (x + 1) ^ 4 + 2 * a (x + 1) ^ 2 * a (x + 2) ^ 2 + 2 * a (x + 1) ^ 2 * a (x + 3) ^ 2) +
          a (m - 1) ^ 4 + 2 * a (m - 1) ^ 2 * a m ^ 2 + a m ^ 4 + 2 * a m ^ 2 * a 1 ^ 2
        ≤ ∑ x ∈ Finset.range (m - 2), (a (x + 1) ^ 4 + 2 * a (x + 1) ^ 2 * a (x + 2) ^ 2 + 2 * a (x + 1) ^ 2 * a (x + 3) ^ 2) +
          (a (m - 1) ^ 4 + 2 * a (m - 1) ^ 2 * a m ^ 2 + 2 * a (m - 1) ^ 2 * a 1 ^ 2) +
          (a m ^ 4 + 2 * a m ^ 2 * a 1 ^ 2 + 2 * a m ^ 2 * a 2 ^ 2) := by
        repeat rw [add_assoc]
        repeat refine add_le_add_left ?_ _
        have h₅₅: 2 * a (m - 1) ^ 2 * a 1 ^ 2 + (a m ^ 4 + (2 * a m ^ 2 * a 1 ^ 2 + 2 * a m ^ 2 * a 2 ^ 2)) =
          (a m ^ 4 + 2 * a m ^ 2 * a 1 ^ 2) + (2 * a (m - 1) ^ 2 * a 1 ^ 2 + 2 * a m ^ 2 * a 2 ^ 2) := by
          ring_nf
        rw [h₅₅]
        exact le_self_add
      exact le_trans h₅₄ hm₁
    apply add_le_add h₅₃ at h₅₀
    have h₅₆: ∑ x ∈ Finset.range (m - 2), (a (x + 1) ^ 4 + 2 * a (x + 1) ^ 2 * a (x + 2) ^ 2 + 2 * a (x + 1) ^ 2 * a (x + 3) ^ 2)
        + a (m - 1) ^ 4 + 2 * a (m - 1) ^ 2 * a m ^ 2 + a m ^ 4 + 2 * a m ^ 2 * a 1 ^ 2
        + (2 * a (m - 1) ^ 2 * a (m + 1) ^ 2 + 2 * a m ^ 2 * a (m + 1) ^ 2 + 2 * a (m + 1) ^ 2 * a 1 ^ 2
        + 2 * a (m + 1) ^ 2 * a 2 ^ 2 + a (m + 1) ^ 4)
      = ∑ x ∈ Finset.range (m - 2), (a (x + 1) ^ 4 + 2 * a (x + 1) ^ 2 * a (x + 2) ^ 2 + 2 * a (x + 1) ^ 2 * a (x + 3) ^ 2) +
        (a (m - 1) ^ 4 + 2 * a (m - 1) ^ 2 * a m ^ 2 + 2 * a (m - 1) ^ 2 * a (m + 1) ^ 2) +
      (a m ^ 4 + 2 * a m ^ 2 * a (m + 1) ^ 2 + 2 * a m ^ 2 * a 1 ^ 2) +
    (a (m + 1) ^ 4 + 2 * a (m + 1) ^ 2 * a 1 ^ 2 + 2 * a (m + 1) ^ 2 * a 2 ^ 2) := by
      repeat rw [add_assoc]
      simp
      ring_nf
    rw [← h₅₆]
    exact h₅₀


theorem imo_2007_p6
  (a : ℕ → NNReal)
  (h₀ : ∑ x ∈ Finset.range 100, ((a (x + 1)) ^ 2) = 1)
  (h₁ : ∀ x y, x % 100 = y % 100 → a (x + 1) = a (y + 1)) :
  ∑ x ∈ Finset.range (99), ((a (x + 1)) ^ 2 * a (x + 2)) + (a 100) ^ 2 * a 1 < (12:NNReal) / (25:NNReal) := by
  have h₂: ∀ x, 2 * a x ^ 2 * a (x + 1) * a (x + 2) ≤
    (a x * a (x + 1)) ^ 2 + (a x * a (x + 2)) ^ 2 := by
    intro x
    have h₂₀: 2 * (a x * a (x + 1)) * (a x * a (x + 2)) ≤
      (a x * a (x + 1)) ^ 2 + (a x * a (x + 2)) ^ 2 := by
      exact two_mul_le_add_sq (a x * a (x + 1)) (a x * a (x + 2))
    have h₂₁: 2 * (a x * a (x + 1)) * (a x * a (x + 2)) = 2 * a x ^ 2 * a (x + 1) * a (x + 2) := by
      rw [pow_two]
      ring_nf
    exact le_of_eq_of_le (id (Eq.symm h₂₁)) h₂₀
  have h₃: ∀ x ∈ Finset.range 100, a (x + 1) ≤ 1 := by
    intros x hx₀
    by_contra hx₁
    push_neg at hx₁
    let fsx : Finset ℕ := {x}
    have hx₂: 1 < ∑ x ∈ range 100, a (x + 1) ^ 2 := by
      have hx₃: 0 ≤ ∑ x ∈ (range 100 \ fsx), a (x + 1) ^ 2 := by
        exact _root_.zero_le (∑ x ∈ range 100 \ fsx, a (x + 1) ^ 2)
      have hx₄: 1 < ∑ x ∈ (fsx), a (x + 1) ^ 2 := by
        rw [Finset.sum_singleton]
        refine one_lt_pow₀ hx₁ ?_
        norm_num
      have hx₅: ∑ x ∈ (range 100 \ fsx), a (x + 1) ^ 2 + ∑ x ∈ (fsx), a (x + 1) ^ 2 =
        ∑ x ∈ range 100, a (x + 1) ^ 2 := by
        rw [← Finset.sum_union ?_]
        . rw [Finset.sdiff_union_self_eq_union]
          have hx₆: range 100 ∪ fsx = range 100 := by
            refine Finset.union_eq_left.mpr ?_
            exact singleton_subset_iff.mpr hx₀
          rw [hx₆]
        . exact sdiff_disjoint
      rw [← hx₅]
      exact lt_add_of_nonneg_of_lt hx₃ hx₄
    simp_all only [mem_range, lt_self_iff_false]
  have h₄: (∑ x ∈ Finset.range 100, (a (x + 2) * (a (x + 1) ^ 2  + 2 * a (x + 2) * a (x + 3)))) ^ 2 ≤
    ∑ x ∈ Finset.range 100, (a (x + 1) ^ 4 + 6 * a (x + 1) ^ 2 * a (x + 2) ^ 2 + 2 * a (x + 1) ^ 2 * a (x + 3) ^ 2) := by
    have h₄₀: (∑ x ∈ Finset.range 100, (a (x + 2) * (a (x + 1) ^ 2 + 2 * a (x + 2) * a (x + 3)))) ^ 2 ≤
      (∑ x ∈ Finset.range 100, (a (x + 2) ^ 2)) *
      (∑ x ∈ Finset.range 100, ((a (x + 1) ^ 2 + 2 * a (x + 2) * a (x + 3))) ^ 2) := by
      refine sum_mul_sq_le_sq_mul_sq (range 100) (fun i => a (i + 2)) _
    have h₄₁: ∑ x ∈ Finset.range 100, (a (x + 2) ^ 2) = 1 := by
      rw [Finset.sum_range_succ'] at h₀
      simp at h₀
      rw [Finset.sum_range_succ]
      have h₄₁₁: a 1 = a 101 := by exact h₁ 0 100 rfl
      rw [← h₄₁₁]
      exact h₀
    have h₄₂: ∑ x ∈ Finset.range 100, ((a (x + 1) ^ 2  + 2 * a (x + 2) * a (x + 3))) ^ 2 =
      ∑ x ∈ Finset.range 100, ((a (x + 1) ^ 4 + 4 * a (x + 1) ^ 2 * a (x + 2) * a (x + 3)
        + 4 * a (x + 2) ^ 2 * a (x + 3) ^ 2)) := by
      refine Finset.sum_congr (rfl) ?_
      intros x _
      rw [add_sq]
      ring_nf
    rw [h₄₁, one_mul, h₄₂] at h₄₀
    have h₄₃: ∑ x ∈ Finset.range 100, ((a (x + 1) ^ 4 + 4 * a (x + 1) ^ 2 * a (x + 2) * a (x + 3)
        + 4 * a (x + 2) ^ 2 * a (x + 3) ^ 2)) ≤
      ∑ x ∈ Finset.range 100, ((a (x + 1) ^ 4 + 2 * a (x + 1) ^ 2 * (a (x + 2) ^ 2 + a (x + 3) ^ 2)
        + 4 * a (x + 2) ^ 2 * a (x + 3) ^ 2)) := by
      refine Finset.sum_le_sum ?_
      intros x _
      rw [add_comm (a (x + 1) ^ 4) _, add_comm (a (x + 1) ^ 4) _]
      rw [add_assoc, add_assoc]
      refine add_le_add ?_ ?_
      . have hx₁: 2 * a (x + 1) ^ 2 * a (x + 1 + 1) * a (x + 1 + 2) ≤
          (a (x + 1) * a (x + 1 + 1)) ^ 2 + (a (x + 1) * a (x + 1 + 2)) ^ 2 := by
          exact h₂ (x + 1)
        have hx₂: 2 * a (x + 1) ^ 2 * a (x + 2) * a (x + 3) ≤
          a (x + 1) ^ 2 * (a (x + 2) ^ 2 + a (x + 3) ^ 2) := by
          rw [mul_add]
          refine le_of_le_of_eq hx₁ ?_
          ring_nf
        have hx₃: (4:NNReal) = 2 * 2 := by norm_num
        rw [hx₃]
        repeat rw [mul_assoc]
        have hx₄: 0 < (2:NNReal) := by norm_num
        refine (mul_le_mul_left hx₄).mpr ?_
        ring_nf
        ring_nf at hx₂
        exact hx₂
      . exact Preorder.le_refl (a (x + 1) ^ 4 + 4 * a (x + 2) ^ 2 * a (x + 3) ^ 2)
    have h₄₄: ∑ x ∈ Finset.range 100, ((a (x + 1) ^ 4 + 2 * a (x + 1) ^ 2 * (a (x + 2) ^ 2 + a (x + 3) ^ 2)
        + 4 * a (x + 2) ^ 2 * a (x + 3) ^ 2)) =
      ∑ x ∈ Finset.range 100, (a (x + 1) ^ 4 + 6 * a (x + 1) ^ 2 * a (x + 2) ^ 2 + 2
        * a (x + 1) ^ 2 * a (x + 3) ^ 2) := by
      rw [Finset.sum_add_distrib]
      have h₄₄₁: ∑ x ∈ range 100, 4 * a (x + 2) ^ 2 * a (x + 3) ^ 2 =
        ∑ x ∈ range 100, 4 * a (x + 1) ^ 2 * a (x + 2) ^ 2 := by
        rw [Finset.sum_range_succ _ 99, sum_range_succ' _ 99]
        have g₀: a 101 = a 1 := by exact h₁ 100 0 rfl
        have g₁: a 102 = a 2 := by exact h₁ 101 1 rfl
        rw [g₀, g₁]
      rw [h₄₄₁, ← Finset.sum_add_distrib]
      refine Finset.sum_congr (rfl) ?_
      intros x _
      rw [mul_add]
      ring_nf
    rw [h₄₄] at h₄₃
    exact le_trans h₄₀ h₄₃
  have h₆: ∑ x ∈ range 100, 4 * a (x + 1) ^ 2 * a (x + 2) ^ 21 := by
    have h₆₀: ∑ x ∈ range 100, 4 * a (x + 1) ^ 2 * a (x + 2) ^ 2 =
      ∑ x ∈ range 100, 4 * (a (x + 1) ^ 2 * a (x + 2) ^ 2) := by
      refine Finset.sum_congr rfl ?_
      intros x _
      ring_nf
    rw [h₆₀, ← Finset.mul_sum]
    let fs₂ := Finset.range (100)
    let fs₀ : Finset ℕ := fs₂.filter (fun x => Odd x)
    let fs₁ : Finset ℕ := fs₂.filter (fun x => Even x)
    have h₆₁ : Disjoint fs₀ fs₁ := by
      refine Finset.sdiff_eq_self_iff_disjoint.mp (by rfl)
    have h₆₂ : fs₀ ∪ fs₁ = fs₂ := by
      symm
      refine Finset.ext_iff.mpr ?_
      intro a
      constructor
      . intro ha₀
        refine mem_union.mpr ?mp.a
        have ha₁: Odd a ∨ Even a := by exact Or.symm (even_or_odd a)
        cases' ha₁ with ha₂ ha₃
        . left
          refine mem_filter.mpr ?mp.a.inl.h.a
          exact And.symm ⟨ha₂, ha₀⟩
        . right
          refine mem_filter.mpr ?mp.a.inl.h.b
          exact And.symm ⟨ha₃, ha₀⟩
      . intro ha₀
        apply mem_union.mp at ha₀
        cases' ha₀ with ha₁ ha₂
        . exact mem_of_mem_filter a ha₁
        . exact mem_of_mem_filter a ha₂
    have h₆₃: 4 * ∑ i ∈ fs₂, a (i + 1) ^ 2 * a (i + 2) ^ 24 * ((∑ i ∈ fs₀, (a (i + 1) ^ 2)) * (∑ i ∈ fs₁, (a (i + 1) ^ 2))) := by
      refine mul_le_mul (by norm_num) ?_ ?_ (by norm_num)
      . rw [← h₆₂, Finset.sum_union h₆₁]
        have g₀: ∑ i ∈ fs₁, a (i + 1) ^ 2 = ∑ i ∈ fs₀, (a i) ^ 2 := by
          refine sum_bij ?_ ?h.b2 ?h.b3 ?h.b4 ?h.b5
          . intros b _
            exact (b + 1)
          . intros b hb₀
            apply mem_filter.mp at hb₀
            cases' hb₀ with hb₀ hb₁
            have hb₂: Odd (b + 1) := by exact Even.add_one hb₁
            have hb₃: b ≤ 98 := by
              by_contra hc₀
              apply mem_range.mp at hb₀
              interval_cases b
              have hc₁: ¬ Even 99 := by decide
              exact hc₁ hb₁
            have hb₄: b + 1 < 100 := by linarith
            have hb₅: (b + 1) ∈ fs₂ := by exact mem_range.mpr hb₄
            refine mem_filter.mpr ?_
            exact And.symm ⟨hb₂, hb₅⟩
          . intros b _ c _ hb₂
            linarith
          . intros b hb₀
            use (b - 1)
            refine exists_prop.mpr ?h.a
            have hb₁: b ∈ fs₂ ∧ Odd b := by exact mem_filter.mp hb₀
            have hb₂: 1 ≤ b := by
              by_contra hc
              interval_cases b
              have hb₃: ¬ Odd 0 := by decide
              exact hb₃ hb₁.2
            constructor
            . cases' hb₁ with hb₁ hb₃
              have hb₄: Even (b - 1) := by exact Nat.Odd.sub_odd hb₃ (by decide)
              have hb₅: (b - 1) ∈ fs₂ := by
                refine mem_range.mpr ?_
                have hb₆: b < 100 := by exact List.mem_range.mp hb₁
                omega
              refine mem_filter.mpr ?_
              exact And.symm ⟨hb₄, hb₅⟩
            . exact Nat.sub_add_cancel hb₂
          . exact fun a_1 _ => rfl
        have g₁: ∑ x ∈ fs₁, a (x + 1) ^ 2 * a (x + 2) ^ 2 =
          ∑ x ∈ fs₀, a (x) ^ 2 * a (x + 1) ^ 2 := by
          refine sum_bij ?_ ?_ ?_ ?_ ?_
          . intros b _
            exact (b + 1)
          . intros b hb₀
            apply mem_filter.mp at hb₀
            cases' hb₀ with hb₀ hb₁
            have hb₂: Odd (b + 1) := by exact Even.add_one hb₁
            have hb₃: b ≤ 98 := by
              by_contra hc₀
              apply mem_range.mp at hb₀
              interval_cases b
              have hc₁: ¬ Even 99 := by decide
              exact hc₁ hb₁
            have hb₄: b + 1 < 100 := by linarith
            have hb₅: (b + 1) ∈ fs₂ := by exact mem_range.mpr hb₄
            refine mem_filter.mpr ?_
            exact And.symm ⟨hb₂, hb₅⟩
          . intros b _ c _ hb₂
            linarith
          . intros b hb₀
            use (b - 1)
            refine exists_prop.mpr ?h.b
            have hb₁: b ∈ fs₂ ∧ Odd b := by exact mem_filter.mp hb₀
            have hb₂: 1 ≤ b := by
              by_contra hc
              interval_cases b
              have hb₃: ¬ Odd 0 := by decide
              exact hb₃ hb₁.2
            constructor
            . cases' hb₁ with hb₁ hb₃
              have hb₄: Even (b - 1) := by exact Nat.Odd.sub_odd hb₃ (by decide)
              have hb₅: (b - 1) ∈ fs₂ := by
                refine mem_range.mpr ?_
                have hb₆: b < 100 := by exact List.mem_range.mp hb₁
                omega
              refine mem_filter.mpr ?_
              exact And.symm ⟨hb₄, hb₅⟩
            . exact Nat.sub_add_cancel hb₂
          . exact fun a_1 _ => rfl
        rw [g₀, g₁, Finset.sum_mul_sum, add_comm, ← sum_add_distrib]
        refine sum_le_sum ?_
        intros x hx₀
        apply mem_filter.mp at hx₀
        cases' hx₀ with hx₀ hx₁
        apply mem_range.mp at hx₀
        by_cases hx₃: x < 99
        . clear h₀ h₁ h₂ h₃ h₄ h₆₀ g₀ g₁
          let fs₃ : Finset ℕ := {x, (x + 2)}
          have hx₄: fs₃ ⊆ fs₀ := by
            intros b hb₀
            have hb₁: b = x ∨ b = x + 2 := by
              have g₀: fs₃ = {x, x + 2} := by rfl
              simp_all only [mem_insert, mem_singleton]
            cases' hb₁ with hb₁ hb₁
            . rw [hb₁]
              refine mem_filter.mpr ?_
              apply mem_range.mpr at hx₀
              exact And.symm ⟨hx₁, hx₀⟩
            . rw [hb₁]
              refine mem_filter.mpr ?_
              constructor
              . have hx₄: x < 98 := by
                  by_contra hc
                  interval_cases x
                  have hx₅: ¬ Odd 98 := by decide
                  apply hx₅ hx₁
                refine mem_range.mpr ?_
                linarith
              . refine Odd.add_even hx₁ ?_
                decide
          have hx₅: ∑ j ∈ fs₃, a (x + 1) ^ 2 * a j ^ 2 = a (x + 1) ^ 2 * a x ^ 2 + a (x + 1) ^ 2 * a (x + 2) ^ 2 := by
            have hx₆: fs₃ = {x, x + 2} := by rfl
            refine Finset.sum_eq_add_of_mem (x) (x + 2) ?_ ?_ (by norm_num) ?_
            . rw [hx₆]
              exact mem_insert_self x {x + 2}
            . rw [hx₆]
              simp
            . intros c hc₀ hc₁
              exfalso
              rw [hx₆] at hc₀
              simp only [mem_insert, mem_singleton] at hc₀
              have hc₃: ¬ (c ≠ x ∧ c ≠ x + 2) := by
                omega
              exact hc₃ hc₁
          rw [← Finset.sum_sdiff hx₄, hx₅]
          refine le_add_left ?_
          refine le_of_eq ?_
          rw [mul_comm (a x ^ 2) (a (x + 1) ^ 2)]
        . interval_cases x
          norm_num
          have hx₄: a 101 = a 1 := by exact h₁ 100 0 rfl
          let fs₃: Finset ℕ := {1, 99}
          have hx₅: fs₃ ⊆ fs₀ := by
            refine Finset.subset_iff.mpr ?_
            intros b hb₀
            have hb₁: b = 1 ∨ b = 99 := by exact List.mem_pair.mp hb₀
            cases' hb₁ with hb₂ hb₂
            . refine mem_filter.mpr ?_
              rw [hb₂]
              constructor
              . refine mem_range.mpr (by decide)
              . decide
            . rw [hb₂]
              refine mem_filter.mpr ?_
              constructor
              . exact self_mem_range_succ 99
              . decide
          have hx₆: ∑ x ∈ fs₃, a 100 ^ 2 * a x ^ 2 = a 100 ^ 2 * a 99 ^ 2 + a 100 ^ 2 * a 1 ^ 2 := by
            clear h₀ h₁ h₂ h₃ h₄ h₆₀
            have hx₇: fs₃ = {1, 99} := by rfl
            refine Finset.sum_eq_add_of_mem (99:ℕ) (1:ℕ) ?_ ?_ (by norm_num) ?_
            . rw [hx₇]
              decide
            . rw [hx₇]
              decide
            . intros c hc₀ hc₁
              exfalso
              have hc₂: c = 99 ∨ c = 1 := by
                refine Or.symm ?_
                exact List.mem_pair.mp hc₀
              have hc₃: ¬ (c ≠ 99 ∧ c ≠ 1) := by omega
              exact hc₃ hc₁
          rw [← Finset.sum_sdiff hx₅, hx₄, hx₆]
          refine le_add_left ?_
          refine le_of_eq ?_
          rw [mul_comm (a 99 ^ 2) (a 100 ^ 2)]
      . exact _root_.zero_le (∑ i ∈ range 100, a (i + 1) ^ 2 * a (i + 2) ^ 2)
    have h₆₄: 4 * ((∑ i ∈ fs₀, (a (i + 1) ^ 2)) * (∑ i ∈ fs₁, (a (i + 1) ^ 2))) ≤
      (∑ i ∈ fs₀, (a (i + 1) ^ 2) + ∑ i ∈ fs₁, (a (i + 1) ^ 2)) ^ 2 := by
      have g₀: ∀ x y : ℝ, 4 * x * y ≤ (x + y) ^ 2 := by
        intros x y
        rw [add_sq]
        have g₁: 2 * x * y ≤ x ^ 2 + y ^ 2 := by exact two_mul_le_add_sq x y
        linarith
      rw [← mul_assoc]
      let x := (∑ i ∈ fs₀, a (i + 1) ^ 2)
      let y := (∑ i ∈ fs₁, a (i + 1) ^ 2)
      refine g₀ x y
    have h₆₅: (∑ i ∈ fs₀, (a (i + 1) ^ 2) + ∑ i ∈ fs₁, (a (i + 1) ^ 2)) ^ 2 = 1 := by
      rw [← Finset.sum_union h₆₁, h₆₂, h₀]
      exact one_pow 2
    refine le_trans h₆₃ ?_
    refine le_trans h₆₄ ?_
    rw [h₆₅]
  let S : NNReal := ∑ x ∈ Finset.range 99, ((a (x + 1)) ^ 2 * a (x + 2)) + (a 100) ^ 2 * a 1
  have hS : S = ∑ x ∈ Finset.range 99, ((a (x + 1)) ^ 2 * a (x + 2)) + (a 100) ^ 2 * a 1 := by rfl
  rw [← hS]
  have hS₁ : S = ∑ x ∈ Finset.range 100, ((a (x + 1)) ^ 2 * a (x + 2)) := by
    rw [Finset.sum_range_succ]
    norm_num
    have g₀: a 101 = a 1 := by exact h₁ 100 0 rfl
    rw [g₀]
  have h₇: (3 * S) ^ 22 := by
    have h₇₀: 3 * S = ∑ x ∈ Finset.range 100, (a (x + 2) * (a (x + 1) ^ 2  + 2 * a (x + 2) * a (x + 3))) := by
      have g₀: ∑ x ∈ Finset.range 100, (a (x + 2) * (a (x + 1) ^ 2  + 2 * a (x + 2) * a (x + 3))) =
        ∑ x ∈ Finset.range 100, (a (x + 1) ^ 2 * a (x + 2) + 2 * a (x + 2) ^ 2 * a (x + 3)) := by
        refine Finset.sum_congr rfl ?_
        intros x _
        ring_nf
      have g₁: (3:NNReal) = 1 + 2 := by norm_num
      rw [g₀, Finset.sum_add_distrib]
      rw [g₁, hS₁, add_mul, one_mul, Finset.mul_sum]
      simp
      rw [Finset.sum_range_succ' _ 99, sum_range_succ _ 99]
      norm_num
      have g₂: a 101 = a 1 := by exact h₁ 100 0 rfl
      have g₃: a 102 = a 2 := by exact h₁ 101 1 rfl
      rw [g₂, g₃, ← mul_assoc 2]
      simp
      refine Finset.sum_congr rfl ?_
      intros x _
      ring_nf
    rw [← h₇₀] at h₄
    refine le_trans h₄ ?_
    have h₇₁: ∑ x ∈ range 100, (a (x + 1) ^ 4 + 6 * a (x + 1) ^ 2 * a (x + 2) ^ 2 + 2 * a (x + 1) ^ 2 * a (x + 3) ^ 2) =
      ∑ x ∈ range 100, (a (x + 1) ^ 4 + 2 * a (x + 1) ^ 2 * a (x + 2) ^ 2 + 2 * a (x + 1) ^ 2 * a (x + 3) ^ 2) +
      ∑ x ∈ range 100, 4 * a (x + 1) ^ 2 * a (x + 2) ^ 2 := by
      rw [← Finset.sum_add_distrib]
      refine Finset.sum_congr rfl ?_
      intros x _
      ring_nf
    have h₇₂: ∑ x ∈ range 100, (a (x + 1) ^ 4 + 2 * a (x + 1) ^ 2 * a (x + 2) ^ 2 + 2 * a (x + 1) ^ 2 * a (x + 3) ^ 2) ≤ 1 := by
      refine le_trans (aux2 a 100 ?_ h₁) ?_
      . omega
      . refine (sq_le_one_iff₀ ?_).mpr ?_
        . exact _root_.zero_le (∑ x ∈ range 100, a (x + 1) ^ 2)
        . rw [← h₀]
    rw [h₇₁, ← one_add_one_eq_two]
    refine add_le_add ?_ h₆
    norm_num
    exact h₇₂
  have h₈ : S ≤ (NNReal.sqrt 2) / (3:NNReal) := by
    have h₆₀: NNReal.sqrt (((3:NNReal) * S) ^ 2) ≤ NNReal.sqrt 2 := by
      exact NNReal.sqrt_le_sqrt.mpr h₇
    rw [sqrt_sq, mul_comm] at h₆₀
    refine (le_div_iff₀ (by norm_num)).mpr h₆₀
  have h₉: (NNReal.sqrt 2) / (3:NNReal) < (12:NNReal) / (25:NNReal)  := by
    have h₇₁: 2 < 144 / (625:NNReal) * 9 := by
      refine (one_lt_div (by norm_num)).mp ?_
      rw [mul_comm_div, ← mul_div_assoc, div_div]
      norm_num
      refine (one_lt_div (by norm_num)).mpr ?_
      norm_num
    have h₇₂: (NNReal.sqrt 2 / 3:NNReal) ^ 2 < (12 / 25:NNReal) ^ 2 := by
      rw [div_pow, div_pow]
      norm_num
      refine (div_lt_iff₀ ?_).mpr h₇₁
      exact ofNat_pos'
    have h₇₃: NNReal.sqrt ((NNReal.sqrt 2 / 3) ^ 2) < NNReal.sqrt ((12 / 25) ^ 2) := by
      exact sqrt_lt_sqrt.mpr h₇₂
    rw [sqrt_sq, sqrt_sq] at h₇₃
    exact h₇₃
  exact lt_of_le_of_lt h₈ h₉