File size: 11,968 Bytes
1c3ffd8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 |
import Mathlib
set_option linter.unusedVariables.analyzeTactics true
open Nat Real
lemma mylemma_xy_le_y
(x y : β)
(hβ : 0 < x β§ 0 < y)
-- (g : x ^ y ^ 2 = (x ^ y) ^ y)
(hxy : x β€ y)
(hβ : (x ^ y) ^ y = y ^ x) :
x ^ y β€ y := by
by_contra hc
push_neg at hc
have hβ: y^x β€ y^y := by
{ exact Nat.pow_le_pow_of_le_right hβ.2 hxy }
have hβ: y^y < (x^y)^y := by
refine Nat.pow_lt_pow_left hc ?_
refine Nat.pos_iff_ne_zero.mp hβ.2
rw [hβ] at hβ
linarith [hβ, hβ]
lemma four_times_k_less_than_two_pow_k
(k : β)
(hk : 5 β€ k) :
4 * k < 2 ^ k := by
-- Proceed by induction on k
induction' k using Nat.case_strong_induction_on with n ih
-- Base case: k = 0 is not possible since 5 β€ k
-- so we start directly with k = 5 as the base case
. norm_num
by_cases hβ : n < 5
. have hn: n = 4 := by linarith
rw [hn]
norm_num
. push_neg at hβ
have ihβ : 4 * n < 2 ^ n := ih n (le_refl n) hβ
rw [mul_add, pow_add, mul_one, pow_one, mul_two]
refine Nat.add_lt_add ihβ ?_
refine lt_trans ?_ ihβ
refine (Nat.lt_mul_iff_one_lt_right (by norm_num)).mpr ?_
refine Nat.lt_of_lt_of_le ?_ hβ
norm_num
lemma mylemma_case_xley
(x y : β)
(hβ : 0 < x β§ 0 < y)
(hβ : x^(y^2) = y^x)
(gβ : x^(y^2) = (x^y)^y)
(hxy : x β€ y) :
(x, y) = (1, 1) β¨ (x, y) = (16, 2) β¨ (x, y) = (27, 3) := by
rw [gβ] at hβ
have g2: x^y β€ y := by
exact mylemma_xy_le_y x y hβ hxy hβ
have g3: x = 1 := by
by_contra hc
have g3: 2 β€ x := by
by_contra gc
push_neg at gc
interval_cases x
. linarith
. omega
have g4: 2^y β€ x^y := by { exact Nat.pow_le_pow_of_le_left g3 y }
have g5: y < 2^y := by exact Nat.lt_two_pow_self
linarith
rw [g3] at hβ
simp at hβ
left
norm_num
exact { left := g3, right := id hβ.symm }
lemma mylemma_exp_log
(x: β)
(hβ: 0 < x):
(βx = Real.exp (Real.log βx)):= by
have hx_pos : 0 < (βx : β) := by exact Nat.cast_pos.mpr hβ
symm
exact Real.exp_log hx_pos
lemma mylemma_y2_lt_x
(x y : β)
(hβ : 0 < x β§ 0 < y)
(hβ : x ^ y ^ 2 = y ^ x)
(hxy : y < x) :
y ^ 2 < x := by
by_cases hy: 1 < y
. have hx: 2 β€ x := by linarith
have hβ: y ^ x < x ^ x := by
refine Nat.pow_lt_pow_left hxy ?_
exact Nat.ne_of_lt' hβ.1
rw [β hβ] at hβ
exact (Nat.pow_lt_pow_iff_right hx).mp hβ
. push_neg at hy
interval_cases y
. simp
exact hβ.1
. simp at *
assumption
lemma mylemma_5
(x y: β)
(hβ: 0 < x β§ 0 < y)
(hβ: x ^ y ^ 2 = y ^ x) :
(βx / βy^2) ^ y ^ 2 = (βy:β)^ ((βx:β) - 2 * βy ^ 2) := by
have gβ: (βx:β) ^ (βy:β) ^ 2 = (βy:β) ^ (βx:β) := by
norm_cast
have gβ: 0 < ((βy:β) ^ (2 * (βy:β) ^ 2)) := by
norm_cast
exact pow_pos hβ.2 _
have gβ: ((βx:β) ^ (βy:β) ^ 2) / ((βy:β) ^ (2 * (βy:β) ^ 2))
= ((βy:β) ^ (βx:β)) / ((βy:β) ^ (2 * (βy:β) ^ 2)) := by
refine (div_left_inj' ?_).mpr gβ
norm_cast
refine pow_ne_zero _ ?_
linarith [hβ.2]
have gy: 0 < (βy:β) := by
norm_cast
exact hβ.2
rw [β Real.rpow_sub gy (βx) (2 * βy ^ 2)] at gβ
have gβ: ((βx:β) ^ (βy:β) ^ 2) / ((βy:β) ^ (2 * (βy:β) ^ 2))
= (βx / βy^2) ^ y ^ 2 := by
have gβ
: (βy:β) ^ (2 * (βy:β) ^ 2) = ((βy:β) ^ 2) ^ ((βy:β) ^ 2) := by
norm_cast
refine pow_mul y 2 (y^2)
rw [gβ
]
symm
norm_cast
have gβ: ((βx:β) / βy ^ 2) ^ y ^ 2 = βx ^ y ^ 2 / (βy ^ 2) ^ y ^ 2 := by
refine div_pow (βx:β) ((βy:β) ^ 2) (y^2)
norm_cast at *
rw [gβ] at gβ
norm_cast at *
lemma mylemma_2y2_lt_x
(x y : β)
(hβ : 0 < x β§ 0 < y)
(hβ : x ^ y ^ 2 = y ^ x)
(hxy : y < x) :
2 * y ^ 2 < x := by
by_cases hy1: y = 1
. rw [hy1]
norm_num
by_contra hc
push_neg at hc
interval_cases x
. linarith
. linarith
. rw [hy1] at hβ
simp at hβ
. have hy: 1 < y := by
contrapose! hy1
linarith
clear hy1
have hβ: (βy:β) ^ 2 < βx := by
norm_cast
exact mylemma_y2_lt_x x y hβ hβ hxy
have hβ: 1 < βx / (βy:β) ^ 2 := by
refine (one_lt_div ?_).mpr hβ
norm_cast
exact pow_pos hβ.2 2 -- rw β one_mul ((βy:β)^2) at hβ, refine lt_div_iff_mul_lt.mpr hβ, },
have hβ: 1 < (βx / (βy:β)^2)^(y^2) := by
refine one_lt_powβ hβ ?_
refine Nat.ne_of_gt ?_
refine sq_pos_of_pos ?_
exact lt_of_succ_lt hy
have hβ
: (βx/ (βy:β)^2)^(y^2) = (βy:β)^((βx:β) - 2*(βy:β)^2) := by
exact mylemma_5 x y hβ hβ
rw [hβ
] at hβ
have hβ: 0 < (βx:β) - 2 * (βy:β) ^ 2 := by
by_contra hc
push_neg at hc
cases' lt_or_eq_of_le hc with hlt heq
. have gy: 1 < (βy:β) := by
norm_cast
have glt: (βx:β) - 2*(βy:β)^2 < (β0:β) := by
norm_cast at *
have gβ: (βy:β) ^ ((βx:β) - 2*(βy:β)^2) < (βy:β) ^ (β0:β) := by
exact Real.rpow_lt_rpow_of_exponent_lt gy glt
simp at gβ
linarith[ hβ,gβ]
. rw [heq] at hβ
simp at hβ
simp at hβ
norm_cast at hβ
lemma mylemma_castdvd
(x y: β)
(hβ: 0 < x β§ 0 < y)
(hβ : x ^ y ^ 2 = y ^ x)
(hyx: y < x) :
(y^2 β£ x) := by
have hβ: (x ^ y ^ 2).factorization = (y^x).factorization := by
exact congr_arg Nat.factorization hβ
simp at hβ
symm at hβ
have hxy1: 2 * y^2 β€ x := by exact le_of_lt (mylemma_2y2_lt_x x y hβ hβ hyx)
have hxy: 2 β’ y^2 β€ x := by exact hxy1
have hβ: 2 β’ y^2 β’ x.factorization β€ x β’ x.factorization := by
rw [β smul_assoc]
refine nsmul_le_nsmul_left ?_ hxy
norm_num
rw [β hβ] at hβ
have hβ: 2 β’ x β’ y.factorization = x β’ (2 β’ y.factorization) := by
rw [β smul_assoc, β smul_assoc]
have gβ: 2 β’ x = x β’ 2 := by
simp
exact mul_comm 2 x
rw [gβ]
rw [hβ] at hβ
rw [β Nat.factorization_pow] at hβ
rw [β Nat.factorization_pow] at hβ
rw [β Nat.factorization_pow] at hβ
have hβ
: (y ^ 2) ^ x β£ x^x := by
have gβ: (y ^ 2) ^ x β 0 := by
refine pow_ne_zero x ?_
refine pow_ne_zero 2 ?_
linarith
have gβ: x ^ x β 0 := by
refine pow_ne_zero x ?_
linarith
exact (Nat.factorization_le_iff_dvd gβ gβ).mp hβ
refine (Nat.pow_dvd_pow_iff ?_).mp hβ
exact Nat.ne_of_gt hβ.1
lemma mylemma_xsuby_eq_2xy2_help
(x y : β)
(hβ : 0 < x β§ 0 < y)
(hβ : x ^ y ^ 2 = y ^ x)
(hβ : Real.log (βx:β) = Real.log βy * βx / (β(y ^ 2:β ):β) )
(hxy : y < x) :
x = y ^ (x / y ^ 2) := by
have h_exp : Real.exp (Real.log βx)
= Real.exp (Real.log βy * (βx:β) / ((βy:β)) ^ 2) := by
rw [hβ]
norm_cast
rw [β mylemma_exp_log x hβ.1] at h_exp
rw [β mul_div] at h_exp
rw [Real.exp_mul] at h_exp
rw [β mylemma_exp_log y hβ.2] at h_exp
have hβ: (βx:β) / ((βy:β)^2) = (β(x / y^2:β):β) := by
norm_cast
symm
have gβ: y^2 β£ x := by
exact mylemma_castdvd x y hβ hβ hxy
have hβ: (β(y^(2:β)):β) β 0 := by
norm_cast
exact pow_ne_zero 2 ( by linarith)
exact Nat.cast_div gβ hβ
have hβ : (β(y ^ (x / y ^ (2:β))):β) = (βy:β)^((βx:β) / ((βy:β)^2)) := by
rw [Nat.cast_pow, hβ]
norm_cast
rw [βhβ] at h_exp
exact Nat.cast_inj.mp h_exp
theorem mylemma_xsuby_eq_2xy2
(x y : β)
(hβ : 0 < x β§ 0 < y)
(hβ : x ^ y ^ 2 = y ^ x)
(hxy : y < x) :
x = y ^ (x / y ^ 2) := by
-- sketch: y^2 * log x = x * log y
have hβ: Real.log (x^(y^2)) = Real.log (y^x) := by
norm_cast
rw [hβ]
have hβ: (β(y ^ (2:β)):β) * Real.log x = βx * Real.log y := by
have h41: Real.log (y^x) = (βx:β) * Real.log (y) := by
exact Real.log_pow y x
have h42: Real.log (x^(y^2)) = (β(y ^ (2:β)):β) * Real.log x := by
exact Real.log_pow x (y^2)
rw [h41,h42] at hβ
exact hβ
ring_nf at hβ
have hβ
: Real.log βx = Real.log βy * βx / (β(y ^ (2:β)):β) := by
by_contra hc
rw [mul_comm (Real.log βy) (βx)] at hc
rw [β hβ, mul_comm, β mul_div] at hc
rw [div_self, mul_one] at hc
. apply hc
norm_cast
. norm_cast
push_neg
refine pow_ne_zero 2 ?_
exact Nat.ne_of_gt hβ.2
have hβ: x = y ^ (x / y ^ 2) := by
exact mylemma_xsuby_eq_2xy2_help x y hβ hβ hβ
hxy
exact hβ
theorem imo_1997_p5
(x y : β)
(hβ : 0 < x β§ 0 < y)
(hβ : x^(y^2) = y^x) :
(x, y) = (1, 1) β¨ (x, y) = (16, 2) β¨ (x, y) = (27, 3) := by
have gβ: x^(y^2) = (x^y)^y := by
rw [Nat.pow_two]
exact Nat.pow_mul x y y
by_cases hxy: x β€ y
. exact mylemma_case_xley x y hβ hβ gβ hxy
. push_neg at hxy
right
have hβ: x = y ^ (x / y ^ 2) := by
exact mylemma_xsuby_eq_2xy2 x y hβ hβ hxy
let k:β := x / y^2 -- { admit },
have hk_def: k = x / y^2 := by exact rfl
by_cases hk: k < 2
. rw [β hk_def] at hβ
interval_cases k
. exfalso
simp at hβ
linarith
. exfalso
simp at *
linarith [hxy,hβ] --simp at hβ, rw hβ at hxy, linarith[hxy], },
. push_neg at hk
rw [β hk_def] at hβ
have hβ
: k = y^(k-2) := by
rw [hβ] at hk_def
nth_rewrite 1 [hk_def]
exact Nat.pow_div hk hβ.2
by_cases hk5: k < 5
. interval_cases k
. exfalso
simp at hβ
. right
norm_num
simp at hβ
symm at hβ
rw [hβ
] at hβ
norm_num at hβ
exact { left := hβ, right := hβ
}
. simp at hβ
symm at hβ
have gβ: y^4 = y^2 * y^2 := by ring_nf
rw [gβ, hβ
] at hβ
norm_num at hβ
left
norm_num
constructor
. exact hβ
. have hβ : y ^ 2 = 2 ^ 2 := by
norm_num
exact hβ
have hβ: 0 β€ y := by
linarith
exact (sq_eq_sqβ hβ (by linarith)).mp (hβ)
push_neg at hk5
by_cases hy: 2 β€ y
. have hβ
β: k < y^(k-2) := by
have hβ: 2^(k-2) β€ y^(k-2) := by
have hk1: 3 β€ k - 2 := by exact Nat.sub_le_sub_right hk5 2
exact (Nat.pow_le_pow_iff_left (by linarith)).mpr hy
have hβ: 4*k < 2^k := by
exact four_times_k_less_than_two_pow_k k hk5
have hβ: k < 2^(k-2) := by
have hβ : k < 2 ^ k / 4 := by
have h81: 4 β£ 2^k := by
have h82: 2^k = 4*2^(k-2) := by
have h83: k = 2 + (k -2) := by
ring_nf
exact (add_sub_of_le hk).symm
nth_rewrite 1 [h83]
rw [pow_add]
norm_num
rw [h82]
exact Nat.dvd_mul_right 4 (2^(k-2))
exact (Nat.lt_div_iff_mul_lt' h81 k).mpr hβ
have hβ: 2 ^ k / 4 = 2 ^ (k-2) := by
have g2: k = k - 2 + 2 := by
exact (Nat.sub_eq_iff_eq_add hk).mp rfl
have h1: 2^k = 2^(k - 2 + 2) := by
exact congrArg (HPow.hPow 2) g2
have h2: 2 ^ (k - 2 + 2) = 2 ^ (k - 2) * 2 ^ 2 := by rw [pow_add]
rw [h1, h2]
ring_nf
simp
linarith
linarith
exfalso
linarith
. push_neg at hy
interval_cases y
. linarith
. simp at hβ
simp at hβ
linarith
|