File size: 15,695 Bytes
1c3ffd8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
import Mathlib
set_option linter.unusedVariables.analyzeTactics true

open Nat


lemma mylemma_sub_sq
  (a b : β„•)
  (hβ‚€: b < a) :
  ((a - b) ^ 2 = a ^ 2 + b ^ 2 - 2 * a * b) := by
  have h₁: b^2 ≀ a * b := by
    rw [pow_two]
    refine Nat.mul_le_mul_right ?_ ?_
    exact Nat.le_of_lt hβ‚€
  have hβ‚‚: a * b ≀ a ^ 2 := by
    rw [pow_two]
    refine Nat.mul_le_mul_left ?_ ?_
    exact Nat.le_of_lt hβ‚€
  repeat rw [pow_two]
  repeat rw [Nat.mul_sub_left_distrib]
  repeat rw [Nat.mul_sub_right_distrib a b a]
  rw [Nat.sub_right_comm]
  repeat rw [Nat.mul_sub_right_distrib a b b]
  ring_nf
  have h₃: a ^ 2 - (a * b - b ^ 2) = a ^ 2 - a * b + b ^ 2 := by
    refine tsub_tsub_assoc ?h₁ h₁
    exact hβ‚‚
  rw [h₃]
  rw [← Nat.sub_add_comm hβ‚‚]
  . rw [← Nat.sub_add_eq, ← mul_two]


lemma mylemma_k_le_m_alt
  (a b c d k m : β„•)
  (hβ‚‚ : a < b ∧ b < c ∧ c < d)
  (h₃ : a * d = b * c)
  (hβ‚„ : a + d = 2 ^ k)
  (hβ‚… : b + c = 2 ^ m)
  (hkm : k ≀ m) :
  False := by
  have h₆: (a + d) ^ 2 ≀ (b + c) ^ 2 := by
    refine Nat.pow_le_pow_of_le_left ?_ 2
    rw [hβ‚„,hβ‚…]
    exact pow_le_pow_rightβ‚€ (by norm_num) hkm
  rw [add_sq, add_sq, mul_assoc, h₃, mul_assoc] at h₆
  have h₇: (d - a) ^ 2 ≀ (c - b) ^ 2 := by
    have hda: a < d := by
      refine lt_trans hβ‚‚.1 ?_
      exact lt_trans hβ‚‚.2.1 hβ‚‚.2.2
    rw [mylemma_sub_sq d a hda]
    rw [mylemma_sub_sq c b hβ‚‚.2.1]
    rw [mul_assoc, mul_assoc]
    rw [mul_comm d a, mul_comm c b]
    rw [h₃]
    refine Nat.sub_le_sub_right ?_ (2 * (b * c))
    linarith
  have hβ‚ˆ: (c - b) ^ 2 < (d - a) ^ 2 := by
    refine Nat.pow_lt_pow_left ?_ (by norm_num)
    have hβ‚ˆβ‚€: c - a < d - a := by
      have gβ‚€: c - a + a < d - a + a := by
        rw [Nat.sub_add_cancel ?_]
        rw [Nat.sub_add_cancel ?_]
        . exact hβ‚‚.2.2
        . linarith
        . linarith
      exact Nat.lt_of_add_lt_add_right gβ‚€
    refine lt_trans ?_ hβ‚ˆβ‚€
    refine Nat.sub_lt_sub_left ?_ hβ‚‚.1
    exact lt_trans hβ‚‚.1 hβ‚‚.2.1
  have h₉: (d - a) ^ 2 β‰  (d - a) ^ 2 := by
    refine Nat.ne_of_lt ?_
    exact lt_of_le_of_lt h₇ hβ‚ˆ
  refine false_of_ne h₉




lemma mylemma_k_le_m
  (a b c d k m : β„•)
  (hβ‚‚ : a < b ∧ b < c ∧ c < d)
  (h₃ : a * d = b * c)
  (hβ‚„ : a + d = 2 ^ k)
  (hβ‚… : b + c = 2 ^ m) :
  (m < k) := by
  have h₆: (c - b) ^ 2 < (d - a) ^ 2 := by
    refine Nat.pow_lt_pow_left ?_ (by norm_num)
    have hβ‚ˆβ‚€: c - a < d - a := by
      have gβ‚€: c - a + a < d - a + a := by
        rw [Nat.sub_add_cancel ?_]
        rw [Nat.sub_add_cancel ?_]
        . exact hβ‚‚.2.2
        . linarith
        . linarith
      exact Nat.lt_of_add_lt_add_right gβ‚€
    refine lt_trans ?_ hβ‚ˆβ‚€
    refine Nat.sub_lt_sub_left ?_ hβ‚‚.1
    exact lt_trans hβ‚‚.1 hβ‚‚.2.1
  have h₇: (b + c) ^ 2 < (a + d) ^ 2 := by
    rw [add_sq b c, add_sq a d]
    have hda: a < d := by
      refine lt_trans hβ‚‚.1 ?_
      exact lt_trans hβ‚‚.2.1 hβ‚‚.2.2
    rw [mylemma_sub_sq d a hda] at h₆
    rw [mylemma_sub_sq c b hβ‚‚.2.1] at h₆
    rw [mul_assoc 2 b c, ← h₃, ← mul_assoc]
    rw [mul_assoc 2 c b, mul_comm c b, ← h₃, ← mul_assoc] at h₆
    rw [add_assoc, add_comm _ (c ^ 2), ← add_assoc]
    rw [add_assoc (a ^ 2), add_comm _ (d ^ 2), ← add_assoc]
    rw [mul_assoc 2 d a, mul_comm d a, ← mul_assoc] at h₆
    rw [add_comm (d ^ 2) (a ^ 2)] at h₆
    rw [add_comm (c ^ 2) (b ^ 2)] at h₆
    have gβ‚€: 2 * a * d ≀ 4 * a * d := by
      ring_nf
      exact Nat.mul_le_mul_left (a * d) (by norm_num)
    have g₁: 2 * a * d = 4 * a * d - 2 * a * d := by
      ring_nf
      rw [← Nat.mul_sub_left_distrib]
      norm_num
    have gβ‚‚: 2 * a * d ≀ b ^ 2 + c ^ 2 := by
      rw [mul_assoc, h₃, ← mul_assoc]
      exact two_mul_le_add_sq b c
    have g₃: 2 * a * d ≀ a ^ 2 + d ^ 2 := by
      exact two_mul_le_add_sq a d
    rw [g₁, ← Nat.add_sub_assoc (gβ‚€) (b ^ 2 + c ^ 2)]
    rw [← Nat.add_sub_assoc (gβ‚€) (a ^ 2 + d ^ 2)]
    rw [Nat.sub_add_comm gβ‚‚, Nat.sub_add_comm g₃]
    exact (Nat.add_lt_add_iff_right).mpr h₆
  have h2 : 1 < 2 := by norm_num
  refine (Nat.pow_lt_pow_iff_right h2).mp ?_
  rw [← hβ‚„, ← hβ‚…]
  exact (Nat.pow_lt_pow_iff_left (by norm_num) ).mp h₇



lemma mylemma_h8
  (a b c d k m : β„•)
  (hβ‚€ : 0 < a ∧ 0 < b ∧ 0 < c ∧ 0 < d)
  (h₁ : Odd a ∧ Odd b ∧ Odd c ∧ Odd d)
  (hβ‚‚ : a < b ∧ b < c ∧ c < d)
  (hβ‚… : b + c = 2 ^ m)
  (hkm : m < k)
  (h₆ : b * 2 ^ m - a * 2 ^ k = (b - a) * (b + a))
  (h₇ : 2 ^ m ∣ (b - a) * (b + a)) :
  (b + a = 2 ^ (m - 1)) := by
  have h₇₁: βˆƒ y z, y ∣ b - a ∧ z ∣ b + a ∧ y * z = 2 ^ m := by
    exact Nat.dvd_mul.mp h₇
  let ⟨p, q, hpd⟩ := h₇₁
  cases' hpd with hpd hqd
  cases' hqd with hqd hpq
  have hm1: 1 ≀ m := by
    by_contra! hc
    interval_cases m
    linarith
  have hβ‚ˆβ‚€: b - a < 2 ^ (m - 1) := by
    have gβ‚€: b < (b + c) / 2 := by
      refine (Nat.lt_div_iff_mul_lt' ?_ b).mpr ?_
      . refine even_iff_two_dvd.mp ?_
        exact Odd.add_odd h₁.2.1 h₁.2.2.1
      . linarith
    have g₁: (b + c) / 2 = 2 ^ (m-1) := by
      rw [hβ‚…]
      rw [← Nat.pow_sub_mul_pow 2 hm1]
      simp
    rw [← g₁]
    refine lt_trans ?_ gβ‚€
    exact Nat.sub_lt hβ‚€.2.1 hβ‚€.1
  have hp: p = 2 := by
    have hpβ‚€: 2 * b < 2 ^ m := by
      rw [← hβ‚…, two_mul]
      exact Nat.add_lt_add_left hβ‚‚.2.1 b
    have hp₁: b + a < 2 ^ (m) := by
      have gβ‚€: b + a < b + b := by
        exact Nat.add_lt_add_left hβ‚‚.1 b
      refine Nat.lt_trans gβ‚€ ?_
      rw [← two_mul]
      exact hpβ‚€
    have hpβ‚‚: q < 2 ^ m := by
      refine Nat.lt_of_le_of_lt (Nat.le_of_dvd ?_ hqd) hp₁
      exact Nat.add_pos_right b hβ‚€.1
    have hp₃: 1 < p := by
      rw [← hpq] at hpβ‚‚
      exact one_lt_of_lt_mul_left hpβ‚‚
    have h2prime: Nat.Prime 2 := by exact prime_two
    have hpβ‚…: βˆ€ i j:β„• , 2 ^ i ∣ (b - a) ∧ 2 ^ j ∣ (b + a) β†’ (i < 2 ∨ j < 2) := by
      by_contra! hc
      let ⟨i, j, hi⟩ := hc
      have hti: 2 ^ 2 ∣ 2 ^ i := by exact Nat.pow_dvd_pow 2 hi.2.1
      have htj: 2 ^ 2 ∣ 2 ^ j := by exact Nat.pow_dvd_pow 2 hi.2.2
      norm_num at hti htj
      have hiβ‚„: 4 ∣ b - a := by exact Nat.dvd_trans hti hi.1.1
      have hiβ‚…: 4 ∣ b + a := by exact Nat.dvd_trans htj hi.1.2
      have hi₆: 4 ∣ (b - a) + (b + a) := by exact Nat.dvd_add hiβ‚„ hiβ‚…
      have hi₇: 2 ∣ b := by
        have gβ‚€: 0 < 2 := by norm_num
        refine Nat.dvd_of_mul_dvd_mul_left gβ‚€ ?_
        rw [← Nat.add_sub_cancel (2 * b) a, Nat.two_mul b]
        rw [add_assoc, Nat.sub_add_comm (le_of_lt hβ‚‚.1)]
        exact hi₆
      have hiβ‚ˆ: Even b := by
        exact even_iff_two_dvd.mpr hi₇
      apply Nat.not_odd_iff_even.mpr hiβ‚ˆ
      exact h₁.2.1
    have hp₆: βˆ€ i j:β„• , i + j = m ∧ 2 ^ i ∣ (b - a) ∧ 2 ^ j ∣ (b + a) β†’ (Β¬ j < 2) := by
      by_contra! hc
      let ⟨i, j, hi⟩ := hc
      have hiβ‚€: m - 1 ≀ i := by
        rw [← hi.1.1]
        simp
        exact Nat.le_pred_of_lt hi.2
      have hi₁: 2 ^ (m - 1) ≀ 2 ^ i := by exact Nat.pow_le_pow_right (by norm_num) hiβ‚€
      have hiβ‚‚: 2 ^ i < 2 ^ (m - 1) := by
        refine lt_of_le_of_lt ?_ hβ‚ˆβ‚€
        refine Nat.le_of_dvd ?_ hi.1.2.1
        exact Nat.sub_pos_of_lt hβ‚‚.1
      linarith [hi₁, hiβ‚‚]
    have hiβ‚€: βˆƒ i ≀ m, p = 2 ^ i := by
      have gβ‚€: p ∣ 2 ^ m := by
        rw [← hpq]
        exact Nat.dvd_mul_right p q
      exact (Nat.dvd_prime_pow h2prime).mp gβ‚€
    let ⟨i, hp⟩ := hiβ‚€
    cases' hp with him hp
    let j:β„• := m - i
    have hjβ‚€: j = m - i := by linarith
    have hj₁: i + j = m := by
      rw [add_comm, ← Nat.sub_add_cancel him]
    have hq: q = 2 ^ j := by
      rw [hp] at hpq
      rw [hjβ‚€, ← Nat.pow_div him (by norm_num)]
      refine Nat.eq_div_of_mul_eq_right ?_ hpq
      refine Nat.ne_of_gt ?_
      rw [← hp]
      linarith [hp₃]
    rw [hp] at hpd
    rw [hq] at hqd
    have hj₃: Β¬ j < 2 := by
      exact hp₆ i j {left:= hj₁ , right:= { left := hpd , right:= hqd} }
    have hiβ‚‚: i < 2 := by
      have gβ‚€: i < 2 ∨ j < 2 := by
        exact hpβ‚… i j { left := hpd , right:= hqd }
      omega
    have hi₃: 0 < i := by
      rw [hp] at hp₃
      refine Nat.zero_lt_of_ne_zero ?_
      exact (Nat.one_lt_two_pow_iff).mp hp₃
    have hiβ‚„: i = 1 := by
      interval_cases i
      rfl
    rw [hiβ‚„] at hp
    exact hp
  have hq: q = 2 ^ (m - 1) := by
    rw [hp, ← Nat.pow_sub_mul_pow 2 hm1, pow_one, mul_comm] at hpq
    exact Nat.mul_right_cancel (by norm_num) hpq
  rw [hq] at hqd
  have hβ‚ˆβ‚‚: βˆƒ c, (b + a) = c * 2 ^ (m - 1) := by
    exact exists_eq_mul_left_of_dvd hqd
  let ⟨f, hf⟩ := hβ‚ˆβ‚‚
  have hfeq1: f = 1 := by
    have hfβ‚€: f * 2 ^ (m - 1) < 2 * 2 ^ (m - 1) := by
      rw [← hf, ← Nat.pow_succ', ← Nat.succ_sub hm1]
      rw [Nat.succ_sub_one, ← hβ‚…]
      refine Nat.add_lt_add_left ?_ b
      exact lt_trans hβ‚‚.1 hβ‚‚.2.1
    have hf₁: f < 2 := by
      exact Nat.lt_of_mul_lt_mul_right hfβ‚€
    interval_cases f
    . simp at hf
      exfalso
      linarith [hf]
    . linarith
  rw [hfeq1, one_mul] at hf
  exact hf




theorem imo_1984_p6
  (a b c d k m : β„•)
  (hβ‚€ : 0 < a ∧ 0 < b ∧ 0 < c ∧ 0 < d)
  (h₁ : Odd a ∧ Odd b ∧ Odd c ∧ Odd d)
  (hβ‚‚ : a < b ∧ b < c ∧ c < d)
  (h₃ : a * d = b * c)
  (hβ‚„ : a + d = (2:β„•)^k)
  (hβ‚… : b + c = 2^m) :
  a = 1 := by
  by_cases hkm: k ≀ m
  . exfalso
    apply Nat.not_lt_of_le at hkm
    rw [← not_true_eq_false]
    refine (not_congr ?_).mp hkm
    refine iff_true_intro ?_
    exact mylemma_k_le_m a b c d k m hβ‚‚ h₃ hβ‚„ hβ‚…
  . push_neg at hkm
    have h₆: b * 2 ^ m - a * 2 ^ k = (b - a) * (b + a) := by
      have h₆₀: c = 2 ^ m - b := by exact (tsub_eq_of_eq_add_rev (id hβ‚….symm)).symm
      have h₆₁: d = 2 ^ k - a := by exact (tsub_eq_of_eq_add_rev (id hβ‚„.symm)).symm
      rw [h₆₀, h₆₁] at h₃
      repeat rw [Nat.mul_sub_left_distrib, ← pow_two] at h₃
      have h₆₂: b * 2 ^ m - a * 2 ^ k =  b ^ 2 - a ^ 2 := by
        symm at h₃
        refine Nat.sub_eq_of_eq_add ?_
        rw [add_comm, ← Nat.add_sub_assoc]
        . rw [Nat.sub_add_comm]
          . refine Nat.eq_add_of_sub_eq ?_ h₃
            rw [pow_two]
            refine le_of_lt ?_
            refine mul_lt_mul' (by linarith) ?_ (le_of_lt hβ‚€.2.1) hβ‚€.2.1
            linarith
          . rw [pow_two]
            refine le_of_lt ?_
            refine mul_lt_mul' (by linarith) ?_ (le_of_lt hβ‚€.1) hβ‚€.1
            linarith
        . refine le_of_lt ?_
          rw [pow_two, pow_two]
          exact mul_lt_mul hβ‚‚.1 (le_of_lt hβ‚‚.1) hβ‚€.1 (le_of_lt hβ‚€.2.1)
      rw [Nat.sq_sub_sq b a] at h₆₂
      linarith
    have h₇: 2 ^ m ∣ (b - a) * (b + a) := by
      have h₇₀: k = (k - m) + m := by exact (Nat.sub_add_cancel (le_of_lt hkm)).symm
      rw [h₇₀, pow_add] at h₆
      have h₇₁: (b - a * 2 ^ (k - m)) * (2 ^ m) = (b - a) * (b + a) := by
        rw [Nat.mul_sub_right_distrib]
        rw [mul_assoc a _ _]
        exact h₆
      exact Dvd.intro_left (b - a * 2 ^ (k - m)) h₇₁
    have hβ‚ˆ: b + a = 2 ^ (m - 1) := by
      exact mylemma_h8 a b c d k m hβ‚€ h₁ hβ‚‚ hβ‚… hkm h₆ h₇
    have h₉: a = 2 ^ (2 * m - 2) / 2 ^ k := by
      have ga: 1 ≀ a := by exact Nat.succ_le_of_lt hβ‚€.1
      have gb: 3 ≀ b := by
        by_contra! hc
        interval_cases b
        . linarith
        . linarith [ga, hβ‚‚.1]
        . have gβ‚€: Β¬ Odd 2 := by decide
          exact gβ‚€ h₁.2.1
      have gm: 3 ≀ m := by
        have gmβ‚€: 2 ^ 2 ≀ 2 ^ (m - 1) := by
          norm_num
          rw [← hβ‚ˆ]
          linarith
        have gm₁: 2 ≀ m - 1 := by
          exact (Nat.pow_le_pow_iff_right (by norm_num)).mp gmβ‚€
        omega
      have gβ‚€: a < 2 ^ (m - 2) := by
        have gβ‚€β‚€: a + a < b + a := by simp [hβ‚‚.1]
        rw [hβ‚ˆ, ← mul_two a] at gβ‚€β‚€
        have g₀₁: m - 1 = Nat.succ (m - 2) := by
          rw [← Nat.succ_sub ?_]
          . rw [succ_eq_add_one]
            omega
          . linarith
        rw [g₀₁, Nat.pow_succ 2 _] at gβ‚€β‚€
        exact Nat.lt_of_mul_lt_mul_right gβ‚€β‚€
      have h₉₀: b = 2 ^ (m - 1) - a := by
        symm
        exact Nat.sub_eq_of_eq_add hβ‚ˆ.symm
      rw [hβ‚ˆ, h₉₀] at h₆
      repeat rw [Nat.mul_sub_right_distrib] at h₆
      repeat rw [← Nat.pow_add] at h₆
      have hm1: 1 ≀ m := by
        linarith
      repeat rw [← Nat.sub_add_comm hm1] at h₆
      repeat rw [← Nat.add_sub_assoc hm1] at h₆
      ring_nf at h₆
      rw [← Nat.sub_add_eq _ 1 1] at h₆
      norm_num at h₆
      rw [← Nat.sub_add_eq _ (a * 2 ^ (m - 1)) (a * 2 ^ (m - 1))] at h₆
      rw [← two_mul (a * 2 ^ (m - 1))] at h₆
      rw [mul_comm 2 _] at h₆
      rw [mul_assoc a (2 ^ (m - 1)) 2] at h₆
      rw [← Nat.pow_succ, succ_eq_add_one] at h₆
      rw [Nat.sub_add_cancel hm1] at h₆
      rw [← Nat.sub_add_eq ] at h₆
      have h₉₁: 2 ^ (m * 2 - 1) = 2 ^ (m * 2 - 2) - a * 2 ^ m + (a * 2 ^ m + a * 2 ^ k) := by
        refine Nat.eq_add_of_sub_eq ?_ h₆
        by_contra! hc
        have g₁: 2 ^ (m * 2 - 1) - (a * 2 ^ m + a * 2 ^ k) = 0 := by
          exact Nat.sub_eq_zero_of_le (le_of_lt hc)
        rw [g₁] at h₆
        have gβ‚‚: 2 ^ (m * 2 - 2) ≀ a * 2 ^ m := by exact Nat.le_of_sub_eq_zero h₆.symm
        have g₃: 2 ^ (m - 2) ≀ a := by
          rw [mul_two, Nat.add_sub_assoc (by linarith) m] at gβ‚‚
          rw [Nat.pow_add, mul_comm] at gβ‚‚
          refine Nat.le_of_mul_le_mul_right gβ‚‚ ?_
          exact Nat.two_pow_pos m
        linarith [gβ‚€, g₃]
      rw [← Nat.add_assoc] at h₉₁
      have h₉₂: a * 2 ^ k = 2 * 2 ^ (2 * m - 2) - 2 ^ (2 * m - 2) := by
        rw [Nat.sub_add_cancel ?_] at h₉₁
        . rw [add_comm] at h₉₁
          symm
          rw [← Nat.pow_succ', succ_eq_add_one]
          rw [← Nat.sub_add_comm ?_]
          . refine Nat.sub_eq_of_eq_add ?_
            rw [mul_comm 2 m, ← h₉₁]
            exact rfl
          . linarith [hm1]
        . refine le_of_lt ?_
          rw [mul_two, Nat.add_sub_assoc, Nat.pow_add, mul_comm (2 ^ m) _]
          refine (Nat.mul_lt_mul_right (by linarith)).mpr gβ‚€
          linarith
      nth_rewrite 2 [← Nat.one_mul (2 ^ (2 * m - 2))] at h₉₂
      rw [← Nat.mul_sub_right_distrib 2 1 (2 ^ (2 * m - 2))] at h₉₂
      norm_num at h₉₂
      refine Nat.eq_div_of_mul_eq_left ?_ h₉₂
      exact Ne.symm (NeZero.ne' (2 ^ k))
    by_cases hk2m: k ≀ 2 * m - 2
    . rw [Nat.pow_div hk2m (by norm_num)] at h₉
      rw [Nat.sub_right_comm (2*m) 2 k] at h₉
      by_contra! hc
      cases' (lt_or_gt_of_ne hc) with hcβ‚€ hc₁
      . interval_cases a
        linarith
      . have hcβ‚‚: Β¬ Odd a := by
          refine (not_odd_iff_even).mpr ?_
          have hc₃: 1 ≀ 2 * m - k - 2 := by
            by_contra! hcβ‚„
            interval_cases (2 * m - k - 2)
            simp at h₉
            rw [h₉] at hc₁
            contradiction
          have hcβ‚„: 2 * m - k - 2 = succ (2 * m - k - 3) := by
            rw [succ_eq_add_one]
            exact Nat.eq_add_of_sub_eq hc₃ rfl
          rw [h₉, hcβ‚„, Nat.pow_succ']
          exact even_two_mul (2 ^ (2 * m - k - 3))
        exact hcβ‚‚ h₁.1
    . push_neg at hk2m
      exfalso
      have ha: a = 0 := by
        rw [h₉]
        refine (Nat.div_eq_zero_iff).mpr ?_
        right
        exact Nat.pow_lt_pow_right (by norm_num) hk2m
      linarith [ha, hβ‚€.1]