File size: 15,695 Bytes
1c3ffd8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 |
import Mathlib
set_option linter.unusedVariables.analyzeTactics true
open Nat
lemma mylemma_sub_sq
(a b : β)
(hβ: b < a) :
((a - b) ^ 2 = a ^ 2 + b ^ 2 - 2 * a * b) := by
have hβ: b^2 β€ a * b := by
rw [pow_two]
refine Nat.mul_le_mul_right ?_ ?_
exact Nat.le_of_lt hβ
have hβ: a * b β€ a ^ 2 := by
rw [pow_two]
refine Nat.mul_le_mul_left ?_ ?_
exact Nat.le_of_lt hβ
repeat rw [pow_two]
repeat rw [Nat.mul_sub_left_distrib]
repeat rw [Nat.mul_sub_right_distrib a b a]
rw [Nat.sub_right_comm]
repeat rw [Nat.mul_sub_right_distrib a b b]
ring_nf
have hβ: a ^ 2 - (a * b - b ^ 2) = a ^ 2 - a * b + b ^ 2 := by
refine tsub_tsub_assoc ?hβ hβ
exact hβ
rw [hβ]
rw [β Nat.sub_add_comm hβ]
. rw [β Nat.sub_add_eq, β mul_two]
lemma mylemma_k_le_m_alt
(a b c d k m : β)
(hβ : a < b β§ b < c β§ c < d)
(hβ : a * d = b * c)
(hβ : a + d = 2 ^ k)
(hβ
: b + c = 2 ^ m)
(hkm : k β€ m) :
False := by
have hβ: (a + d) ^ 2 β€ (b + c) ^ 2 := by
refine Nat.pow_le_pow_of_le_left ?_ 2
rw [hβ,hβ
]
exact pow_le_pow_rightβ (by norm_num) hkm
rw [add_sq, add_sq, mul_assoc, hβ, mul_assoc] at hβ
have hβ: (d - a) ^ 2 β€ (c - b) ^ 2 := by
have hda: a < d := by
refine lt_trans hβ.1 ?_
exact lt_trans hβ.2.1 hβ.2.2
rw [mylemma_sub_sq d a hda]
rw [mylemma_sub_sq c b hβ.2.1]
rw [mul_assoc, mul_assoc]
rw [mul_comm d a, mul_comm c b]
rw [hβ]
refine Nat.sub_le_sub_right ?_ (2 * (b * c))
linarith
have hβ: (c - b) ^ 2 < (d - a) ^ 2 := by
refine Nat.pow_lt_pow_left ?_ (by norm_num)
have hββ: c - a < d - a := by
have gβ: c - a + a < d - a + a := by
rw [Nat.sub_add_cancel ?_]
rw [Nat.sub_add_cancel ?_]
. exact hβ.2.2
. linarith
. linarith
exact Nat.lt_of_add_lt_add_right gβ
refine lt_trans ?_ hββ
refine Nat.sub_lt_sub_left ?_ hβ.1
exact lt_trans hβ.1 hβ.2.1
have hβ: (d - a) ^ 2 β (d - a) ^ 2 := by
refine Nat.ne_of_lt ?_
exact lt_of_le_of_lt hβ hβ
refine false_of_ne hβ
lemma mylemma_k_le_m
(a b c d k m : β)
(hβ : a < b β§ b < c β§ c < d)
(hβ : a * d = b * c)
(hβ : a + d = 2 ^ k)
(hβ
: b + c = 2 ^ m) :
(m < k) := by
have hβ: (c - b) ^ 2 < (d - a) ^ 2 := by
refine Nat.pow_lt_pow_left ?_ (by norm_num)
have hββ: c - a < d - a := by
have gβ: c - a + a < d - a + a := by
rw [Nat.sub_add_cancel ?_]
rw [Nat.sub_add_cancel ?_]
. exact hβ.2.2
. linarith
. linarith
exact Nat.lt_of_add_lt_add_right gβ
refine lt_trans ?_ hββ
refine Nat.sub_lt_sub_left ?_ hβ.1
exact lt_trans hβ.1 hβ.2.1
have hβ: (b + c) ^ 2 < (a + d) ^ 2 := by
rw [add_sq b c, add_sq a d]
have hda: a < d := by
refine lt_trans hβ.1 ?_
exact lt_trans hβ.2.1 hβ.2.2
rw [mylemma_sub_sq d a hda] at hβ
rw [mylemma_sub_sq c b hβ.2.1] at hβ
rw [mul_assoc 2 b c, β hβ, β mul_assoc]
rw [mul_assoc 2 c b, mul_comm c b, β hβ, β mul_assoc] at hβ
rw [add_assoc, add_comm _ (c ^ 2), β add_assoc]
rw [add_assoc (a ^ 2), add_comm _ (d ^ 2), β add_assoc]
rw [mul_assoc 2 d a, mul_comm d a, β mul_assoc] at hβ
rw [add_comm (d ^ 2) (a ^ 2)] at hβ
rw [add_comm (c ^ 2) (b ^ 2)] at hβ
have gβ: 2 * a * d β€ 4 * a * d := by
ring_nf
exact Nat.mul_le_mul_left (a * d) (by norm_num)
have gβ: 2 * a * d = 4 * a * d - 2 * a * d := by
ring_nf
rw [β Nat.mul_sub_left_distrib]
norm_num
have gβ: 2 * a * d β€ b ^ 2 + c ^ 2 := by
rw [mul_assoc, hβ, β mul_assoc]
exact two_mul_le_add_sq b c
have gβ: 2 * a * d β€ a ^ 2 + d ^ 2 := by
exact two_mul_le_add_sq a d
rw [gβ, β Nat.add_sub_assoc (gβ) (b ^ 2 + c ^ 2)]
rw [β Nat.add_sub_assoc (gβ) (a ^ 2 + d ^ 2)]
rw [Nat.sub_add_comm gβ, Nat.sub_add_comm gβ]
exact (Nat.add_lt_add_iff_right).mpr hβ
have h2 : 1 < 2 := by norm_num
refine (Nat.pow_lt_pow_iff_right h2).mp ?_
rw [β hβ, β hβ
]
exact (Nat.pow_lt_pow_iff_left (by norm_num) ).mp hβ
lemma mylemma_h8
(a b c d k m : β)
(hβ : 0 < a β§ 0 < b β§ 0 < c β§ 0 < d)
(hβ : Odd a β§ Odd b β§ Odd c β§ Odd d)
(hβ : a < b β§ b < c β§ c < d)
(hβ
: b + c = 2 ^ m)
(hkm : m < k)
(hβ : b * 2 ^ m - a * 2 ^ k = (b - a) * (b + a))
(hβ : 2 ^ m β£ (b - a) * (b + a)) :
(b + a = 2 ^ (m - 1)) := by
have hββ: β y z, y β£ b - a β§ z β£ b + a β§ y * z = 2 ^ m := by
exact Nat.dvd_mul.mp hβ
let β¨p, q, hpdβ© := hββ
cases' hpd with hpd hqd
cases' hqd with hqd hpq
have hm1: 1 β€ m := by
by_contra! hc
interval_cases m
linarith
have hββ: b - a < 2 ^ (m - 1) := by
have gβ: b < (b + c) / 2 := by
refine (Nat.lt_div_iff_mul_lt' ?_ b).mpr ?_
. refine even_iff_two_dvd.mp ?_
exact Odd.add_odd hβ.2.1 hβ.2.2.1
. linarith
have gβ: (b + c) / 2 = 2 ^ (m-1) := by
rw [hβ
]
rw [β Nat.pow_sub_mul_pow 2 hm1]
simp
rw [β gβ]
refine lt_trans ?_ gβ
exact Nat.sub_lt hβ.2.1 hβ.1
have hp: p = 2 := by
have hpβ: 2 * b < 2 ^ m := by
rw [β hβ
, two_mul]
exact Nat.add_lt_add_left hβ.2.1 b
have hpβ: b + a < 2 ^ (m) := by
have gβ: b + a < b + b := by
exact Nat.add_lt_add_left hβ.1 b
refine Nat.lt_trans gβ ?_
rw [β two_mul]
exact hpβ
have hpβ: q < 2 ^ m := by
refine Nat.lt_of_le_of_lt (Nat.le_of_dvd ?_ hqd) hpβ
exact Nat.add_pos_right b hβ.1
have hpβ: 1 < p := by
rw [β hpq] at hpβ
exact one_lt_of_lt_mul_left hpβ
have h2prime: Nat.Prime 2 := by exact prime_two
have hpβ
: β i j:β , 2 ^ i β£ (b - a) β§ 2 ^ j β£ (b + a) β (i < 2 β¨ j < 2) := by
by_contra! hc
let β¨i, j, hiβ© := hc
have hti: 2 ^ 2 β£ 2 ^ i := by exact Nat.pow_dvd_pow 2 hi.2.1
have htj: 2 ^ 2 β£ 2 ^ j := by exact Nat.pow_dvd_pow 2 hi.2.2
norm_num at hti htj
have hiβ: 4 β£ b - a := by exact Nat.dvd_trans hti hi.1.1
have hiβ
: 4 β£ b + a := by exact Nat.dvd_trans htj hi.1.2
have hiβ: 4 β£ (b - a) + (b + a) := by exact Nat.dvd_add hiβ hiβ
have hiβ: 2 β£ b := by
have gβ: 0 < 2 := by norm_num
refine Nat.dvd_of_mul_dvd_mul_left gβ ?_
rw [β Nat.add_sub_cancel (2 * b) a, Nat.two_mul b]
rw [add_assoc, Nat.sub_add_comm (le_of_lt hβ.1)]
exact hiβ
have hiβ: Even b := by
exact even_iff_two_dvd.mpr hiβ
apply Nat.not_odd_iff_even.mpr hiβ
exact hβ.2.1
have hpβ: β i j:β , i + j = m β§ 2 ^ i β£ (b - a) β§ 2 ^ j β£ (b + a) β (Β¬ j < 2) := by
by_contra! hc
let β¨i, j, hiβ© := hc
have hiβ: m - 1 β€ i := by
rw [β hi.1.1]
simp
exact Nat.le_pred_of_lt hi.2
have hiβ: 2 ^ (m - 1) β€ 2 ^ i := by exact Nat.pow_le_pow_right (by norm_num) hiβ
have hiβ: 2 ^ i < 2 ^ (m - 1) := by
refine lt_of_le_of_lt ?_ hββ
refine Nat.le_of_dvd ?_ hi.1.2.1
exact Nat.sub_pos_of_lt hβ.1
linarith [hiβ, hiβ]
have hiβ: β i β€ m, p = 2 ^ i := by
have gβ: p β£ 2 ^ m := by
rw [β hpq]
exact Nat.dvd_mul_right p q
exact (Nat.dvd_prime_pow h2prime).mp gβ
let β¨i, hpβ© := hiβ
cases' hp with him hp
let j:β := m - i
have hjβ: j = m - i := by linarith
have hjβ: i + j = m := by
rw [add_comm, β Nat.sub_add_cancel him]
have hq: q = 2 ^ j := by
rw [hp] at hpq
rw [hjβ, β Nat.pow_div him (by norm_num)]
refine Nat.eq_div_of_mul_eq_right ?_ hpq
refine Nat.ne_of_gt ?_
rw [β hp]
linarith [hpβ]
rw [hp] at hpd
rw [hq] at hqd
have hjβ: Β¬ j < 2 := by
exact hpβ i j {left:= hjβ , right:= { left := hpd , right:= hqd} }
have hiβ: i < 2 := by
have gβ: i < 2 β¨ j < 2 := by
exact hpβ
i j { left := hpd , right:= hqd }
omega
have hiβ: 0 < i := by
rw [hp] at hpβ
refine Nat.zero_lt_of_ne_zero ?_
exact (Nat.one_lt_two_pow_iff).mp hpβ
have hiβ: i = 1 := by
interval_cases i
rfl
rw [hiβ] at hp
exact hp
have hq: q = 2 ^ (m - 1) := by
rw [hp, β Nat.pow_sub_mul_pow 2 hm1, pow_one, mul_comm] at hpq
exact Nat.mul_right_cancel (by norm_num) hpq
rw [hq] at hqd
have hββ: β c, (b + a) = c * 2 ^ (m - 1) := by
exact exists_eq_mul_left_of_dvd hqd
let β¨f, hfβ© := hββ
have hfeq1: f = 1 := by
have hfβ: f * 2 ^ (m - 1) < 2 * 2 ^ (m - 1) := by
rw [β hf, β Nat.pow_succ', β Nat.succ_sub hm1]
rw [Nat.succ_sub_one, β hβ
]
refine Nat.add_lt_add_left ?_ b
exact lt_trans hβ.1 hβ.2.1
have hfβ: f < 2 := by
exact Nat.lt_of_mul_lt_mul_right hfβ
interval_cases f
. simp at hf
exfalso
linarith [hf]
. linarith
rw [hfeq1, one_mul] at hf
exact hf
theorem imo_1984_p6
(a b c d k m : β)
(hβ : 0 < a β§ 0 < b β§ 0 < c β§ 0 < d)
(hβ : Odd a β§ Odd b β§ Odd c β§ Odd d)
(hβ : a < b β§ b < c β§ c < d)
(hβ : a * d = b * c)
(hβ : a + d = (2:β)^k)
(hβ
: b + c = 2^m) :
a = 1 := by
by_cases hkm: k β€ m
. exfalso
apply Nat.not_lt_of_le at hkm
rw [β not_true_eq_false]
refine (not_congr ?_).mp hkm
refine iff_true_intro ?_
exact mylemma_k_le_m a b c d k m hβ hβ hβ hβ
. push_neg at hkm
have hβ: b * 2 ^ m - a * 2 ^ k = (b - a) * (b + a) := by
have hββ: c = 2 ^ m - b := by exact (tsub_eq_of_eq_add_rev (id hβ
.symm)).symm
have hββ: d = 2 ^ k - a := by exact (tsub_eq_of_eq_add_rev (id hβ.symm)).symm
rw [hββ, hββ] at hβ
repeat rw [Nat.mul_sub_left_distrib, β pow_two] at hβ
have hββ: b * 2 ^ m - a * 2 ^ k = b ^ 2 - a ^ 2 := by
symm at hβ
refine Nat.sub_eq_of_eq_add ?_
rw [add_comm, β Nat.add_sub_assoc]
. rw [Nat.sub_add_comm]
. refine Nat.eq_add_of_sub_eq ?_ hβ
rw [pow_two]
refine le_of_lt ?_
refine mul_lt_mul' (by linarith) ?_ (le_of_lt hβ.2.1) hβ.2.1
linarith
. rw [pow_two]
refine le_of_lt ?_
refine mul_lt_mul' (by linarith) ?_ (le_of_lt hβ.1) hβ.1
linarith
. refine le_of_lt ?_
rw [pow_two, pow_two]
exact mul_lt_mul hβ.1 (le_of_lt hβ.1) hβ.1 (le_of_lt hβ.2.1)
rw [Nat.sq_sub_sq b a] at hββ
linarith
have hβ: 2 ^ m β£ (b - a) * (b + a) := by
have hββ: k = (k - m) + m := by exact (Nat.sub_add_cancel (le_of_lt hkm)).symm
rw [hββ, pow_add] at hβ
have hββ: (b - a * 2 ^ (k - m)) * (2 ^ m) = (b - a) * (b + a) := by
rw [Nat.mul_sub_right_distrib]
rw [mul_assoc a _ _]
exact hβ
exact Dvd.intro_left (b - a * 2 ^ (k - m)) hββ
have hβ: b + a = 2 ^ (m - 1) := by
exact mylemma_h8 a b c d k m hβ hβ hβ hβ
hkm hβ hβ
have hβ: a = 2 ^ (2 * m - 2) / 2 ^ k := by
have ga: 1 β€ a := by exact Nat.succ_le_of_lt hβ.1
have gb: 3 β€ b := by
by_contra! hc
interval_cases b
. linarith
. linarith [ga, hβ.1]
. have gβ: Β¬ Odd 2 := by decide
exact gβ hβ.2.1
have gm: 3 β€ m := by
have gmβ: 2 ^ 2 β€ 2 ^ (m - 1) := by
norm_num
rw [β hβ]
linarith
have gmβ: 2 β€ m - 1 := by
exact (Nat.pow_le_pow_iff_right (by norm_num)).mp gmβ
omega
have gβ: a < 2 ^ (m - 2) := by
have gββ: a + a < b + a := by simp [hβ.1]
rw [hβ, β mul_two a] at gββ
have gββ: m - 1 = Nat.succ (m - 2) := by
rw [β Nat.succ_sub ?_]
. rw [succ_eq_add_one]
omega
. linarith
rw [gββ, Nat.pow_succ 2 _] at gββ
exact Nat.lt_of_mul_lt_mul_right gββ
have hββ: b = 2 ^ (m - 1) - a := by
symm
exact Nat.sub_eq_of_eq_add hβ.symm
rw [hβ, hββ] at hβ
repeat rw [Nat.mul_sub_right_distrib] at hβ
repeat rw [β Nat.pow_add] at hβ
have hm1: 1 β€ m := by
linarith
repeat rw [β Nat.sub_add_comm hm1] at hβ
repeat rw [β Nat.add_sub_assoc hm1] at hβ
ring_nf at hβ
rw [β Nat.sub_add_eq _ 1 1] at hβ
norm_num at hβ
rw [β Nat.sub_add_eq _ (a * 2 ^ (m - 1)) (a * 2 ^ (m - 1))] at hβ
rw [β two_mul (a * 2 ^ (m - 1))] at hβ
rw [mul_comm 2 _] at hβ
rw [mul_assoc a (2 ^ (m - 1)) 2] at hβ
rw [β Nat.pow_succ, succ_eq_add_one] at hβ
rw [Nat.sub_add_cancel hm1] at hβ
rw [β Nat.sub_add_eq ] at hβ
have hββ: 2 ^ (m * 2 - 1) = 2 ^ (m * 2 - 2) - a * 2 ^ m + (a * 2 ^ m + a * 2 ^ k) := by
refine Nat.eq_add_of_sub_eq ?_ hβ
by_contra! hc
have gβ: 2 ^ (m * 2 - 1) - (a * 2 ^ m + a * 2 ^ k) = 0 := by
exact Nat.sub_eq_zero_of_le (le_of_lt hc)
rw [gβ] at hβ
have gβ: 2 ^ (m * 2 - 2) β€ a * 2 ^ m := by exact Nat.le_of_sub_eq_zero hβ.symm
have gβ: 2 ^ (m - 2) β€ a := by
rw [mul_two, Nat.add_sub_assoc (by linarith) m] at gβ
rw [Nat.pow_add, mul_comm] at gβ
refine Nat.le_of_mul_le_mul_right gβ ?_
exact Nat.two_pow_pos m
linarith [gβ, gβ]
rw [β Nat.add_assoc] at hββ
have hββ: a * 2 ^ k = 2 * 2 ^ (2 * m - 2) - 2 ^ (2 * m - 2) := by
rw [Nat.sub_add_cancel ?_] at hββ
. rw [add_comm] at hββ
symm
rw [β Nat.pow_succ', succ_eq_add_one]
rw [β Nat.sub_add_comm ?_]
. refine Nat.sub_eq_of_eq_add ?_
rw [mul_comm 2 m, β hββ]
exact rfl
. linarith [hm1]
. refine le_of_lt ?_
rw [mul_two, Nat.add_sub_assoc, Nat.pow_add, mul_comm (2 ^ m) _]
refine (Nat.mul_lt_mul_right (by linarith)).mpr gβ
linarith
nth_rewrite 2 [β Nat.one_mul (2 ^ (2 * m - 2))] at hββ
rw [β Nat.mul_sub_right_distrib 2 1 (2 ^ (2 * m - 2))] at hββ
norm_num at hββ
refine Nat.eq_div_of_mul_eq_left ?_ hββ
exact Ne.symm (NeZero.ne' (2 ^ k))
by_cases hk2m: k β€ 2 * m - 2
. rw [Nat.pow_div hk2m (by norm_num)] at hβ
rw [Nat.sub_right_comm (2*m) 2 k] at hβ
by_contra! hc
cases' (lt_or_gt_of_ne hc) with hcβ hcβ
. interval_cases a
linarith
. have hcβ: Β¬ Odd a := by
refine (not_odd_iff_even).mpr ?_
have hcβ: 1 β€ 2 * m - k - 2 := by
by_contra! hcβ
interval_cases (2 * m - k - 2)
simp at hβ
rw [hβ] at hcβ
contradiction
have hcβ: 2 * m - k - 2 = succ (2 * m - k - 3) := by
rw [succ_eq_add_one]
exact Nat.eq_add_of_sub_eq hcβ rfl
rw [hβ, hcβ, Nat.pow_succ']
exact even_two_mul (2 ^ (2 * m - k - 3))
exact hcβ hβ.1
. push_neg at hk2m
exfalso
have ha: a = 0 := by
rw [hβ]
refine (Nat.div_eq_zero_iff).mpr ?_
right
exact Nat.pow_lt_pow_right (by norm_num) hk2m
linarith [ha, hβ.1]
|