File size: 2,523 Bytes
1c3ffd8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import Mathlib
set_option linter.unusedVariables.analyzeTactics true


open Nat

theorem imo_1982_p1
  (f : β„• β†’ β„€)
  (hβ‚€ : βˆ€ m n, (0 < m ∧ 0 < n) β†’ f (m + n) - f m - f n = 0 ∨ f (m + n) - f m - f n = 1)
  (h₁ : f 2 = 0)
  (hβ‚‚ : 0 < f 3)
  (h₃ : f 9999 = 3333) :
  f 1982 = 660 := by
  have hβ‚€β‚€: βˆ€ m n, (0 < m ∧ 0 < n) β†’ f m  + f n ≀ f (m + n) := by
    intros m n hmn
    have gβ‚€: f (m + n) - f m - f n = 0 ∨ f (m + n) - f m - f n = 1 := by
      exact hβ‚€ m n hmn
    omega
  have h₀₁: βˆ€ m k, (0 < m ∧ 0 < k) β†’ k * f m ≀ f (k * m) := by
    intros m k hmk
    have g₁: 1 ≀ k := by linarith
    refine Nat.le_induction ?_ ?_ k g₁
    . simp
    . intros n hmn  gβ‚‚
      rw [cast_add]
      rw [add_mul, add_mul, one_mul]
      simp
      have g₃: f (n * m) + f (m) ≀ f (n * m + m) := by
        refine hβ‚€β‚€ (n * m) m ?_
        constructor
        . refine mul_pos ?_ hmk.1
          exact hmn
        . exact hmk.1
      refine le_trans ?_ g₃
      exact (Int.add_le_add_iff_right (f m)).mpr gβ‚‚
  have hβ‚„: f 3 = 1 := by
    have gβ‚€ : 3333 * f 3 ≀ f (9999) := by
      refine h₀₁ 3 3333 ?_
      omega
    linarith
  have hβ‚…: f 1980 = 660 := by
    have hβ‚…β‚€: f 1980 ≀ 660 := by
      have gβ‚€ : f (5 * 1980) + f 99 ≀ f (9999) := by
        refine hβ‚€β‚€ (5 * 1980) 99 (by omega)
      have g₁: 5 * f (1980) ≀ f (5 * 1980) := by
        exact h₀₁ 1980 5 (by omega)
      have gβ‚‚: 33 * f 3 ≀ f 99 := by
        exact h₀₁ 3 33 (by omega)
      rw [h₃] at gβ‚€
      linarith
    have h₅₁: 660 ≀ f 1980 := by
      have gβ‚€ : 660 * f 3 ≀ f (1980) := by
        refine h₀₁ 3 660 ?_
        omega
      rw [hβ‚„] at gβ‚€
      exact gβ‚€
    exact le_antisymm hβ‚…β‚€ h₅₁
  have h₆: f 1982 - f 1980 - f 2 = 0 ∨ f 1982 - f 1980 - f 2 = 1 := by
    refine hβ‚€ 1980 2 ?_
    omega
  cases' h₆ with h₆₀ h₆₁
  . linarith
  . exfalso
    rw [hβ‚…, h₁] at h₆₁
    have h₆₂: f 1982 = 661 := by
      linarith
    have h₆₃: 5 * f 1982 + 29 ≀ 3333 := by
      have gβ‚€ : f (5 * 1982) + f 89 ≀ f 9999 := by
        refine hβ‚€β‚€ (5 * 1982) 89 (by omega)
      have g₁: f (29 * 3) + f 2 ≀ f 89 := by
        refine hβ‚€β‚€ (29 * 3) 2 (by omega)
      have gβ‚‚: 5 * f (1982) ≀ f (5 * 1982) := by
        exact h₀₁ 1982 5 (by omega)
      have g₃: 29 * f 3 ≀ f (87) := by
        exact h₀₁ 3 29 (by omega)
      linarith
    rw [h₆₂] at h₆₃
    linarith