File size: 19,872 Bytes
1c3ffd8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
import Mathlib
set_option linter.unusedVariables.analyzeTactics true

open Nat BigOperators Finset


lemma aux_1
  (a : ℕ) :
  ¬ a ^ 22 [MOD 5] := by
  intro ha₀
  induction' a with n hn
  . simp at ha₀
    have ha₁: ¬ 02 [MOD 5] := by decide
    exact ha₁ ha₀
  . let b:ℕ := n % 5
    have hb₀: b < 5 := by omega
    have hb₁: n ≡ b [MOD 5] := by exact Nat.ModEq.symm (Nat.mod_modEq n 5)
    have hb₂: (n + 1) ≡ (b + 1) [MOD 5] := by
      exact Nat.ModEq.add_right 1 hb₁
    have hb₃: (n + 1) ^ 2 ≡ (b + 1) ^ 2 [MOD 5] := by
      exact Nat.ModEq.pow 2 hb₂
    interval_cases b
    . simp at *
      have g₀: 12 [MOD 5] := by
        refine Nat.ModEq.trans hb₃.symm ha₀
      have g₁: ¬ 12 [MOD 5] := by decide
      exact g₁ g₀
    . simp at hb₃
      have g₀: 42 [MOD 5] := by
        refine Nat.ModEq.trans hb₃.symm ha₀
      have g₁: ¬ 42 [MOD 5] := by decide
      exact g₁ g₀
    . simp at hb₃
      have g₀: 92 [MOD 5] := by
        refine Nat.ModEq.trans hb₃.symm ha₀
      have g₁: ¬ 92 [MOD 5] := by decide
      exact g₁ g₀
    . simp at hb₃
      have g₀: 162 [MOD 5] := by
        refine Nat.ModEq.trans hb₃.symm ha₀
      have g₁: ¬ 162 [MOD 5] := by decide
      exact g₁ g₀
    . simp at hb₃
      have g₀: 252 [MOD 5] := by
        refine Nat.ModEq.trans hb₃.symm ha₀
      have g₁: ¬ 252 [MOD 5] := by decide
      exact g₁ g₀


lemma aux_2
  (a : ℕ) :
  ¬ a ^ 23 [MOD 5] := by
  intro ha₀
  induction' a with n hn
  . simp at ha₀
    have ha₁: ¬ 03 [MOD 5] := by decide
    exact ha₁ ha₀
  . let b:ℕ := n % 5
    have hb₀: b < 5 := by omega
    have hb₁: n ≡ b [MOD 5] := by exact Nat.ModEq.symm (Nat.mod_modEq n 5)
    have hb₂: (n + 1) ≡ (b + 1) [MOD 5] := by
      exact Nat.ModEq.add_right 1 hb₁
    have hb₃: (n + 1) ^ 2 ≡ (b + 1) ^ 2 [MOD 5] := by
      exact Nat.ModEq.pow 2 hb₂
    interval_cases b
    . simp at *
      have g₀: 13 [MOD 5] := by
        refine Nat.ModEq.trans hb₃.symm ha₀
      have g₁: ¬ 13 [MOD 5] := by decide
      exact g₁ g₀
    . simp at hb₃
      have g₀: 43 [MOD 5] := by
        refine Nat.ModEq.trans hb₃.symm ha₀
      have g₁: ¬ 43 [MOD 5] := by decide
      exact g₁ g₀
    . simp at hb₃
      have g₀: 93 [MOD 5] := by
        refine Nat.ModEq.trans hb₃.symm ha₀
      have g₁: ¬ 93 [MOD 5] := by decide
      exact g₁ g₀
    . simp at hb₃
      have g₀: 163 [MOD 5] := by
        refine Nat.ModEq.trans hb₃.symm ha₀
      have g₁: ¬ 163 [MOD 5] := by decide
      exact g₁ g₀
    . simp at hb₃
      have g₀: 253 [MOD 5] := by
        refine Nat.ModEq.trans hb₃.symm ha₀
      have g₁: ¬ 253 [MOD 5] := by decide
      exact g₁ g₀


lemma aux_3
  (n : ℕ) :
  7 ^ (2 * n + 1) ≡ 2 [MOD 5] ∨ 7 ^ (2 * n + 1) ≡ 3 [MOD 5] := by
  induction' n with d hd
  . simp
    left
    decide
  . let b:ℕ := (7 ^ (2 * d + 1)) % 5
    have hb: b = (7 ^ (2 * d + 1)) % 5 := by rfl
    have hb₀: b < 5 := by
      rw [hb]
      omega
    have hb₁: (7 ^ (2 * d + 1)) ≡ b [MOD 5] := by
      exact ModEq.symm (mod_modEq (7 ^ (2 * d + 1)) 5)
    ring_nf at *
    have hb₂: 7 ^ (d * 2) * 7 * 49 ≡ b * 49 [MOD 5] := by
      exact ModEq.mul hb₁ rfl
    have hb₃: 7 ^ (d * 2) * 7 * 492 * 49 [MOD 5] ∨ 7 ^ (d * 2) * 7 * 493 * 49 [MOD 5] := by
      cases' hd with hd₀ hd₁
      . left
        exact ModEq.mul hd₀ rfl
      . right
        exact ModEq.mul hd₁ rfl
    ring_nf at hb₂
    ring_nf at *
    cases' hb₃ with hb₄ hb₅
    . interval_cases b
      . ring_nf at hb₂
        have g₀: 098 [MOD 5] := by
          refine Nat.ModEq.trans hb₂.symm hb₄
        have g₁: ¬ 098 [MOD 5] := by decide
        exact (g₁ g₀).elim
      . ring_nf at hb₂
        have g₀: 4998 [MOD 5] := by
          refine Nat.ModEq.trans hb₂.symm hb₄
        have g₁: ¬ 4998 [MOD 5] := by decide
        exact (g₁ g₀).elim
      . ring_nf at hb₂
        have g₀: 983 [MOD 5] := by decide
        right
        refine Nat.ModEq.trans hb₂ g₀
      . ring_nf at hb₂
        have g₀: 14798 [MOD 5] := by
          refine Nat.ModEq.trans hb₂.symm hb₄
        have g₁: ¬ 14798 [MOD 5] := by decide
        exact (g₁ g₀).elim
      . ring_nf at hb₂
        have g₀: 19698 [MOD 5] := by
          refine Nat.ModEq.trans hb₂.symm hb₄
        have g₁: ¬ 19698 [MOD 5] := by decide
        exact (g₁ g₀).elim
    . interval_cases b
      . ring_nf at hb₂
        have g₀: 0147 [MOD 5] := by
          refine Nat.ModEq.trans hb₂.symm hb₅
        have g₁: ¬ 0147 [MOD 5] := by decide
        exact (g₁ g₀).elim
      . ring_nf at hb₂
        have g₀: 49147 [MOD 5] := by
          refine Nat.ModEq.trans hb₂.symm hb₅
        have g₁: ¬ 49147 [MOD 5] := by decide
        exact (g₁ g₀).elim
      . ring_nf at hb₂
        have g₀: 98147 [MOD 5] := by
          refine Nat.ModEq.trans hb₂.symm hb₅
        have g₁: ¬ 98147 [MOD 5] := by decide
        exact (g₁ g₀).elim
      . ring_nf at hb₂
        exact Or.intro_left (7 ^ (d * 2) * 3433 [MOD 5]) hb₅
      . ring_nf at hb₂
        have g₀: 196147 [MOD 5] := by
          refine Nat.ModEq.trans hb₂.symm hb₅
        have g₁: ¬ 196147 [MOD 5] := by decide
        exact (g₁ g₀).elim


lemma aux_4
  (n b a : ℕ)
  (k : ℝ)
  -- (hk : k = √8)
  -- (hb : b = ∑ k ∈ range (n + 1), (2 * n + 1).choose (2 * k + 1) * 2 ^ (3 * k))
  -- (ha : a = ∑ k ∈ range (n + 1), (2 * n + 1).choose (2 * k) * 2 ^ (3 * k))
  (hb₁ : ↑b = 1 / k * ∑ x ∈ range (n + 1), ↑((2 * n + 1).choose (2 * x + 1)) * k ^ (2 * x + 1))
  (ha₁ : ↑a = ∑ x ∈ range (n + 1), ↑((2 * n + 1).choose (2 * x)) * k ^ (2 * x))
  (hk₀ : k * k⁻¹ = 1) :
  (1 + k) ^ (2 * n + 1) = ↑a + ↑b * k := by
  rw [mul_comm _ k, hb₁, ← mul_assoc]
  rw [← inv_eq_one_div, hk₀, one_mul, ha₁]
  rw [add_comm, add_pow k 1 (2 * n + 1)]
  simp
  clear hb₁ ha₁ b a hk₀
  let f : ℕ → ℝ := fun i => ↑((2 * n + 1).choose (i)) * k ^ i
  let fs₂ := Finset.range (2 * n + 2)
  -- let fs₀ : Finset ℕ := Finset.filter (fun x => Odd x) (Finset.range (2 * n + 2))
  let fs₀ : Finset ℕ := fs₂.filter (fun x => Odd x)
  let fs₁ : Finset ℕ := fs₂.filter (fun x => Even x)
  let fs₃ : Finset ℕ := Finset.range (n + 1)
  have h₀: ∑ x ∈ range (n + 1), ↑((2 * n + 1).choose (2 * x + 1)) * k ^ (2 * x + 1) =
    ∑ x ∈ fs₀, ↑((2 * n + 1).choose (x)) * k ^ (x) := by
    have h₀₁: ∑ x ∈ fs₃, f (2 * x + 1) = ∑ x ∈ (fs₀), f x := by
      refine sum_bij ?i ?_ ?i_inj ?i_surj ?h
      . intros a _
        exact (2 * a + 1)
      . intros a ha₀
        have ha₁: a ≤ n := by exact mem_range_succ_iff.mp ha₀
        have ha₂: 2 * a + 12 * n + 1 := by linarith
        have ha₃: (2 * a + 1) ∈ fs₂ := by exact mem_range_succ_iff.mpr ha₂
        have ha₄: Odd (2 * a + 1) := by exact odd_two_mul_add_one a
        refine mem_filter.mpr ?_
        exact And.symm ⟨ha₄, ha₃⟩
      . intros a _ b _ h₃
        linarith
      . intros b hb₀
        use ((b - 1) / 2)
        refine exists_prop.mpr ?_
        have hb₁: b ∈ fs₂ ∧ Odd b := by exact mem_filter.mp hb₀
        have hb₂: 1 ≤ b := by
          by_contra! hc₀
          interval_cases b
          have hc₁: ¬ Odd 0 := by decide
          apply hc₁ hb₁.2
        have hb₃: Even (b - 1) := by
          refine (Nat.even_sub hb₂).mpr ?_
          simp only [not_even_one, iff_false, not_even_iff_odd]
          exact hb₁.2
        constructor
        . have hb₄: b < 2 * n + 2 := by exact List.mem_range.mp hb₁.1
          have hb₅: (b - 1) / 2 < n + 1 := by omega
          exact mem_range.mpr hb₅
        . have hb₆: 2 * ((b - 1) / 2) = b - 1 := by exact two_mul_div_two_of_even hb₃
          rw [hb₆]
          exact Nat.sub_add_cancel hb₂
      . exact fun a _ => rfl
    exact h₀₁
  have h₁: ∑ x ∈ range (n + 1), ↑((2 * n + 1).choose (2 * x)) * k ^ (2 * x) =
    ∑ x ∈ fs₁, ↑((2 * n + 1).choose (x)) * k ^ (x) := by
    have h₁₁: ∑ x ∈ fs₃, f (2 * x) = ∑ x ∈ (fs₁), f x := by
      refine sum_bij ?_ ?_ ?_ ?_ ?_
      . intros a _
        exact (2 * a)
      . intros a ha₀
        have ha₁: a < n + 1 := by exact List.mem_range.mp ha₀
        have ha₂: 2 * a < 2 * n + 2 := by linarith
        refine mem_filter.mpr ?_
        constructor
        . exact mem_range.mpr ha₂
        . exact even_two_mul a
      . intros a _ b _ h₃
        exact Nat.eq_of_mul_eq_mul_left (by norm_num) h₃
      . intros b hb₀
        use (b/2)
        refine exists_prop.mpr ?_
        have hb₁: b ∈ fs₂ ∧ Even b := by exact mem_filter.mp hb₀
        constructor
        . have hb₂: b < 2 * n + 2 := by exact List.mem_range.mp hb₁.1
          have hb₃: (b / 2) < n + 1 := by exact Nat.div_lt_of_lt_mul hb₂
          exact mem_range.mpr hb₃
        . exact two_mul_div_two_of_even hb₁.2
      . exact fun a _ => rfl
    exact h₁₁
  have h₂: ∑ x ∈ range (2 * n + 1 + 1), k ^ x * ↑((2 * n + 1).choose x) =
    ∑ x ∈ fs₂, ↑((2 * n + 1).choose x) * k ^ x := by
    refine Finset.sum_congr (rfl) ?_
    intros x _
    rw [mul_comm]
  rw [h₀, h₁, h₂]
  have h₃: fs₂ = fs₀ ∪ fs₁ := by
    refine Finset.ext_iff.mpr ?_
    intro a
    constructor
    . intro ha₀
      refine mem_union.mpr ?mp.a
      have ha₁: Odd a ∨ Even a := by exact Or.symm (even_or_odd a)
      cases' ha₁ with ha₂ ha₃
      . left
        refine mem_filter.mpr ?mp.a.inl.h.a
        exact And.symm ⟨ha₂, ha₀⟩
      . right
        refine mem_filter.mpr ?mp.a.inl.h.b
        exact And.symm ⟨ha₃, ha₀⟩
    . intro ha₀
      apply mem_union.mp at ha₀
      cases' ha₀ with ha₁ ha₂
      . exact mem_of_mem_filter a ha₁
      . exact mem_of_mem_filter a ha₂
  have h₄: Disjoint fs₀ fs₁ := by
    refine disjoint_filter.mpr ?_
    intros x _ hx₁
    exact not_even_iff_odd.mpr hx₁
  nth_rw 2 [add_comm]
  rw [h₃, Finset.sum_union h₄]


lemma aux_5
  (n b a : ℕ)
  (k : ℝ)
  -- (hk : k = √8)
  -- (hb : b = ∑ k ∈ range (n + 1), (2 * n + 1).choose (2 * k + 1) * 2 ^ (3 * k))
  -- (ha : a = ∑ k ∈ range (n + 1), (2 * n + 1).choose (2 * k) * 2 ^ (3 * k))
  (hb₁ : ↑b = 1 / k * ∑ x ∈ range (n + 1), ↑((2 * n + 1).choose (2 * x + 1)) * k ^ (2 * x + 1))
  (ha₁ : ↑a = ∑ x ∈ range (n + 1), ↑((2 * n + 1).choose (2 * x)) * k ^ (2 * x))
  (hk₀ : k * k⁻¹ = 1) :
  (1 - k) ^ (2 * n + 1) = ↑a - ↑b * k := by
  rw [mul_comm _ k, hb₁, ← mul_assoc]
  rw [← inv_eq_one_div, hk₀, one_mul, ha₁, sub_eq_add_neg]
  rw [add_comm 1 _, add_pow (-k) 1 (2 * n + 1)]
  simp
  clear hb₁ ha₁ b a hk₀
  let f₀ : ℕ → ℝ := fun i => ↑((2 * n + 1).choose (i)) * k ^ i
  let f₁ : ℕ → ℝ := fun i => ↑((2 * n + 1).choose (i)) * (-k) ^ i
  let fs₂ := Finset.range (2 * n + 2)
  let fs₀ : Finset ℕ := fs₂.filter (fun x => Odd x)
  let fs₁ : Finset ℕ := fs₂.filter (fun x => Even x)
  let fs₃ : Finset ℕ := Finset.range (n + 1)
  have h₀: ∑ x ∈ range (n + 1), ↑((2 * n + 1).choose (2 * x + 1)) * k ^ (2 * x + 1) =
    - ∑ x ∈ fs₀, ↑((2 * n + 1).choose (x)) * (-k) ^ (x) := by
    rw [neg_eq_neg_one_mul, Finset.mul_sum]
    have h₀₁: ∑ x ∈ fs₃, f₀ (2 * x + 1) = ∑ x ∈ (fs₀), -1 * f₁ x := by
      refine sum_bij ?i ?_ ?i_inj ?i_surj ?h
      . intros a _
        exact (2 * a + 1)
      . intros a ha₀
        have ha₁: a ≤ n := by exact mem_range_succ_iff.mp ha₀
        have ha₂: 2 * a + 12 * n + 1 := by linarith
        have ha₃: (2 * a + 1) ∈ fs₂ := by exact mem_range_succ_iff.mpr ha₂
        have ha₄: Odd (2 * a + 1) := by exact odd_two_mul_add_one a
        refine mem_filter.mpr ?_
        exact And.symm ⟨ha₄, ha₃⟩
      . intros a _ b _ h₃
        linarith
      . intros b hb₀
        use ((b - 1) / 2)
        refine exists_prop.mpr ?_
        have hb₁: b ∈ fs₂ ∧ Odd b := by exact mem_filter.mp hb₀
        have hb₂: 1 ≤ b := by
          by_contra! hc₀
          interval_cases b
          have hc₁: ¬ Odd 0 := by decide
          apply hc₁ hb₁.2
        have hb₃: Even (b - 1) := by
          refine (Nat.even_sub hb₂).mpr ?_
          simp only [not_even_one, iff_false, not_even_iff_odd]
          exact hb₁.2
        constructor
        . have hb₄: b < 2 * n + 2 := by exact List.mem_range.mp hb₁.1
          have hb₅: (b - 1) / 2 < n + 1 := by omega
          exact mem_range.mpr hb₅
        . have hb₆: 2 * ((b - 1) / 2) = b - 1 := by exact two_mul_div_two_of_even hb₃
          rw [hb₆]
          exact Nat.sub_add_cancel hb₂
      . intros b hb₀
        ring_nf
        have hb₁: (-1:ℝ) ^ (b * 2) = 1 := by
          refine (neg_one_pow_eq_one_iff_even (by norm_num)).mpr ?_
          rw [mul_comm]
          exact even_two_mul b
        rw [hb₁, mul_one]
    exact h₀₁
  have h₁: ∑ x ∈ range (n + 1), ↑((2 * n + 1).choose (2 * x)) * k ^ (2 * x) =
    ∑ x ∈ fs₁, ↑((2 * n + 1).choose (x)) * (-k) ^ (x) := by
    have h₁₁: ∑ x ∈ fs₃, f₀ (2 * x) = ∑ x ∈ (fs₁), f₁ x := by
      refine sum_bij ?_ ?_ ?_ ?_ ?_
      . intros a _
        exact (2 * a)
      . intros a ha₀
        have ha₁: a < n + 1 := by exact List.mem_range.mp ha₀
        have ha₂: 2 * a < 2 * n + 2 := by linarith
        refine mem_filter.mpr ?_
        constructor
        . exact mem_range.mpr ha₂
        . exact even_two_mul a
      . intros a _ b _ h₃
        exact Nat.eq_of_mul_eq_mul_left (by norm_num) h₃
      . intros b hb₀
        use (b/2)
        refine exists_prop.mpr ?_
        have hb₁: b ∈ fs₂ ∧ Even b := by exact mem_filter.mp hb₀
        constructor
        . have hb₂: b < 2 * n + 2 := by exact List.mem_range.mp hb₁.1
          have hb₃: (b / 2) < n + 1 := by exact Nat.div_lt_of_lt_mul hb₂
          exact mem_range.mpr hb₃
        . exact two_mul_div_two_of_even hb₁.2
      . intros b hb₀
        ring_nf
        have hb₁: (-1:ℝ) ^ (b * 2) = 1 := by
          refine (neg_one_pow_eq_one_iff_even (by norm_num)).mpr ?_
          rw [mul_comm]
          exact even_two_mul b
        rw [hb₁, mul_one]
    exact h₁₁
  have h₂: ∑ x ∈ range (2 * n + 1 + 1), (-k) ^ x * ↑((2 * n + 1).choose x) =
    ∑ x ∈ fs₂, ↑((2 * n + 1).choose x) * (-k) ^ x := by
    refine Finset.sum_congr (rfl) ?_
    intros x _
    rw [mul_comm]
  rw [h₀, h₁, h₂, sub_neg_eq_add]
  have h₃: fs₂ = fs₀ ∪ fs₁ := by
    refine Finset.ext_iff.mpr ?_
    intro a
    constructor
    . intro ha₀
      refine mem_union.mpr ?mp.a
      have ha₁: Odd a ∨ Even a := by exact Or.symm (even_or_odd a)
      cases' ha₁ with ha₂ ha₃
      . left
        refine mem_filter.mpr ?mp.a.inl.h.a
        exact And.symm ⟨ha₂, ha₀⟩
      . right
        refine mem_filter.mpr ?mp.a.inl.h.b
        exact And.symm ⟨ha₃, ha₀⟩
    . intro ha₀
      apply mem_union.mp at ha₀
      cases' ha₀ with ha₁ ha₂
      . exact mem_of_mem_filter a ha₁
      . exact mem_of_mem_filter a ha₂
  have h₄: Disjoint fs₀ fs₁ := by
    refine disjoint_filter.mpr ?_
    intros x _ hx₁
    exact not_even_iff_odd.mpr hx₁
  nth_rw 2 [add_comm]
  rw [h₃, Finset.sum_union h₄]




theorem imo_1974_p3
  (n : ℕ) :
  ¬ 5 ∣ ∑ k ∈ Finset.range (n + 1), (Nat.choose (2 * n + 1) (2 * k + 1)) * (2^(3 * k)) := by
  let k:ℝ := Real.sqrt (8:ℝ)
  have hk: k = Real.sqrt (8:ℝ) := by rfl
  let b:ℕ := ∑ k ∈ Finset.range (n + 1), (Nat.choose (2 * n + 1) (2 * k + 1)) * (2^(3 * k))
  have hb: b = ∑ k ∈ Finset.range (n + 1), (Nat.choose (2 * n + 1) (2 * k + 1)) * (2^(3 * k)) := by rfl
  rw [← hb]
  let a:ℕ := ∑ k ∈ Finset.range (n + 1), (Nat.choose (2 * n + 1) (2 * k) * (2 ^ (3 * k)))
  have ha: a = ∑ k ∈ Finset.range (n + 1), (Nat.choose (2 * n + 1) (2 * k) * (2 ^ (3 * k))) := by rfl
  have hb₁: b = (1 / k) *
    ∑ x ∈ Finset.range (n + 1), (Nat.choose (2 * n + 1) (2 * x + 1)) * (k ^ (2 * x + 1)) := by
    rw [hb, hk]
    simp
    rw [Finset.mul_sum]
    refine Finset.sum_congr (rfl) ?_
    intros x _
    rw [mul_comm ((√8)⁻¹), mul_assoc]
    refine mul_eq_mul_left_iff.mpr ?_
    left
    rw [pow_succ, pow_mul, pow_mul, Real.sq_sqrt (by norm_num)]
    norm_num
  have ha₁: a = ∑ x ∈ Finset.range (n + 1), (Nat.choose (2 * n + 1) (2 * x) * (k ^ (2 * x))) := by
    rw [ha, hk]
    simp
    refine Finset.sum_congr (rfl) ?_
    intros x _
    refine mul_eq_mul_left_iff.mpr ?_
    left
    rw [pow_mul, pow_mul, Real.sq_sqrt (by norm_num)]
    norm_num
  have hk₀: k * k⁻¹ = 1 := by
    refine (mul_inv_eq_one₀ ?_).mpr (rfl)
    rw [hk]
    norm_num
  have h₀: (1 + k) ^ (2 * n + 1) = a + b * k := by
    exact aux_4 n b a k hb₁ ha₁ hk₀
  have h₁: (1 - k) ^ (2 * n + 1) = a - b * k := by
    exact aux_5 n b a k hb₁ ha₁ hk₀
  have h₂: ((1 + k) * (1 - k)) ^ (2 * n + 1) = (a + b * k) * (a - b * k) := by
    rw [mul_pow, h₀, h₁]
  rw [← sq_sub_sq 1 k] at h₂
  rw [← sq_sub_sq (↑a) ((↑b:ℝ) * k)] at h₂
  rw [mul_pow, hk] at h₂
  norm_num at h₂
  have h₃: (7:ℕ) ^ (2 * n + 1) = b ^ 2 * 8 - a ^ 2 := by
    have h₃₀: Odd (2 * n + 1) := by exact odd_two_mul_add_one n
    have h₃₁: (-7:ℝ) = (-1:ℝ) * (7:ℕ) := by norm_num
    have h₃₂: (-1:ℝ) ^ (2 * n + 1) = -1 := by exact Odd.neg_one_pow h₃₀
    have h₃₃: ↑a ^ 2 - ↑b ^ 2 * 8 = (-1:ℝ) * (↑b ^ 2 * 8 - ↑a ^ 2) := by
      linarith
    rw [h₃₁, mul_pow, h₃₂, h₃₃] at h₂
    simp at h₂
    have h₃₄: (7:ℝ) ^ (2 * n + 1) = ↑b ^ 2 * 8 - ↑a ^ 2 := by
      linarith
    norm_cast at h₃₄
    rw [Int.subNatNat_eq_coe] at h₃₄
    rw [← Int.toNat_sub, ← h₃₄]
    exact rfl
  have h₄: 7 ^ (2 * n + 1) ≡ 2 [MOD 5] ∨ 7 ^ (2 * n + 1) ≡ 3 [MOD 5] := by
    refine aux_3 n
  by_contra! hc₀
  have hc₁: b^2 * 80^2 * 8 [MOD 5] := by
    refine ModEq.mul ?_ rfl
    refine ModEq.pow 2 ?_
    exact modEq_zero_iff_dvd.mpr hc₀
  simp at hc₁
  have h₅: a ^ 2 < b ^ 2 * 8 := by
    have h₅₀: 0 < 7 ^ (2 * n + 1) := by
      exact Nat.pow_pos (by norm_num)
    rw [h₃] at h₅₀
    exact Nat.lt_of_sub_pos h₅₀
  cases' h₄ with h₄₀ h₄₁
  . rw [h₃] at h₄₀
    have hc₂: b ^ 2 * 8 - a ^ 2 + a ^ 22 + a ^ 2 [MOD 5] := by
      exact ModEq.add_right (a ^ 2) h₄₀
    rw [Nat.sub_add_cancel (le_of_lt h₅)] at hc₂
    have hc₃: 3 + (2 + a ^ 2) ≡ 3 [MOD 5] := by
      apply Nat.ModEq.trans hc₂.symm at hc₁
      exact ModEq.add_left 3 hc₁
    have hc₄: a ^ 23 [MOD 5] := by
      rw [← add_assoc, ← zero_add 3] at hc₃
      norm_num at hc₃
      have hc₄: 50 [MOD 5] := by decide
      exact Nat.ModEq.add_left_cancel hc₄ hc₃
    have hc₅: ¬ a ^ 23 [MOD 5] := by exact aux_2 a
    exact hc₅ hc₄
  . rw [h₃] at h₄₁
    have hc₂: b ^ 2 * 8 - a ^ 2 + a ^ 23 + a ^ 2 [MOD 5] := by
      exact ModEq.add_right (a ^ 2) h₄₁
    rw [Nat.sub_add_cancel (le_of_lt h₅)] at hc₂
    apply Nat.ModEq.trans hc₂.symm at hc₁
    have hc₃: a ^ 22 [MOD 5] := by
      refine Nat.ModEq.add_left_cancel'  3 ?_
      exact hc₁
    have hc₄: ¬ a ^ 22 [MOD 5] := by exact aux_1 a
    exact hc₄ hc₃