File size: 49,174 Bytes
1c3ffd8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
import Mathlib
set_option linter.unusedVariables.analyzeTactics true

open Nat

lemma imo_1984_p6_1
  (a b : β„•)
  -- (hap: 0 < a)
  -- (hbp: 0 < b)
  (hβ‚€: b < a) :
  ((a - b) ^ 2 = a ^ 2 + b ^ 2 - 2 * a * b) := by
  have h₁: b^2 ≀ a * b := by
    rw [pow_two]
    refine Nat.mul_le_mul_right ?_ ?_
    exact Nat.le_of_lt hβ‚€
  have hβ‚‚: a * b ≀ a ^ 2 := by
    rw [pow_two]
    refine Nat.mul_le_mul_left ?_ ?_
    exact Nat.le_of_lt hβ‚€
  repeat rw [pow_two]
  repeat rw [Nat.mul_sub_left_distrib]
  repeat rw [Nat.mul_sub_right_distrib a b a]
  rw [Nat.sub_right_comm]
  repeat rw [Nat.mul_sub_right_distrib a b b]
  ring_nf
  have h₃: a ^ 2 - (a * b - b ^ 2) = a ^ 2 - a * b + b ^ 2 := by
    refine tsub_tsub_assoc ?h₁ h₁
    exact hβ‚‚
  rw [h₃]
  rw [← Nat.sub_add_comm hβ‚‚]
  . rw [← Nat.sub_add_eq, ← mul_two]


lemma imo_1984_p6_2
  (a b c d k m : β„•)
  (hβ‚‚ : a < b ∧ b < c ∧ c < d)
  (h₃ : a * d = b * c)
  (hβ‚„ : a + d = 2 ^ k)
  (hβ‚… : b + c = 2 ^ m) :
  (m < k) := by
  have h₆: (c - b) ^ 2 < (d - a) ^ 2 := by
    refine Nat.pow_lt_pow_left ?_ (by norm_num)
    have hβ‚ˆβ‚€: c - a < d - a := by
      have gβ‚€: c - a + a < d - a + a := by
        rw [Nat.sub_add_cancel ?_]
        rw [Nat.sub_add_cancel ?_]
        . exact hβ‚‚.2.2
        . linarith
        . linarith
      exact Nat.lt_of_add_lt_add_right gβ‚€
    refine lt_trans ?_ hβ‚ˆβ‚€
    refine Nat.sub_lt_sub_left ?_ hβ‚‚.1
    exact lt_trans hβ‚‚.1 hβ‚‚.2.1
  have h₇: (b + c) ^ 2 < (a + d) ^ 2 := by
    rw [add_sq b c, add_sq a d]
    have hda: a < d := by
      refine lt_trans hβ‚‚.1 ?_
      exact lt_trans hβ‚‚.2.1 hβ‚‚.2.2
    rw [imo_1984_p6_1 d a hda] at h₆
    rw [imo_1984_p6_1 c b hβ‚‚.2.1] at h₆
    rw [mul_assoc 2 b c, ← h₃, ← mul_assoc]
    rw [mul_assoc 2 c b, mul_comm c b, ← h₃, ← mul_assoc] at h₆
    rw [add_assoc, add_comm _ (c ^ 2), ← add_assoc]
    rw [add_assoc (a ^ 2), add_comm _ (d ^ 2), ← add_assoc]
    rw [mul_assoc 2 d a, mul_comm d a, ← mul_assoc] at h₆
    rw [add_comm (d ^ 2) (a ^ 2)] at h₆
    rw [add_comm (c ^ 2) (b ^ 2)] at h₆
    have gβ‚€: 2 * a * d ≀ 4 * a * d := by
      ring_nf
      exact Nat.mul_le_mul_left (a * d) (by norm_num)
    have g₁: 2 * a * d = 4 * a * d - 2 * a * d := by
      ring_nf
      rw [← Nat.mul_sub_left_distrib]
      norm_num
    have gβ‚‚: 2 * a * d ≀ b ^ 2 + c ^ 2 := by
      rw [mul_assoc, h₃, ← mul_assoc]
      exact two_mul_le_add_sq b c
    have g₃: 2 * a * d ≀ a ^ 2 + d ^ 2 := by
      exact two_mul_le_add_sq a d
    rw [g₁, ← Nat.add_sub_assoc (gβ‚€) (b ^ 2 + c ^ 2)]
    rw [← Nat.add_sub_assoc (gβ‚€) (a ^ 2 + d ^ 2)]
    rw [Nat.sub_add_comm gβ‚‚, Nat.sub_add_comm g₃]
    exact (Nat.add_lt_add_iff_right).mpr h₆
  have h2 : 1 < 2 := by norm_num
  refine (Nat.pow_lt_pow_iff_right h2).mp ?_
  rw [← hβ‚„, ← hβ‚…]
  exact (Nat.pow_lt_pow_iff_left (by norm_num) ).mp h₇


lemma imo_1984_p6_3
  (a b c d : β„•)
  (hβ‚€ : a < b ∧ b < c ∧ c < d) :
  (c - b) ^ 2 < (d - a) ^ 2 := by
  refine Nat.pow_lt_pow_left ?_ (by norm_num)
  have h₁: c - a < d - a := by
    have gβ‚€: c - a + a < d - a + a := by
      rw [Nat.sub_add_cancel ?_]
      rw [Nat.sub_add_cancel ?_]
      . exact hβ‚€.2.2
      . linarith
      . linarith
    exact Nat.lt_of_add_lt_add_right gβ‚€
  refine lt_trans ?_ h₁
  refine Nat.sub_lt_sub_left ?_ hβ‚€.1
  exact lt_trans hβ‚€.1 hβ‚€.2.1


lemma imo_1984_p6_4
  (a b c d : β„•)
  (hβ‚€ : a < b ∧ b < c ∧ c < d)
  (h₁ : a * d = b * c)
  (hβ‚‚ : (c - b) ^ 2 < (d - a) ^ 2) :
  (b + c) ^ 2 < (a + d) ^ 2 := by
  rw [add_sq b c, add_sq a d]
  have hda: a < d := by
    refine lt_trans hβ‚€.1 ?_
    exact lt_trans hβ‚€.2.1 hβ‚€.2.2
  rw [imo_1984_p6_1 d a hda] at hβ‚‚
  rw [imo_1984_p6_1 c b hβ‚€.2.1] at hβ‚‚
  rw [mul_assoc 2 b c, ← h₁, ← mul_assoc]
  rw [mul_assoc 2 c b, mul_comm c b, ← h₁, ← mul_assoc] at hβ‚‚
  rw [add_assoc, add_comm _ (c ^ 2), ← add_assoc]
  rw [add_assoc (a ^ 2), add_comm _ (d ^ 2), ← add_assoc]
  rw [mul_assoc 2 d a, mul_comm d a, ← mul_assoc] at hβ‚‚
  rw [add_comm (d ^ 2) (a ^ 2)] at hβ‚‚
  rw [add_comm (c ^ 2) (b ^ 2)] at hβ‚‚
  have gβ‚€: 2 * a * d ≀ 4 * a * d := by
    ring_nf
    exact Nat.mul_le_mul_left (a * d) (by norm_num)
  have g₁: 2 * a * d = 4 * a * d - 2 * a * d := by
    ring_nf
    rw [← Nat.mul_sub_left_distrib]
    norm_num
  have gβ‚‚: 2 * a * d ≀ b ^ 2 + c ^ 2 := by
    rw [mul_assoc, h₁, ← mul_assoc]
    exact two_mul_le_add_sq b c
  have g₃: 2 * a * d ≀ a ^ 2 + d ^ 2 := by
    exact two_mul_le_add_sq a d
  rw [g₁, ← Nat.add_sub_assoc (gβ‚€) (b ^ 2 + c ^ 2)]
  rw [← Nat.add_sub_assoc (gβ‚€) (a ^ 2 + d ^ 2)]
  rw [Nat.sub_add_comm gβ‚‚, Nat.sub_add_comm g₃]
  exact (Nat.add_lt_add_iff_right).mpr hβ‚‚


lemma imo_1984_p6_5
  (a b c d : β„•)
  -- (hβ‚€ : a < b ∧ b < c ∧ c < d)
  (h₁ : a * d = b * c)
  (hβ‚‚ : b ^ 2 + c ^ 2 - 2 * a * d < a ^ 2 + d ^ 2 - 2 * a * d) :
  b ^ 2 + c ^ 2 + 2 * a * d < a ^ 2 + d ^ 2 + 2 * a * d := by
  have gβ‚€: 2 * a * d ≀ 4 * a * d := by
    ring_nf
    exact Nat.mul_le_mul_left (a * d) (by norm_num)
  have g₁: 2 * a * d = 4 * a * d - 2 * a * d := by
    ring_nf
    rw [← Nat.mul_sub_left_distrib]
    norm_num
  have gβ‚‚: 2 * a * d ≀ b ^ 2 + c ^ 2 := by
    rw [mul_assoc, h₁, ← mul_assoc]
    exact two_mul_le_add_sq b c
  have g₃: 2 * a * d ≀ a ^ 2 + d ^ 2 := by
    exact two_mul_le_add_sq a d
  rw [g₁, ← Nat.add_sub_assoc (gβ‚€) (b ^ 2 + c ^ 2)]
  rw [← Nat.add_sub_assoc (gβ‚€) (a ^ 2 + d ^ 2)]
  rw [Nat.sub_add_comm gβ‚‚, Nat.sub_add_comm g₃]
  exact (Nat.add_lt_add_iff_right).mpr hβ‚‚


lemma imo_1984_p6_6
  (a b c d : β„•)
  (h₁ : a * d = b * c) :
  -- (hβ‚‚ : b ^ 2 + c ^ 2 - 2 * a * d < a ^ 2 + d ^ 2 - 2 * a * d)
  -- (gβ‚€ : 2 * a * d ≀ 4 * a * d)
  -- (g₁ : 2 * a * d = 4 * a * d - 2 * a * d) :
  (2 * a * d ≀ b ^ 2 + c ^ 2) := by
  rw [mul_assoc, h₁, ← mul_assoc]
  exact two_mul_le_add_sq b c


lemma imo_1984_p6_7
  (a b c d k m : β„•)
  (hβ‚€ : 0 < a ∧ 0 < b ∧ 0 < c ∧ 0 < d)
  (h₁ : m < k)
  (hβ‚‚ : a < b ∧ b < c ∧ c < d)
  (h₃ : a * d = b * c)
  (hβ‚„ : a + d = 2 ^ k)
  (hβ‚… : b + c = 2 ^ m)
  (hkm : k ≀ m) :
  a = 99 := by
  linarith [h₁, hkm]



lemma imo_1984_p6_8
  (a b c d k m : β„•)
  (hβ‚€ : 0 < a ∧ 0 < b ∧ 0 < c ∧ 0 < d)
  -- (h₁ : Odd a ∧ Odd b ∧ Odd c ∧ Odd d)
  (hβ‚‚ : a < b ∧ b < c ∧ c < d)
  (h₃ : a * d = b * c)
  (hβ‚„ : a + d = 2 ^ k)
  (hβ‚… : b + c = 2 ^ m) :
  -- (hkm : m < k) :
  b * 2 ^ m - a * 2 ^ k = (b - a) * (b + a) := by
  have h₆₀: c = 2 ^ m - b := by exact (tsub_eq_of_eq_add_rev (id hβ‚….symm)).symm
  have h₆₁: d = 2 ^ k - a := by exact (tsub_eq_of_eq_add_rev (id hβ‚„.symm)).symm
  rw [h₆₀, h₆₁] at h₃
  repeat rw [Nat.mul_sub_left_distrib, ← pow_two] at h₃
  have h₆₂: b * 2 ^ m - a * 2 ^ k =  b ^ 2 - a ^ 2 := by
    symm at h₃
    refine Nat.sub_eq_of_eq_add ?_
    rw [add_comm, ← Nat.add_sub_assoc]
    . rw [Nat.sub_add_comm]
      . refine Nat.eq_add_of_sub_eq ?_ h₃
        rw [pow_two]
        refine le_of_lt ?_
        refine mul_lt_mul' (by linarith) ?_ (le_of_lt hβ‚€.2.1) hβ‚€.2.1
        linarith
      . rw [pow_two]
        refine le_of_lt ?_
        refine mul_lt_mul' (by linarith) ?_ (le_of_lt hβ‚€.1) hβ‚€.1
        linarith
    . refine le_of_lt ?_
      rw [pow_two, pow_two]
      exact mul_lt_mul hβ‚‚.1 (le_of_lt hβ‚‚.1) hβ‚€.1 (le_of_lt hβ‚€.2.1)
  rw [Nat.sq_sub_sq b a] at h₆₂
  rw [mul_comm (b - a) _]
  exact h₆₂


lemma imo_1984_p6_8_1
(a b c d k m : β„•)
-- (hβ‚€ : 0 < a ∧ 0 < b ∧ 0 < c ∧ 0 < d)
-- (hβ‚‚ : a < b ∧ b < c ∧ c < d)
(h₃ : a * d = b * c)
(hβ‚„ : a + d = 2 ^ k)
(hβ‚… : b + c = 2 ^ m) :
-- (h₆₀ : c = 2 ^ m - b)
-- (h₆₁ : d = 2 ^ k - a) :
a * (2 ^ k - a) = b * (2 ^ m - b) := by
have h₆₀: c = 2 ^ m - b := by exact (tsub_eq_of_eq_add_rev (id hβ‚….symm)).symm
have h₆₁: d = 2 ^ k - a := by exact (tsub_eq_of_eq_add_rev (id hβ‚„.symm)).symm
rw [h₆₀, h₆₁] at h₃
exact h₃



lemma imo_1984_p6_8_2
  (a b c d k m : β„•)
  (hβ‚€ : 0 < a ∧ 0 < b ∧ 0 < c ∧ 0 < d)
  (hβ‚‚ : a < b)
  (h₃ : a * 2 ^ k - a ^ 2 = b * 2 ^ m - b ^ 2)
  (hβ‚„ : a + d = 2 ^ k)
  (hβ‚… : b + c = 2 ^ m) :
  -- (h₆₀ : c = 2 ^ m - b)
  -- (h₆₁ : d = 2 ^ k - a) :
  b * 2 ^ m - a * 2 ^ k = b ^ 2 - a ^ 2 := by
  symm at h₃
  refine Nat.sub_eq_of_eq_add ?_
  rw [add_comm, ← Nat.add_sub_assoc]
  . rw [Nat.sub_add_comm]
    . refine Nat.eq_add_of_sub_eq ?_ h₃
      rw [pow_two]
      refine le_of_lt ?_
      refine mul_lt_mul' (by linarith) ?_ (le_of_lt hβ‚€.2.1) hβ‚€.2.1
      linarith
    . rw [pow_two]
      refine le_of_lt ?_
      refine mul_lt_mul' (by linarith) ?_ (le_of_lt hβ‚€.1) hβ‚€.1
      linarith
  . refine le_of_lt ?_
    rw [pow_two, pow_two]
    exact mul_lt_mul hβ‚‚ (le_of_lt hβ‚‚) hβ‚€.1 (le_of_lt hβ‚€.2.1)


lemma imo_1984_p6_8_3
  (a b c d k m : β„•)
  (hβ‚€ : 0 < a ∧ 0 < b ∧ 0 < c ∧ 0 < d)
  -- (hβ‚‚ : a < b)
  (h₃ : b * 2 ^ m - b ^ 2 = a * 2 ^ k - a ^ 2)
  -- (hβ‚„ : a + d = 2 ^ k)
  (hβ‚… : b + c = 2 ^ m) :
  -- (h₆₀ : c = 2 ^ m - b)
  -- (h₆₁ : d = 2 ^ k - a) :
  b * 2 ^ m = a * 2 ^ k - a ^ 2 + b ^ 2 := by
  refine Nat.eq_add_of_sub_eq ?_ h₃
  rw [pow_two]
  refine le_of_lt ?_
  refine mul_lt_mul' (by linarith) ?_ (le_of_lt hβ‚€.2.1) hβ‚€.2.1
  linarith


lemma imo_1984_p6_8_4
  (a b c d k : β„•)
  (hβ‚€ : 0 < a ∧ 0 < b ∧ 0 < c ∧ 0 < d)
  -- (hβ‚‚ : a < b)
  -- (h₃ : b * 2 ^ m - b ^ 2 = a * 2 ^ k - a ^ 2)
  (hβ‚„ : a + d = 2 ^ k) :
  -- (hβ‚… : b + c = 2 ^ m) :
  a ^ 2 ≀ a * 2 ^ k := by
  rw [pow_two]
  refine le_of_lt ?_
  refine mul_lt_mul' (by linarith) ?_ (le_of_lt hβ‚€.1) hβ‚€.1
  linarith


lemma imo_1984_p6_8_5
  (a b : β„•)
  -- (hβ‚€ : 0 < a ∧ 0 < b ∧ 0 < c ∧ 0 < d)
  (hβ‚‚ : a < b) :
  -- h₃ : b * 2 ^ m - b ^ 2 = a * 2 ^ k - a ^ 2
  -- hβ‚„ : a + d = 2 ^ k
  -- hβ‚… : b + c = 2 ^ m
  -- h₆₀ : c = 2 ^ m - b
  -- h₆₁ : d = 2 ^ k - a
  a ^ 2 < b ^ 2 := by
  exact Nat.pow_lt_pow_left hβ‚‚ (by norm_num)


lemma imo_1984_p6_8_6
  (a b k m : β„•)
  -- (hβ‚€ : 0 < a ∧ 0 < b ∧ 0 < c ∧ 0 < d)
  -- (hβ‚‚ : a < b ∧ b < c ∧ c < d)
  -- (h₃ : a * 2 ^ k - a ^ 2 = b * 2 ^ m - b ^ 2)
  -- (hβ‚„ : a + d = 2 ^ k)
  -- (hβ‚… : b + c = 2 ^ m)
  -- (h₆₀ : c = 2 ^ m - b)
  -- (h₆₁ : d = 2 ^ k - a)
  (h₆₂ : b * 2 ^ m - a * 2 ^ k = b ^ 2 - a ^ 2) :
  b * 2 ^ m - a * 2 ^ k = (b - a) * (b + a) := by
  rw [Nat.sq_sub_sq b a] at h₆₂
  rw [mul_comm (b - a) _]
  exact h₆₂




lemma imo_1984_p6_9
  (a b k m : β„•)
  (hkm : m < k)
  (h₆ : b * 2 ^ m - a * 2 ^ k = (b - a) * (b + a)) :
  2 ^ m ∣ (b - a) * (b + a) := by
  have h₇₀: k = (k - m) + m := by exact (Nat.sub_add_cancel (le_of_lt hkm)).symm
  rw [h₇₀, pow_add] at h₆
  have h₇₁: (b - a * 2 ^ (k - m)) * (2 ^ m) = (b - a) * (b + a) := by
    rw [Nat.mul_sub_right_distrib]
    rw [mul_assoc a _ _]
    exact h₆
  exact Dvd.intro_left (b - a * 2 ^ (k - m)) h₇₁




lemma imo_1984_p6_10
  (a b c d k m : β„•)
  (hβ‚€ : 0 < a ∧ 0 < b ∧ 0 < c ∧ 0 < d)
  (h₁ : Odd a ∧ Odd b ∧ Odd c ∧ Odd d)
  (hβ‚‚ : a < b ∧ b < c ∧ c < d)
  -- (h₃ : a * d = b * c)
  -- (hβ‚„ : a + d = 2 ^ k)
  (hβ‚… : b + c = 2 ^ m)
  (hkm : m < k)
  (h₆ : b * 2 ^ m - a * 2 ^ k = (b - a) * (b + a))
  (h₇ : 2 ^ m ∣ (b - a) * (b + a)) :
  b + a = 2 ^ (m - 1) := by
  have h₇₁: βˆƒ y z, y ∣ b - a ∧ z ∣ b + a ∧ y * z = 2 ^ m := by
    exact Nat.dvd_mul.mp h₇
  let ⟨p, q, hpd⟩ := h₇₁
  cases' hpd with hpd hqd
  cases' hqd with hqd hpq
  have hm1: 1 ≀ m := by
    by_contra! hc
    interval_cases m
    linarith
  have hβ‚ˆβ‚€: b - a < 2 ^ (m - 1) := by
    have gβ‚€: b < (b + c) / 2 := by
      refine (Nat.lt_div_iff_mul_lt' ?_ b).mpr ?_
      . refine even_iff_two_dvd.mp ?_
        exact Odd.add_odd h₁.2.1 h₁.2.2.1
      . linarith
    have g₁: (b + c) / 2 = 2 ^ (m-1) := by
      rw [hβ‚…]
      rw [← Nat.pow_sub_mul_pow 2 hm1]
      simp
    rw [← g₁]
    refine lt_trans ?_ gβ‚€
    exact Nat.sub_lt hβ‚€.2.1 hβ‚€.1
  have hp: p = 2 := by
    have hpβ‚€: 2 * b < 2 ^ m := by
      rw [← hβ‚…, two_mul]
      exact Nat.add_lt_add_left hβ‚‚.2.1 b
    have hp₁: b + a < 2 ^ (m) := by
      have gβ‚€: b + a < b + b := by
        exact Nat.add_lt_add_left hβ‚‚.1 b
      refine Nat.lt_trans gβ‚€ ?_
      rw [← two_mul]
      exact hpβ‚€
    have hpβ‚‚: q < 2 ^ m := by
      refine Nat.lt_of_le_of_lt (Nat.le_of_dvd ?_ hqd) hp₁
      exact Nat.add_pos_right b hβ‚€.1
    have hp₃: 1 < p := by
      rw [← hpq] at hpβ‚‚
      exact one_lt_of_lt_mul_left hpβ‚‚
    have h2prime: Nat.Prime 2 := by exact prime_two
    have hpβ‚…: βˆ€ i j:β„• , 2 ^ i ∣ (b - a) ∧ 2 ^ j ∣ (b + a) β†’ (i < 2 ∨ j < 2) := by
      by_contra! hc
      let ⟨i, j, hi⟩ := hc
      have hti: 2 ^ 2 ∣ 2 ^ i := by exact Nat.pow_dvd_pow 2 hi.2.1
      have htj: 2 ^ 2 ∣ 2 ^ j := by exact Nat.pow_dvd_pow 2 hi.2.2
      norm_num at hti htj
      have hiβ‚„: 4 ∣ b - a := by exact Nat.dvd_trans hti hi.1.1
      have hiβ‚…: 4 ∣ b + a := by exact Nat.dvd_trans htj hi.1.2
      have hi₆: 4 ∣ (b - a) + (b + a) := by exact Nat.dvd_add hiβ‚„ hiβ‚…
      have hi₇: 2 ∣ b := by
        have gβ‚€: 0 < 2 := by norm_num
        refine Nat.dvd_of_mul_dvd_mul_left gβ‚€ ?_
        rw [← Nat.add_sub_cancel (2 * b) a, Nat.two_mul b]
        rw [add_assoc, Nat.sub_add_comm (le_of_lt hβ‚‚.1)]
        exact hi₆
      have hiβ‚ˆ: Even b := by
        exact even_iff_two_dvd.mpr hi₇
      apply Nat.not_odd_iff_even.mpr hiβ‚ˆ
      exact h₁.2.1
    have hp₆: βˆ€ i j:β„• , i + j = m ∧ 2 ^ i ∣ (b - a) ∧ 2 ^ j ∣ (b + a) β†’ (Β¬ j < 2) := by
      by_contra! hc
      let ⟨i, j, hi⟩ := hc
      have hiβ‚€: m - 1 ≀ i := by
        rw [← hi.1.1]
        simp
        exact Nat.le_pred_of_lt hi.2
      have hi₁: 2 ^ (m - 1) ≀ 2 ^ i := by exact Nat.pow_le_pow_right (by norm_num) hiβ‚€
      have hiβ‚‚: 2 ^ i < 2 ^ (m - 1) := by
        refine lt_of_le_of_lt ?_ hβ‚ˆβ‚€
        refine Nat.le_of_dvd ?_ hi.1.2.1
        exact Nat.sub_pos_of_lt hβ‚‚.1
      -- j must be ≀ 1 which gives i β‰₯ m - 1
      -- however from hβ‚ˆβ‚€ we have i < m - 1 leading to a contradiction
      linarith [hi₁, hiβ‚‚]
    have hiβ‚€: βˆƒ i ≀ m, p = 2 ^ i := by
      have gβ‚€: p ∣ 2 ^ m := by
        rw [← hpq]
        exact Nat.dvd_mul_right p q
      exact (Nat.dvd_prime_pow h2prime).mp gβ‚€
    let ⟨i, hp⟩ := hiβ‚€
    cases' hp with him hp
    let j:β„• := m - i
    have hjβ‚€: j = m - i := by linarith
    have hj₁: i + j = m := by
      rw [add_comm, ← Nat.sub_add_cancel him]
    have hq: q = 2 ^ j := by
      rw [hp] at hpq
      rw [hjβ‚€, ← Nat.pow_div him (by norm_num)]
      refine Nat.eq_div_of_mul_eq_right ?_ hpq
      refine Nat.ne_of_gt ?_
      rw [← hp]
      linarith [hp₃]
    rw [hp] at hpd
    rw [hq] at hqd
    have hj₃: Β¬ j < 2 := by
      exact hp₆ i j {left:= hj₁ , right:= { left := hpd , right:= hqd} }
    have hiβ‚‚: i < 2 := by
      have gβ‚€: i < 2 ∨ j < 2 := by
        exact hpβ‚… i j { left := hpd , right:= hqd }
      omega
    have hi₃: 0 < i := by
      rw [hp] at hp₃
      refine Nat.zero_lt_of_ne_zero ?_
      exact (Nat.one_lt_two_pow_iff).mp hp₃
    have hiβ‚„: i = 1 := by
      interval_cases i
      rfl
    rw [hiβ‚„] at hp
    exact hp
  have hq: q = 2 ^ (m - 1) := by
    rw [hp, ← Nat.pow_sub_mul_pow 2 hm1, pow_one, mul_comm] at hpq
    exact Nat.mul_right_cancel (by norm_num) hpq
  rw [hq] at hqd
  have hβ‚ˆβ‚‚: βˆƒ c, (b + a) = c * 2 ^ (m - 1) := by
    exact exists_eq_mul_left_of_dvd hqd
  let ⟨f, hf⟩ := hβ‚ˆβ‚‚
  have hfeq1: f = 1 := by
    have hfβ‚€: f * 2 ^ (m - 1) < 2 * 2 ^ (m - 1) := by
      rw [← hf, ← Nat.pow_succ', ← Nat.succ_sub hm1]
      rw [Nat.succ_sub_one, ← hβ‚…]
      refine Nat.add_lt_add_left ?_ b
      exact lt_trans hβ‚‚.1 hβ‚‚.2.1
    have hf₁: f < 2 := by
      exact Nat.lt_of_mul_lt_mul_right hfβ‚€
    interval_cases f
    . simp at hf
      exfalso
      linarith [hf]
    . linarith
  rw [hfeq1, one_mul] at hf
  exact hf


lemma imo_1984_p6_10_1
  (a b c d m : β„•)
  (hβ‚€ : 0 < a ∧ 0 < b ∧ 0 < c ∧ 0 < d)
  (h₁ : Odd a ∧ Odd b ∧ Odd c ∧ Odd d)
  (hβ‚‚ : a < b ∧ b < c ∧ c < d)
  (hβ‚… : b + c = 2 ^ m)
  -- hkm : m < k
  -- h₆ : b * 2 ^ m - a * 2 ^ k = (b - a) * (b + a)
  -- h₇ : 2 ^ m ∣ (b - a) * (b + a)
  -- h₇₁ : βˆƒ y z, y ∣ b - a ∧ z ∣ b + a ∧ y * z = 2 ^ m
  -- p q : β„•
  -- hpd : p ∣ b - a
  -- hqd : q ∣ b + a
  -- hpq : p * q = 2 ^ m
  (hm1 : 1 ≀ m) :
  b - a < 2 ^ (m - 1) := by
  have gβ‚€: b < (b + c) / 2 := by
    refine (Nat.lt_div_iff_mul_lt' ?_ b).mpr ?_
    . refine even_iff_two_dvd.mp ?_
      exact Odd.add_odd h₁.2.1 h₁.2.2.1
    . linarith
  have g₁: (b + c) / 2 = 2 ^ (m-1) := by
    rw [hβ‚…]
    rw [← Nat.pow_sub_mul_pow 2 hm1]
    simp
  rw [← g₁]
  refine lt_trans ?_ gβ‚€
  exact Nat.sub_lt hβ‚€.2.1 hβ‚€.1


lemma imo_1984_p6_10_2
  (b c: β„•)
  (h₁ : Odd b ∧ Odd c)
  (hβ‚‚ : b < c) :
  b < (b + c) / 2 := by
  refine (Nat.lt_div_iff_mul_lt' ?_ b).mpr ?_
  . refine even_iff_two_dvd.mp ?_
    exact Odd.add_odd h₁.1 h₁.2
  . linarith

lemma imo_1984_p6_10_3
  (b c m : β„•)
  (hβ‚… : b + c = 2 ^ m)
  (hm1 : 1 ≀ m) :
  (b + c) / 2 = 2 ^ (m - 1) := by
  rw [hβ‚…]
  rw [← Nat.pow_sub_mul_pow 2 hm1]
  simp


lemma imo_1984_p6_10_4
  (a b c m : β„•)
  (hβ‚€ : 0 < a ∧ 0 < b ∧ 0 < c)
  (gβ‚€ : b < (b + c) / 2)
  (g₁ : (b + c) / 2 = 2 ^ (m - 1)) :
  b - a < 2 ^ (m - 1) := by
  rw [← g₁]
  refine lt_trans ?_ gβ‚€
  exact Nat.sub_lt hβ‚€.2.1 hβ‚€.1

lemma imo_1984_p6_10_5
  (a b c m : β„•)
  (hβ‚€ : 0 < a ∧ 0 < b ∧ 0 < c)
  (hβ‚… : b + c = 2 ^ m) :
  1 ≀ m := by
  by_contra! hc
  interval_cases m
  linarith


lemma imo_1984_p6_10_6
  (a b c m : β„•)
  (hβ‚€ : 0 < a ∧ 0 < b ∧ 0 < c)
  (h₁ : Odd a ∧ Odd b ∧ Odd c)
  (hβ‚‚ : a < b ∧ b < c)
  (hβ‚… : b + c = 2 ^ m)
  (p q : β„•)
  (hpd : p ∣ b - a)
  (hqd : q ∣ b + a)
  (hpq : p * q = 2 ^ m)
  (hβ‚ˆβ‚€ : b - a < 2 ^ (m - 1)) :
  p = 2 := by
  have hpβ‚€: 2 * b < 2 ^ m := by
    rw [← hβ‚…, two_mul]
    exact Nat.add_lt_add_left hβ‚‚.2 b
  have hp₁: b + a < 2 ^ (m) := by
    have gβ‚€: b + a < b + b := by
      exact Nat.add_lt_add_left hβ‚‚.1 b
    refine Nat.lt_trans gβ‚€ ?_
    rw [← two_mul]
    exact hpβ‚€
  have hpβ‚‚: q < 2 ^ m := by
    refine Nat.lt_of_le_of_lt (Nat.le_of_dvd ?_ hqd) hp₁
    exact Nat.add_pos_right b hβ‚€.1
  have hp₃: 1 < p := by
    rw [← hpq] at hpβ‚‚
    exact one_lt_of_lt_mul_left hpβ‚‚
  have h2prime: Nat.Prime 2 := by exact prime_two
  have hpβ‚…: βˆ€ i j:β„• , 2 ^ i ∣ (b - a) ∧ 2 ^ j ∣ (b + a) β†’ (i < 2 ∨ j < 2) := by
    by_contra! hc
    let ⟨i, j, hi⟩ := hc
    have hti: 2 ^ 2 ∣ 2 ^ i := by exact Nat.pow_dvd_pow 2 hi.2.1
    have htj: 2 ^ 2 ∣ 2 ^ j := by exact Nat.pow_dvd_pow 2 hi.2.2
    norm_num at hti htj
    have hiβ‚„: 4 ∣ b - a := by exact Nat.dvd_trans hti hi.1.1
    have hiβ‚…: 4 ∣ b + a := by exact Nat.dvd_trans htj hi.1.2
    have hi₆: 4 ∣ (b - a) + (b + a) := by exact Nat.dvd_add hiβ‚„ hiβ‚…
    have hi₇: 2 ∣ b := by
      have gβ‚€: 0 < 2 := by norm_num
      refine Nat.dvd_of_mul_dvd_mul_left gβ‚€ ?_
      rw [← Nat.add_sub_cancel (2 * b) a, Nat.two_mul b]
      rw [add_assoc, Nat.sub_add_comm (le_of_lt hβ‚‚.1)]
      exact hi₆
    have hiβ‚ˆ: Even b := by
      exact even_iff_two_dvd.mpr hi₇
    apply Nat.not_odd_iff_even.mpr hiβ‚ˆ
    exact h₁.2.1
  have hp₆: βˆ€ i j:β„• , i + j = m ∧ 2 ^ i ∣ (b - a) ∧ 2 ^ j ∣ (b + a) β†’ (Β¬ j < 2) := by
    by_contra! hc
    let ⟨i, j, hi⟩ := hc
    have hiβ‚€: m - 1 ≀ i := by
      rw [← hi.1.1]
      simp
      exact Nat.le_pred_of_lt hi.2
    have hi₁: 2 ^ (m - 1) ≀ 2 ^ i := by exact Nat.pow_le_pow_right (by norm_num) hiβ‚€
    have hiβ‚‚: 2 ^ i < 2 ^ (m - 1) := by
      refine lt_of_le_of_lt ?_ hβ‚ˆβ‚€
      refine Nat.le_of_dvd ?_ hi.1.2.1
      exact Nat.sub_pos_of_lt hβ‚‚.1
    -- j must be ≀ 1 which gives i β‰₯ m - 1
    -- however from hβ‚ˆβ‚€ we have i < m - 1 leading to a contradiction
    linarith [hi₁, hiβ‚‚]
  have hiβ‚€: βˆƒ i ≀ m, p = 2 ^ i := by
    have gβ‚€: p ∣ 2 ^ m := by
      rw [← hpq]
      exact Nat.dvd_mul_right p q
    exact (Nat.dvd_prime_pow h2prime).mp gβ‚€
  let ⟨i, hp⟩ := hiβ‚€
  cases' hp with him hp
  let j:β„• := m - i
  have hjβ‚€: j = m - i := by linarith
  have hj₁: i + j = m := by
    rw [add_comm, ← Nat.sub_add_cancel him]
  have hq: q = 2 ^ j := by
    rw [hp] at hpq
    rw [hjβ‚€, ← Nat.pow_div him (by norm_num)]
    refine Nat.eq_div_of_mul_eq_right ?_ hpq
    refine Nat.ne_of_gt ?_
    rw [← hp]
    linarith [hp₃]
  rw [hp] at hpd
  rw [hq] at hqd
  have hj₃: Β¬ j < 2 := by
    exact hp₆ i j {left:= hj₁ , right:= { left := hpd , right:= hqd} }
  have hiβ‚‚: i < 2 := by
    have gβ‚€: i < 2 ∨ j < 2 := by
      exact hpβ‚… i j { left := hpd , right:= hqd }
    omega
  have hi₃: 0 < i := by
    rw [hp] at hp₃
    refine Nat.zero_lt_of_ne_zero ?_
    exact (Nat.one_lt_two_pow_iff).mp hp₃
  have hiβ‚„: i = 1 := by
    interval_cases i
    rfl
  rw [hiβ‚„] at hp
  exact hp

lemma imo_1984_p6_10_6_1
  (a b c m : β„•)
  (hβ‚‚ : a < b ∧ b < c)
  (hβ‚… : b + c = 2 ^ m) :
  2 * b < 2 ^ m := by
  rw [← hβ‚…, two_mul]
  exact Nat.add_lt_add_left hβ‚‚.2 b


lemma imo_1984_p6_10_6_2
  (a b c m : β„•)
  -- hβ‚€ : 0 < a ∧ 0 < b ∧ 0 < c
  -- h₁ : Odd a ∧ Odd b ∧ Odd c
  (hβ‚‚ : a < b ∧ b < c)
  -- hβ‚… : b + c = 2 ^ m
  -- p q : β„•
  -- hpd : p ∣ b - a
  -- hqd : q ∣ b + a
  -- hpq : p * q = 2 ^ m
  -- hβ‚ˆβ‚€ : b - a < 2 ^ (m - 1)
  (hpβ‚€ : 2 * b < 2 ^ m) :
  b + a < 2 ^ m := by
  have gβ‚€: b + a < b + b := by
    exact Nat.add_lt_add_left hβ‚‚.1 b
  refine Nat.lt_trans gβ‚€ ?_
  rw [← two_mul]
  exact hpβ‚€

lemma imo_1984_p6_10_6_3
  -- (a b c m : β„•)
  -- hβ‚€ : 0 < a ∧ 0 < b ∧ 0 < c
  -- h₁ : Odd a ∧ Odd b ∧ Odd c
  -- hβ‚‚ : a < b ∧ b < c
  -- hβ‚… : b + c = 2 ^ m
  (m p q : β„•)
  -- hpd : p ∣ b - a
  -- hqd : q ∣ b + a
  (hpq : p * q = 2 ^ m)
  -- hβ‚ˆβ‚€ : b - a < 2 ^ (m - 1)
  -- hpβ‚€ : 2 * b < 2 ^ m
  -- hp₁ : b + a < 2 ^ m
  (hpβ‚‚ : q < 2 ^ m) :
  1 < p := by
  rw [← hpq] at hpβ‚‚
  exact one_lt_of_lt_mul_left hpβ‚‚


lemma imo_1984_p6_10_6_4
  (a b: β„•)
  -- hβ‚€ : 0 < a ∧ 0 < b ∧ 0 < c
  (h₁ : Odd a ∧ Odd b)
  (hβ‚‚ : a < b) :
  -- hβ‚… : b + c = 2 ^ m
  -- p q : β„•
  -- hpd : p ∣ b - a
  -- hqd : q ∣ b + a
  -- hpq : p * q = 2 ^ m
  -- hβ‚ˆβ‚€ : b - a < 2 ^ (m - 1)
  -- hpβ‚€ : 2 * b < 2 ^ m
  -- hp₁ : b + a < 2 ^ m
  -- hpβ‚‚ : q < 2 ^ m
  -- hp₃ : 1 < p
  -- h2prime : Nat.Prime 2
  βˆ€ (i j : β„•), 2 ^ i ∣ b - a ∧ 2 ^ j ∣ b + a β†’ i < 2 ∨ j < 2 := by
  by_contra! hc
  let ⟨i, j, hi⟩ := hc
  have hti: 2 ^ 2 ∣ 2 ^ i := by exact Nat.pow_dvd_pow 2 hi.2.1
  have htj: 2 ^ 2 ∣ 2 ^ j := by exact Nat.pow_dvd_pow 2 hi.2.2
  norm_num at hti htj
  have hiβ‚„: 4 ∣ b - a := by exact Nat.dvd_trans hti hi.1.1
  have hiβ‚…: 4 ∣ b + a := by exact Nat.dvd_trans htj hi.1.2
  have hi₆: 4 ∣ (b - a) + (b + a) := by exact Nat.dvd_add hiβ‚„ hiβ‚…
  have hi₇: 2 ∣ b := by
    have gβ‚€: 0 < 2 := by norm_num
    refine Nat.dvd_of_mul_dvd_mul_left gβ‚€ ?_
    rw [← Nat.add_sub_cancel (2 * b) a, Nat.two_mul b]
    rw [add_assoc, Nat.sub_add_comm (le_of_lt hβ‚‚)]
    exact hi₆
  have hiβ‚ˆ: Even b := by
    exact even_iff_two_dvd.mpr hi₇
  apply Nat.not_odd_iff_even.mpr hiβ‚ˆ
  exact h₁.2

lemma imo_1984_p6_10_6_5
  (a b c : β„•)
  (h₁ : Odd a ∧ Odd b ∧ Odd c)
  (hβ‚‚ : a < b ∧ b < c)
  -- (hc : βˆƒ i j, (2 ^ i ∣ b - a ∧ 2 ^ j ∣ b + a) ∧ 2 ≀ i ∧ 2 ≀ j)
  (i j : β„•)
  (hi : (2 ^ i ∣ b - a ∧ 2 ^ j ∣ b + a) ∧ 2 ≀ i ∧ 2 ≀ j)
  (hti : 4 ∣ 2 ^ i)
  (htj : 4 ∣ 2 ^ j) :
  False := by
  have hiβ‚„: 4 ∣ b - a := by exact Nat.dvd_trans hti hi.1.1
  have hiβ‚…: 4 ∣ b + a := by exact Nat.dvd_trans htj hi.1.2
  have hi₆: 4 ∣ (b - a) + (b + a) := by exact Nat.dvd_add hiβ‚„ hiβ‚…
  have hi₇: 2 ∣ b := by
    have gβ‚€: 0 < 2 := by norm_num
    refine Nat.dvd_of_mul_dvd_mul_left gβ‚€ ?_
    rw [← Nat.add_sub_cancel (2 * b) a, Nat.two_mul b]
    rw [add_assoc, Nat.sub_add_comm (le_of_lt hβ‚‚.1)]
    exact hi₆
  have hiβ‚ˆ: Even b := by
    exact even_iff_two_dvd.mpr hi₇
  apply Nat.not_odd_iff_even.mpr hiβ‚ˆ
  exact h₁.2.1

lemma imo_1984_p6_10_6_6
  (a b: β„•)
  -- (h₁ : Odd a ∧ Odd b ∧ Odd c)
  -- (hβ‚‚ : a < b ∧ b < c)
  -- hc : βˆƒ i j, (2 ^ i ∣ b - a ∧ 2 ^ j ∣ b + a) ∧ 2 ≀ i ∧ 2 ≀ j
  (i j : β„•)
  (hi : (2 ^ i ∣ b - a ∧ 2 ^ j ∣ b + a) ∧ 2 ≀ i ∧ 2 ≀ j)
  (hti : 4 ∣ 2 ^ i)
  (htj : 4 ∣ 2 ^ j) :
  4 ∣ b - a + (b + a) := by
  have hiβ‚„: 4 ∣ b - a := by exact Nat.dvd_trans hti hi.1.1
  have hiβ‚…: 4 ∣ b + a := by exact Nat.dvd_trans htj hi.1.2
  exact Nat.dvd_add hiβ‚„ hiβ‚…


lemma imo_1984_p6_10_6_7
  (a b c : β„•)
  -- (h₁ : Odd a ∧ Odd b ∧ Odd c)
  (hβ‚‚ : a < b ∧ b < c)
  -- hc : βˆƒ i j, (2 ^ i ∣ b - a ∧ 2 ^ j ∣ b + a) ∧ 2 ≀ i ∧ 2 ≀ j
  (i j : β„•)
  (hi : (2 ^ i ∣ b - a ∧ 2 ^ j ∣ b + a) ∧ 2 ≀ i ∧ 2 ≀ j)
  (hti : 4 ∣ 2 ^ i)
  (htj : 4 ∣ 2 ^ j) :
  2 ∣ b := by
  have hiβ‚„: 4 ∣ b - a := by exact Nat.dvd_trans hti hi.1.1
  have hiβ‚…: 4 ∣ b + a := by exact Nat.dvd_trans htj hi.1.2
  have hi₆: 4 ∣ (b - a) + (b + a) := by exact Nat.dvd_add hiβ‚„ hiβ‚…
  have gβ‚€: 0 < 2 := by norm_num
  refine Nat.dvd_of_mul_dvd_mul_left gβ‚€ ?_
  rw [← Nat.add_sub_cancel (2 * b) a, Nat.two_mul b]
  rw [add_assoc, Nat.sub_add_comm (le_of_lt hβ‚‚.1)]
  exact hi₆


lemma imo_1984_p6_10_6_8
  (a b c : β„•)
  -- (h₁ : Odd a ∧ Odd b ∧ Odd c)
  (hβ‚‚ : a < b ∧ b < c)
  -- hc : βˆƒ i j, (2 ^ i ∣ b - a ∧ 2 ^ j ∣ b + a) ∧ 2 ≀ i ∧ 2 ≀ j
  -- i j : β„•
  -- hi : (2 ^ i ∣ b - a ∧ 2 ^ j ∣ b + a) ∧ 2 ≀ i ∧ 2 ≀ j
  -- hti : 4 ∣ 2 ^ i
  -- htj : 4 ∣ 2 ^ j
  -- (hiβ‚„ : 4 ∣ b - a)
  -- (hiβ‚… : 4 ∣ b + a)
  (hi₆ : 4 ∣ b - a + (b + a)) :
  2 ∣ b := by
  have gβ‚€: 0 < 2 := by norm_num
  refine Nat.dvd_of_mul_dvd_mul_left gβ‚€ ?_
  rw [← Nat.add_sub_cancel (2 * b) a, Nat.two_mul b]
  rw [add_assoc, Nat.sub_add_comm (le_of_lt hβ‚‚.1)]
  exact hi₆

lemma imo_1984_p6_10_6_9
  (a b c : β„•)
  -- (h₁ : Odd a ∧ Odd b ∧ Odd c)
  (hβ‚‚ : a < b ∧ b < c)
  -- hc : βˆƒ i j, (2 ^ i ∣ b - a ∧ 2 ^ j ∣ b + a) ∧ 2 ≀ i ∧ 2 ≀ j
  -- i j : β„•
  -- hi : (2 ^ i ∣ b - a ∧ 2 ^ j ∣ b + a) ∧ 2 ≀ i ∧ 2 ≀ j
  -- hti : 4 ∣ 2 ^ i
  -- htj : 4 ∣ 2 ^ j
  -- (hiβ‚„ : 4 ∣ b - a)
  -- (hiβ‚… : 4 ∣ b + a)
  (hi₆ : 4 ∣ b - a + (b + a)) :
  Even b := by
  refine even_iff_two_dvd.mpr ?_
  have gβ‚€: 0 < 2 := by norm_num
  refine Nat.dvd_of_mul_dvd_mul_left gβ‚€ ?_
  rw [← Nat.add_sub_cancel (2 * b) a, Nat.two_mul b]
  rw [add_assoc, Nat.sub_add_comm (le_of_lt hβ‚‚.1)]
  exact hi₆

lemma imo_1984_p6_10_6_10
  (a b m : β„•)
  -- hβ‚€ : 0 < a ∧ 0 < b ∧ 0 < c
  -- (h₁ : Odd a ∧ Odd b)
  (hβ‚‚ : a < b)
  -- (a b c m : β„•)
  -- hβ‚€ : 0 < a ∧ 0 < b ∧ 0 < c
  -- h₁ : Odd a ∧ Odd b ∧ Odd c
  -- hβ‚‚ : a < b ∧ b < c
  -- hβ‚… : b + c = 2 ^ m
  -- p q : β„•
  -- hpd : p ∣ b - a
  -- hqd : q ∣ b + a
  -- hpq : p * q = 2 ^ m
  (hβ‚ˆβ‚€ : b - a < 2 ^ (m - 1)) :
  -- hpβ‚€ : 2 * b < 2 ^ m
  -- hp₁ : b + a < 2 ^ m
  -- hpβ‚‚ : q < 2 ^ m
  -- hp₃ : 1 < p
  -- h2prime : Nat.Prime 2
  -- hpβ‚… : βˆ€ (i j : β„•), 2 ^ i ∣ b - a ∧ 2 ^ j ∣ b + a β†’ i < 2 ∨ j < 2
  βˆ€ (i j : β„•), i + j = m ∧ 2 ^ i ∣ b - a ∧ 2 ^ j ∣ b + a β†’ Β¬j < 2 := by
  by_contra! hc
  let ⟨i, j, hi⟩ := hc
  have hiβ‚€: m - 1 ≀ i := by
    rw [← hi.1.1]
    simp
    exact Nat.le_pred_of_lt hi.2
  have hi₁: 2 ^ (m - 1) ≀ 2 ^ i := by exact Nat.pow_le_pow_right (by norm_num) hiβ‚€
  have hiβ‚‚: 2 ^ i < 2 ^ (m - 1) := by
    refine lt_of_le_of_lt ?_ hβ‚ˆβ‚€
    refine Nat.le_of_dvd ?_ hi.1.2.1
    exact Nat.sub_pos_of_lt hβ‚‚
  linarith [hi₁, hiβ‚‚]


lemma imo_1984_p6_10_6_11
  (m a b : β„•)
  -- h₁ : Odd a ∧ Odd b
  -- hβ‚‚ : a < b
  -- hβ‚ˆβ‚€ : b - a < 2 ^ (m - 1)
  -- hc : βˆƒ i j, (i + j = m ∧ 2 ^ i ∣ b - a ∧ 2 ^ j ∣ b + a) ∧ j < 2
  (i j : β„•)
  (hi : (i + j = m ∧ 2 ^ i ∣ b - a ∧ 2 ^ j ∣ b + a) ∧ j < 2) :
  2 ^ (m - 1) ≀ 2 ^ i := by
  refine Nat.pow_le_pow_right (by norm_num) ?_
  rw [← hi.1.1]
  simp
  exact Nat.le_pred_of_lt hi.2


lemma imo_1984_p6_10_6_12
  (m a b : β„•)
  -- h₁ : Odd a ∧ Odd b
  (hβ‚‚ : a < b)
  (hβ‚ˆβ‚€ : b - a < 2 ^ (m - 1))
  -- hc : βˆƒ i j, (i + j = m ∧ 2 ^ i ∣ b - a ∧ 2 ^ j ∣ b + a) ∧ j < 2
  (i j : β„•)
  (hi : (i + j = m ∧ 2 ^ i ∣ b - a ∧ 2 ^ j ∣ b + a) ∧ j < 2) :
  -- hiβ‚€ : m - 1 ≀ i
  -- (hi₁ : 2 ^ (m - 1) ≀ 2 ^ i) :
  2 ^ i < 2 ^ (m - 1) := by
  refine lt_of_le_of_lt ?_ hβ‚ˆβ‚€
  refine Nat.le_of_dvd ?_ hi.1.2.1
  exact Nat.sub_pos_of_lt hβ‚‚



lemma imo_1984_p6_10_6_13
  -- (a b c : β„•)
  (m p q : β„•)
  (hpq : p * q = 2 ^ m)
  -- hβ‚ˆβ‚€ : b - a < 2 ^ (m - 1)
  -- hpβ‚€ : 2 * b < 2 ^ m
  -- hp₁ : b + a < 2 ^ m
  -- hpβ‚‚ : q < 2 ^ m
  -- hp₃ : 1 < p
  (h2prime : Nat.Prime 2) :
  -- hpβ‚… : βˆ€ (i j : β„•), 2 ^ i ∣ b - a ∧ 2 ^ j ∣ b + a β†’ i < 2 ∨ j < 2
  -- hp₆ : βˆ€ (i j : β„•), i + j = m ∧ 2 ^ i ∣ b - a ∧ 2 ^ j ∣ b + a β†’ Β¬j < 2
  βˆƒ i ≀ m, p = 2 ^ i := by
  have gβ‚€: p ∣ 2 ^ m := by
    rw [← hpq]
    exact Nat.dvd_mul_right p q
  exact (Nat.dvd_prime_pow h2prime).mp gβ‚€


lemma imo_1984_p6_10_6_14
  (i m : β„•)
  (him : i ≀ m)
  (j : β„• := m - i)
  (hjβ‚€ : j = m - i) :
  i + j = m := by
  rw [add_comm, hjβ‚€]
  exact Nat.sub_add_cancel him


lemma imo_1984_p6_10_6_15
  (p q m j : β„•)
  (hpq : p * q = 2 ^ m)
  (i : β„•)
  (him : i ≀ m)
  (hp : p = 2 ^ i)
  (hjβ‚€ : j = m - i) :
  q = 2 ^ j := by
  rw [hp] at hpq
  rw [hjβ‚€, ← Nat.pow_div him (by norm_num)]
  refine Nat.eq_div_of_mul_eq_right ?_ hpq
  refine Nat.ne_of_gt ?_
  exact Nat.two_pow_pos i


lemma imo_1984_p6_10_6_16
  (a b p q m : β„•)
  (hp₃ : 1 < p)
  (hpβ‚… : βˆ€ (i j : β„•), 2 ^ i ∣ b - a ∧ 2 ^ j ∣ b + a β†’ i < 2 ∨ j < 2)
  (hp₆ : βˆ€ (i j : β„•), i + j = m ∧ 2 ^ i ∣ b - a ∧ 2 ^ j ∣ b + a β†’ Β¬j < 2)
  (i j : β„•)
  (hp : p = 2 ^ i)
  (hq : q = 2 ^ j)
  (hpd : 2 ^ i ∣ b - a)
  (hqd : 2 ^ j ∣ b + a)
  (hij : i + j = m) :
  p = 2 := by
  have hj₃: Β¬ j < 2 := by
    exact hp₆ i j {left:= hij , right:= { left := hpd , right:= hqd} }
  have hiβ‚‚: i < 2 := by
    have gβ‚€: i < 2 ∨ j < 2 := by
      exact hpβ‚… i j { left := hpd , right:= hqd }
    omega
  have hi₃: 0 < i := by
    rw [hp] at hp₃
    refine Nat.zero_lt_of_ne_zero ?_
    exact (Nat.one_lt_two_pow_iff).mp hp₃
  have hiβ‚„: i = 1 := by
    exact Nat.eq_of_le_of_lt_succ hi₃ hiβ‚‚
  rw [hiβ‚„] at hp
  exact hp



lemma imo_1984_p6_10_6_17
  (a b m : β„•)
  (hp₆ : βˆ€ (i j : β„•), i + j = m ∧ 2 ^ i ∣ b - a ∧ 2 ^ j ∣ b + a β†’ Β¬j < 2)
  (i j : β„•)
  (hpd : 2 ^ i ∣ b - a)
  (hqd : 2 ^ j ∣ b + a)
  (hij : i + j = m) :
  Β¬j < 2 := by
  exact hp₆ i j {left:= hij , right:= { left := hpd , right:= hqd} }



lemma imo_1984_p6_10_6_18
  (a b : β„•)
  (hpβ‚… : βˆ€ (i j : β„•), 2 ^ i ∣ b - a ∧ 2 ^ j ∣ b + a β†’ i < 2 ∨ j < 2)
  (i j : β„•)
  (hpd : 2 ^ i ∣ b - a)
  (hqd : 2 ^ j ∣ b + a)
  (hj : Β¬j < 2) :
  i < 2 := by
  have gβ‚€: i < 2 ∨ j < 2 := by
    exact hpβ‚… i j { left := hpd , right:= hqd }
  omega

lemma imo_1984_p6_10_6_19
  (p i : β„•)
  (hp₃ : 1 < p)
  (hp : p = 2 ^ i) :
  0 < i := by
  rw [hp] at hp₃
  refine Nat.zero_lt_of_ne_zero ?_
  exact (Nat.one_lt_two_pow_iff).mp hp₃


lemma imo_1984_p6_10_6_20
  (p q i j m a b : β„•)
  (hp : p = 2 ^ i)
  (hq : q = 2 ^ j)
  (hpd : 2 ^ i ∣ b - a)
  (hqd : 2 ^ j ∣ b + a)
  (hij : i + j = m)
  (hj₃ : Β¬j < 2)
  (hiβ‚‚ : i < 2)
  (hi₃ : 0 < i) :
  p = 2 := by
  suffices hi: i = 1
  . rw [hi] at hp
    exact hp
  . exact Nat.eq_of_le_of_lt_succ hi₃ hiβ‚‚


lemma imo_1984_p6_10_7
  (m p q : β„•)
  (hpq : p * q = 2 ^ m)
  (hm1 : 1 ≀ m)
  (hp : p = 2) :
  q = 2 ^ (m - 1) := by
  rw [hp, ← Nat.pow_sub_mul_pow 2 hm1, pow_one, mul_comm] at hpq
  exact Nat.mul_right_cancel (by norm_num) hpq


lemma imo_1984_p6_10_8
  (a b c m : β„•)
  -- hβ‚€ : 0 < a ∧ 0 < b ∧ 0 < c ∧ 0 < d
  -- h₁ : Odd a ∧ Odd b ∧ Odd c ∧ Odd d
  (hβ‚‚ : a < b ∧ b < c)
  (hβ‚… : b + c = 2 ^ m)
  -- hkm : m < k
  -- h₆ : b * 2 ^ m - a * 2 ^ k = (b - a) * (b + a)
  -- h₇ : 2 ^ m ∣ (b - a) * (b + a)
  -- h₇₁ : βˆƒ y z, y ∣ b - a ∧ z ∣ b + a ∧ y * z = 2 ^ m
  (q : β„•)
  -- (hpd : p ∣ b - a)
  (hqd : q ∣ b + a)
  -- (hpq : p * q = 2 ^ m)
  (hm1 : 1 ≀ m)
  (hβ‚ˆβ‚€ : b - a < 2 ^ (m - 1))
  -- (hp : p = 2)
  (hq : q = 2 ^ (m - 1)) :
  b + a = 2 ^ (m - 1) := by
  rw [hq] at hqd
  have hβ‚ˆβ‚‚: βˆƒ c, (b + a) = c * 2 ^ (m - 1) := by
    exact exists_eq_mul_left_of_dvd hqd
  obtain ⟨f, hf⟩ := hβ‚ˆβ‚‚
  have hfeq1: f = 1 := by
    have hfβ‚€: f * 2 ^ (m - 1) < 2 * 2 ^ (m - 1) := by
      rw [← hf, ← Nat.pow_succ', ← Nat.succ_sub hm1]
      rw [Nat.succ_sub_one, ← hβ‚…]
      refine Nat.add_lt_add_left ?_ b
      exact lt_trans hβ‚‚.1 hβ‚‚.2
    have hf₁: f < 2 := by
      exact Nat.lt_of_mul_lt_mul_right hfβ‚€
    interval_cases f
    . simp at hf
      exfalso
      linarith [hf]
    . linarith
  rw [hfeq1, one_mul] at hf
  exact hf


lemma imo_1984_p6_10_8_1
  (a b m q: β„•)
  (hqd : q ∣ b + a)
  (hq : q = 2 ^ (m - 1)) :
  βˆƒ c, b + a = c * 2 ^ (m - 1) := by
  refine exists_eq_mul_left_of_dvd ?_
  rw [hq] at hqd
  exact hqd


lemma imo_1984_p6_10_8_2
  (a b c m : β„•)
  (hβ‚‚ : a < b ∧ b < c)
  (hβ‚… : b + c = 2 ^ m)
  (hm1 : 1 ≀ m)
  (f : β„•)
  (hf : b + a = f * 2 ^ (m - 1)) :
  f = 1 := by
  have hfβ‚€: f * 2 ^ (m - 1) < 2 * 2 ^ (m - 1) := by
    rw [← hf, ← Nat.pow_succ', ← Nat.succ_sub hm1]
    rw [Nat.succ_sub_one, ← hβ‚…]
    refine Nat.add_lt_add_left ?_ b
    exact lt_trans hβ‚‚.1 hβ‚‚.2
  have hf₁: f < 2 := by
    exact Nat.lt_of_mul_lt_mul_right hfβ‚€
  interval_cases f
  . simp at hf
    exfalso
    linarith [hf]
  . linarith


lemma imo_1984_p6_10_8_3
  (a b c m : β„•)
  (hβ‚‚ : a < b ∧ b < c)
  (hβ‚… : b + c = 2 ^ m)
  (hm1 : 1 ≀ m)
  (f : β„•)
  (hf : b + a = f * 2 ^ (m - 1)) :
  f < 2 := by
  have hfβ‚€: f * 2 ^ (m - 1) < 2 * 2 ^ (m - 1) := by
    rw [← hf, ← Nat.pow_succ', ← Nat.succ_sub hm1]
    rw [Nat.succ_sub_one, ← hβ‚…]
    refine Nat.add_lt_add_left ?_ b
    exact lt_trans hβ‚‚.1 hβ‚‚.2
  exact Nat.lt_of_mul_lt_mul_right hfβ‚€


lemma imo_1984_p6_10_8_4
  (a b c m : β„•)
  -- (hβ‚€ : 0 < a ∧ 0 < b)
  (hβ‚‚ : a < b ∧ b < c)
  (f : β„•)
  (hf : b + a = f * 2 ^ (m - 1))
  -- (hfβ‚€ : f * 2 ^ (m - 1) < 2 * 2 ^ (m - 1))
  (hf₁ : f < 2) :
  f = 1 := by
  interval_cases f
  . simp at hf
    exfalso
    linarith [hf]
  . linarith


lemma imo_1984_p6_11
  (a b c d k m : β„•)
  (hβ‚€ : 0 < a ∧ 0 < b ∧ 0 < c ∧ 0 < d)
  (h₁ : Odd a ∧ Odd b ∧ Odd c ∧ Odd d)
  (hβ‚‚ : a < b ∧ b < c ∧ c < d)
  (h₃ : a * d = b * c)
  -- (hβ‚„ : a + d = 2 ^ k)
  (hβ‚… : b + c = 2 ^ m)
  -- (hkm : m < k)
  (h₆ : b * 2 ^ m - a * 2 ^ k = (b - a) * (b + a))
  (h₇ : 2 ^ m ∣ (b - a) * (b + a))
  (hβ‚ˆ : b + a = 2 ^ (m - 1)) :
  a = 2 ^ (2 * m - 2) / 2 ^ k := by
  have ga: 1 ≀ a := by exact Nat.succ_le_of_lt hβ‚€.1
  have gb: 3 ≀ b := by
    by_contra! hc
    interval_cases b
    . linarith
    . linarith [ga, hβ‚‚.1]
    . have hc₁: Odd 2 := by exact h₁.2.1
      have hcβ‚‚: Even 2 := by exact even_iff.mpr rfl
      have hc₃: Β¬ Even 2 := by exact not_even_iff_odd.mpr hc₁
      exact hc₃ hcβ‚‚
  have gm: 3 ≀ m := by
    have gmβ‚€: 2 ^ 2 ≀ 2 ^ (m - 1) := by
      norm_num
      rw [← hβ‚ˆ]
      linarith
    have gm₁: 2 ≀ m - 1 := by
      exact (Nat.pow_le_pow_iff_right (by norm_num)).mp gmβ‚€
    omega
  have gβ‚€: a < 2 ^ (m - 2) := by
    have gβ‚€β‚€: a + a < b + a := by simp [hβ‚‚.1]
    rw [hβ‚ˆ, ← mul_two a] at gβ‚€β‚€
    have g₀₁: m - 1 = Nat.succ (m - 2) := by
      rw [← Nat.succ_sub ?_]
      . rw [succ_eq_add_one]
        omega
      . linarith
    rw [g₀₁, Nat.pow_succ 2 _] at gβ‚€β‚€
    exact Nat.lt_of_mul_lt_mul_right gβ‚€β‚€
  have h₉₀: b = 2 ^ (m - 1) - a := by
    symm
    exact Nat.sub_eq_of_eq_add hβ‚ˆ.symm
  rw [hβ‚ˆ, h₉₀] at h₆
  repeat rw [Nat.mul_sub_right_distrib] at h₆
  repeat rw [← Nat.pow_add] at h₆
  have hm1: 1 ≀ m := by
    linarith
  repeat rw [← Nat.sub_add_comm hm1] at h₆
  repeat rw [← Nat.add_sub_assoc hm1] at h₆
  ring_nf at h₆
  rw [← Nat.sub_add_eq _ 1 1] at h₆
  norm_num at h₆
  rw [← Nat.sub_add_eq _ (a * 2 ^ (m - 1)) (a * 2 ^ (m - 1))] at h₆
  rw [← two_mul (a * 2 ^ (m - 1))] at h₆
  rw [mul_comm 2 _] at h₆
  rw [mul_assoc a (2 ^ (m - 1)) 2] at h₆
  rw [← Nat.pow_succ, succ_eq_add_one] at h₆
  rw [Nat.sub_add_cancel hm1] at h₆
  rw [← Nat.sub_add_eq ] at h₆
  have h₉₁: 2 ^ (m * 2 - 1) = 2 ^ (m * 2 - 2) - a * 2 ^ m + (a * 2 ^ m + a * 2 ^ k) := by
    refine Nat.eq_add_of_sub_eq ?_ h₆
    by_contra! hc
    have g₁: 2 ^ (m * 2 - 1) - (a * 2 ^ m + a * 2 ^ k) = 0 := by
      exact Nat.sub_eq_zero_of_le (le_of_lt hc)
    rw [g₁] at h₆
    have gβ‚‚: 2 ^ (m * 2 - 2) ≀ a * 2 ^ m := by exact Nat.le_of_sub_eq_zero h₆.symm
    have g₃: 2 ^ (m - 2) ≀ a := by
      rw [mul_two, Nat.add_sub_assoc (by linarith) m] at gβ‚‚
      rw [Nat.pow_add, mul_comm] at gβ‚‚
      refine Nat.le_of_mul_le_mul_right gβ‚‚ ?_
      exact Nat.two_pow_pos m
    linarith [gβ‚€, g₃]
  rw [← Nat.add_assoc] at h₉₁
  have h₉₂: a * 2 ^ k = 2 * 2 ^ (2 * m - 2) - 2 ^ (2 * m - 2) := by
    rw [Nat.sub_add_cancel ?_] at h₉₁
    . rw [add_comm] at h₉₁
      symm
      rw [← Nat.pow_succ', succ_eq_add_one]
      rw [← Nat.sub_add_comm ?_]
      . simp
        rw [mul_comm 2 m]
        exact Nat.sub_eq_of_eq_add h₉₁
      . linarith [hm1]
    . refine le_of_lt ?_
      rw [mul_two, Nat.add_sub_assoc, Nat.pow_add, mul_comm (2 ^ m) _]
      refine (Nat.mul_lt_mul_right (by linarith)).mpr gβ‚€
      linarith
  nth_rewrite 2 [← Nat.one_mul (2 ^ (2 * m - 2))] at h₉₂
  rw [← Nat.mul_sub_right_distrib 2 1 (2 ^ (2 * m - 2))] at h₉₂
  norm_num at h₉₂
  refine Nat.eq_div_of_mul_eq_left ?_ h₉₂
  exact Ne.symm (NeZero.ne' (2 ^ k))


lemma imo_1984_p6_11_1
  (a b c d: β„•)
  (hβ‚€ : 0 < a ∧ 0 < b ∧ 0 < c ∧ 0 < d)
  (h₁ : Odd a ∧ Odd b ∧ Odd c ∧ Odd d)
  (hβ‚‚ : a < b ∧ b < c ∧ c < d) :
  -- (h₃ : a * d = b * c)
  -- (hβ‚… : b + c = 2 ^ m)
  -- (h₆ : b * 2 ^ m - a * 2 ^ k = (b - a) * (b + a))
  -- (h₇ : 2 ^ m ∣ (b - a) * (b + a))
  -- (hβ‚ˆ : b + a = 2 ^ (m - 1))
  3 ≀ b := by
  by_contra! hc
  interval_cases b
  . linarith
  . linarith [hβ‚€.1, hβ‚‚.1]
  . have hcβ‚€: Odd 2 := by exact h₁.2.1
    have hc₁: Β¬ Odd 2 := by decide
    exact hc₁ hcβ‚€


lemma imo_1984_p6_11_2
  (a b m : β„•)
  -- (hβ‚€ : 0 < a ∧ 0 < b ∧ 0 < c ∧ 0 < d)
  -- h₁ : Odd a ∧ Odd b ∧ Odd c ∧ Odd d
  -- hβ‚‚ : a < b ∧ b < c ∧ c < d
  -- h₃ : a * d = b * c
  -- hβ‚… : b + c = 2 ^ m
  -- h₆ : b * 2 ^ m - a * 2 ^ k = (b - a) * (b + a)
  -- h₇ : 2 ^ m ∣ (b - a) * (b + a)
  (hβ‚ˆ : b + a = 2 ^ (m - 1))
  (ga : 1 ≀ a)
  (gb : 3 ≀ b) :
  3 ≀ m := by
  have gmβ‚€: 2 ^ 2 ≀ 2 ^ (m - 1) := by
    norm_num
    rw [← hβ‚ˆ]
    linarith
  have gm₁: 2 ≀ m - 1 := by
    exact (Nat.pow_le_pow_iff_right (by norm_num)).mp gmβ‚€
  omega


lemma imo_1984_p6_11_3
  (a b m : β„•)
  (hβ‚‚ : a < b)
  (hβ‚ˆ : b + a = 2 ^ (m - 1))
  (gm : 3 ≀ m) :
  a < 2 ^ (m - 2) := by
  have gβ‚€β‚€: a + a < b + a := by simp [hβ‚‚]
  rw [hβ‚ˆ, ← mul_two a] at gβ‚€β‚€
  have g₀₁: m - 1 = Nat.succ (m - 2) := by
    rw [← Nat.succ_sub ?_]
    . rw [succ_eq_add_one]
      omega
    . linarith
  rw [g₀₁, Nat.pow_succ 2 _] at gβ‚€β‚€
  exact Nat.lt_of_mul_lt_mul_right gβ‚€β‚€


lemma imo_1984_p6_11_4
  (a b k m : β„•)
  (h₆ : b * 2 ^ m - a * 2 ^ k = (b - a) * (b + a))
  (hβ‚ˆ : b + a = 2 ^ (m - 1))
  (h₉ : b = 2 ^ (m - 1) - a)
  (hm1 : 1 ≀ m) :
  2 ^ (m * 2 - 1) - (a * 2 ^ m + a * 2 ^ k) = 2 ^ (m * 2 - 2) - a * 2 ^ m := by
  rw [hβ‚ˆ, h₉] at h₆
  repeat rw [Nat.mul_sub_right_distrib] at h₆
  repeat rw [← Nat.pow_add] at h₆
  repeat rw [← Nat.sub_add_comm hm1] at h₆
  repeat rw [← Nat.add_sub_assoc hm1] at h₆
  ring_nf at h₆
  rw [← Nat.sub_add_eq _ 1 1] at h₆
  norm_num at h₆
  rw [← Nat.sub_add_eq _ (a * 2 ^ (m - 1)) (a * 2 ^ (m - 1))] at h₆
  rw [← two_mul (a * 2 ^ (m - 1))] at h₆
  rw [mul_comm 2 _] at h₆
  rw [mul_assoc a (2 ^ (m - 1)) 2] at h₆
  rw [← Nat.pow_succ, succ_eq_add_one] at h₆
  rw [Nat.sub_add_cancel hm1] at h₆
  rw [← Nat.sub_add_eq ] at h₆
  exact h₆


lemma imo_1984_p6_11_5
  (a k m : β„•)
  -- (hβ‚€ : 0 < a ∧ 0 < b ∧ 0 < c ∧ 0 < d)
  -- (h₁ : Odd a ∧ Odd b ∧ Odd c ∧ Odd d)
  -- (hβ‚‚ : a < b ∧ b < c ∧ c < d)
  -- (h₃ : a * d = b * c)
  -- (hβ‚… : b + c = 2 ^ m)
  -- (h₇ : 2 ^ m ∣ (b - a) * (b + a))
  -- (hβ‚ˆ : b + a = 2 ^ (m - 1))
  -- (ga : 1 ≀ a)
  -- (gb : 3 ≀ b)
  (gm : 3 ≀ m)
  (gβ‚€ : a < 2 ^ (m - 2))
  -- (h₉ : b = 2 ^ (m - 1) - a)
  -- (hm1 : 1 ≀ m)
  (h₆ : 2 ^ (m * 2 - 1) - (a * 2 ^ m + a * 2 ^ k) = 2 ^ (m * 2 - 2) - a * 2 ^ m) :
  2 ^ (m * 2 - 1) = 2 ^ (m * 2 - 2) - a * 2 ^ m + (a * 2 ^ m + a * 2 ^ k) := by
  refine Nat.eq_add_of_sub_eq ?_ h₆
  by_contra! hc
  have g₁: 2 ^ (m * 2 - 1) - (a * 2 ^ m + a * 2 ^ k) = 0 := by
    exact Nat.sub_eq_zero_of_le (le_of_lt hc)
  rw [g₁] at h₆
  have gβ‚‚: 2 ^ (m * 2 - 2) ≀ a * 2 ^ m := by exact Nat.le_of_sub_eq_zero h₆.symm
  have g₃: 2 ^ (m - 2) ≀ a := by
    rw [mul_two, Nat.add_sub_assoc (by linarith) m] at gβ‚‚
    rw [Nat.pow_add, mul_comm] at gβ‚‚
    refine Nat.le_of_mul_le_mul_right gβ‚‚ ?_
    exact Nat.two_pow_pos m
  linarith [gβ‚€, g₃]


lemma imo_1984_p6_11_6
  (a b c d k m : β„•)
  (hβ‚€ : 0 < a ∧ 0 < b ∧ 0 < c ∧ 0 < d)
  -- h₁ : Odd a ∧ Odd b ∧ Odd c ∧ Odd d
  -- hβ‚‚ : a < b ∧ b < c ∧ c < d
  -- h₃ : a * d = b * c
  (hβ‚… : b + c = 2 ^ m)
  -- (h₇ : 2 ^ m ∣ (b - a) * (b + a))
  -- hβ‚ˆ : b + a = 2 ^ (m - 1)
  -- ga : 1 ≀ a
  -- gb : 3 ≀ b
  (gm : 3 ≀ m)
  (gβ‚€ : a < 2 ^ (m - 2))
  -- h₉₀ : b = 2 ^ (m - 1) - a
  (hm1 : 1 ≀ m)
  -- h₆ : 2 ^ (m * 2 - 1) - (a * 2 ^ m + a * 2 ^ k) = 2 ^ (m * 2 - 2) - a * 2 ^ m
  (h₉₁ : 2 ^ (m * 2 - 1) = 2 ^ (m * 2 - 2) - a * 2 ^ m + a * 2 ^ m + a * 2 ^ k) :
  a * 2 ^ k = 2 * 2 ^ (2 * m - 2) - 2 ^ (2 * m - 2) := by
  rw [Nat.sub_add_cancel ?_] at h₉₁
  . rw [add_comm] at h₉₁
    symm
    rw [← Nat.pow_succ', succ_eq_add_one]
    rw [← Nat.sub_add_comm ?_]
    . simp
      rw [mul_comm 2 m]
      exact Nat.sub_eq_of_eq_add h₉₁
    . linarith [hm1]
  . refine le_of_lt ?_
    rw [mul_two, Nat.add_sub_assoc, Nat.pow_add, mul_comm (2 ^ m) _]
    . refine (Nat.mul_lt_mul_right ?_).mpr gβ‚€
      linarith
    . linarith

lemma imo_1984_p6_11_7
  (a k m : β„•)
  (h₉₂ : a * 2 ^ k = 2 * 2 ^ (2 * m - 2) - 2 ^ (2 * m - 2)) :
  a = 2 ^ (2 * m - 2) / 2 ^ k := by
  nth_rewrite 2 [← Nat.one_mul (2 ^ (2 * m - 2))] at h₉₂
  rw [← Nat.mul_sub_right_distrib 2 1 (2 ^ (2 * m - 2))] at h₉₂
  norm_num at h₉₂
  refine Nat.eq_div_of_mul_eq_left ?_ h₉₂
  exact Ne.symm (NeZero.ne' (2 ^ k))



lemma imo_1984_p6_12
  (a b c d k m : β„•)
  (hβ‚€ : 0 < a ∧ 0 < b ∧ 0 < c ∧ 0 < d)
  (h₁ : Odd a ∧ Odd b ∧ Odd c ∧ Odd d)
  (hβ‚‚ : a < b ∧ b < c ∧ c < d)
  (h₃ : a * d = b * c)
  (hβ‚„ : a + d = 2 ^ k)
  -- (hβ‚… : b + c = 2 ^ m)
  -- (hkm : m < k)
  (h₆ : b * 2 ^ m - a * 2 ^ k = (b - a) * (b + a))
  (h₇ : 2 ^ m ∣ (b - a) * (b + a))
  (hβ‚ˆ : b + a = 2 ^ (m - 1))
  (h₉ : a = 2 ^ (2 * m - 2) / 2 ^ k) :
  a = 1 := by
  by_cases h₁₀: k ≀ 2 * m - 2
  . rw [Nat.pow_div h₁₀ (by norm_num)] at h₉
    rw [Nat.sub_right_comm (2*m) 2 k] at h₉
    by_contra! hc
    cases' (lt_or_gt_of_ne hc) with hcβ‚€ hc₁
    . interval_cases a
      linarith
    . have hcβ‚‚: Β¬ Odd a := by
        refine (not_odd_iff_even).mpr ?_
        have hc₃: 1 ≀ 2 * m - k - 2 := by
          by_contra! hcβ‚„
          interval_cases (2 * m - k - 2)
          simp at h₉
          rw [h₉] at hc₁
          contradiction
        have hcβ‚„: 2 * m - k - 2 = succ (2 * m - k - 3) := by
          rw [succ_eq_add_one]
          exact Nat.eq_add_of_sub_eq hc₃ rfl
        rw [h₉, hcβ‚„, Nat.pow_succ']
        exact even_two_mul (2 ^ (2 * m - k - 3))
      exact hcβ‚‚ h₁.1
  . push_neg at h₁₀
    exfalso
    have ha: a = 0 := by
      rw [h₉]
      refine (Nat.div_eq_zero_iff).mpr ?_
      right
      refine Nat.pow_lt_pow_right ?_ h₁₀
      exact Nat.one_lt_two
    linarith [ha, hβ‚€.1]



lemma imo_1984_p6_13
  (a b c d k m : β„•)
  (hβ‚€ : 0 < a ∧ 0 < b ∧ 0 < c ∧ 0 < d)
  (h₁ : Odd a ∧ Odd b ∧ Odd c ∧ Odd d)
  (hβ‚‚ : a < b ∧ b < c ∧ c < d)
  (h₃ : a * d = b * c)
  (hβ‚„ : a + d = 2 ^ k)
  -- (hβ‚… : b + c = 2 ^ m)
  -- (hkm : m < k)
  (h₆ : b * 2 ^ m - a * 2 ^ k = (b - a) * (b + a))
  (h₇ : 2 ^ m ∣ (b - a) * (b + a))
  (hβ‚ˆ : b + a = 2 ^ (m - 1))
  (h₉ : a = 2 ^ (2 * m - 2) / 2 ^ k)
  (h₁₀: k ≀ 2 * m - 2) :
  a = 1 := by
  rw [Nat.pow_div h₁₀ (by norm_num)] at h₉
  rw [Nat.sub_right_comm (2*m) 2 k] at h₉
  by_contra! hc
  cases' (lt_or_gt_of_ne hc) with hcβ‚€ hc₁
  . interval_cases a
    linarith
  . have hcβ‚‚: Β¬ Odd a := by
      refine (not_odd_iff_even).mpr ?_
      have hc₃: 1 ≀ 2 * m - k - 2 := by
        by_contra! hcβ‚„
        interval_cases (2 * m - k - 2)
        simp at h₉
        rw [h₉] at hc₁
        contradiction
      have hcβ‚„: 2 * m - k - 2 = succ (2 * m - k - 3) := by
        rw [succ_eq_add_one]
        exact Nat.eq_add_of_sub_eq hc₃ rfl
      rw [h₉, hcβ‚„, Nat.pow_succ']
      exact even_two_mul (2 ^ (2 * m - k - 3))
    exact hcβ‚‚ h₁.1


lemma imo_1984_p6_13_1
  (a b c d k m : β„•)
  (hβ‚€ : 0 < a ∧ 0 < b ∧ 0 < c ∧ 0 < d)
  (h₁ : Odd a ∧ Odd b ∧ Odd c ∧ Odd d)
  (hβ‚‚ : a < b ∧ b < c ∧ c < d)
  (h₃ : a * d = b * c)
  (hβ‚„ : a + d = 2 ^ k)
  (h₆ : b * 2 ^ m - a * 2 ^ k = (b - a) * (b + a))
  (h₇ : 2 ^ m ∣ (b - a) * (b + a))
  (hβ‚ˆ : b + a = 2 ^ (m - 1))
  (h₉ : a = 2 ^ (2 * m - k - 2))
  -- (h₁₀ : k ≀ 2 * m - 2)
  (hc : a < 1) :
  False := by
  interval_cases a
  linarith


lemma imo_1984_p6_13_2
  (a b c d k m : β„•)
  -- (hβ‚€ : 0 < a ∧ 0 < b ∧ 0 < c ∧ 0 < d)
  (h₁ : Odd a ∧ Odd b ∧ Odd c ∧ Odd d)
  -- (hβ‚‚ : a < b ∧ b < c ∧ c < d)
  -- (h₃ : a * d = b * c)
  -- (hβ‚„ : a + d = 2 ^ k)
  -- (h₆ : b * 2 ^ m - a * 2 ^ k = (b - a) * (b + a))
  -- (h₇ : 2 ^ m ∣ (b - a) * (b + a))
  -- (hβ‚ˆ : b + a = 2 ^ (m - 1))
  (h₉ : a = 2 ^ (2 * m - k - 2))
  -- (h₁₀ : k ≀ 2 * m - 2)
  (hc : 1 < a) :
  False := by
  have hcβ‚‚: Β¬ Odd a := by
    refine (not_odd_iff_even).mpr ?_
    have hc₃: 1 ≀ 2 * m - k - 2 := by
      by_contra! hcβ‚„
      interval_cases (2 * m - k - 2)
      simp at h₉
      rw [h₉] at hc
      contradiction
    have hcβ‚„: 2 * m - k - 2 = succ (2 * m - k - 3) := by
      rw [succ_eq_add_one]
      exact Nat.eq_add_of_sub_eq hc₃ rfl
    rw [h₉, hcβ‚„, Nat.pow_succ']
    exact even_two_mul (2 ^ (2 * m - k - 3))
  exact hcβ‚‚ h₁.1


lemma imo_1984_p6_13_3
  (a k m : β„•)
  (h₉ : a = 2 ^ (2 * m - k - 2))
  (hc : 1 < a) :
  1 ≀ 2 * m - k - 2 := by
  by_contra! hcβ‚„
  interval_cases (2 * m - k - 2)
  simp at h₉
  rw [h₉] at hc
  contradiction


lemma imo_1984_p6_13_4
  (a k m : β„•)
  (h₉ : a = 2 ^ (2 * m - k - 2))
  (hc : 1 < a) :
  Even a := by
  have hc₃: 1 ≀ 2 * m - k - 2 := by
    by_contra! hcβ‚„
    interval_cases (2 * m - k - 2)
    simp at h₉
    rw [h₉] at hc
    contradiction
  have hcβ‚„: 2 * m - k - 2 = succ (2 * m - k - 3) := by
    rw [succ_eq_add_one]
    exact Nat.eq_add_of_sub_eq hc₃ rfl
  rw [h₉, hcβ‚„, Nat.pow_succ']
  exact even_two_mul (2 ^ (2 * m - k - 3))


lemma imo_1984_p6_14
  (a k m : β„•)
  (hβ‚€ : 0 < a)
  -- (h₁ : Odd a ∧ Odd b ∧ Odd c ∧ Odd d)
  -- (hβ‚‚ : a < b ∧ b < c ∧ c < d)
  -- (h₃ : a * d = b * c)
  -- (hβ‚„ : a + d = 2 ^ k)
  -- (hβ‚… : b + c = 2 ^ m)
  -- (hkm : m < k)
  -- (h₆ : b * 2 ^ m - a * 2 ^ k = (b - a) * (b + a))
  -- (h₇ : 2 ^ m ∣ (b - a) * (b + a))
  -- (hβ‚ˆ : b + a = 2 ^ (m - 1))
  (h₉ : a = 2 ^ (2 * m - 2) / 2 ^ k)
  (hk2m : 2 * m - 2 < k) :
  False := by
  have ha: a = 0 := by
    rw [h₉]
    refine (Nat.div_eq_zero_iff).mpr ?_
    right
    exact Nat.pow_lt_pow_right (by norm_num) hk2m
  linarith [ha, hβ‚€]


lemma imo_1984_p6_15
  (a k m : β„•)
  (h₉ : a = 2 ^ (2 * m - 2) / 2 ^ k)
  (hk2m : 2 * m - 2 < k) :
  a = 0 := by
  rw [h₉]
  refine (Nat.div_eq_zero_iff).mpr ?_
  right
  exact Nat.pow_lt_pow_right (by norm_num) hk2m