# Author: Roman Janík # Script for local loading PONER 1.0 CoNNL dataset and converting it to Hugging Face dataset format. # # This script if a modified version of conll2003/conll2003.py script by HuggingFace Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import datasets logger = datasets.logging.get_logger(__name__) _CITATION = """ - """ _DESCRIPTION = """\ This is a Pero OCR NER 1.0 dataset in the CoNLL format. Each line in the corpus contains information about one word/token. The first column is the actual word, the second column is a Named Entity class in a BIO format. An empty line is a sentence separator. """ _TRAINING_FILE = "poner_train.conll" _DEV_FILE = "poner_dev.conll" _TEST_FILE = "poner_test.conll" class Poner1_0ConllConfig(datasets.BuilderConfig): """BuilderConfig for PONER 1.0 CoNNL""" def __init__(self, **kwargs): """BuilderConfig for PONER 1.0 CoNNL. Args: **kwargs: keyword arguments forwarded to super. """ super(Poner1_0ConllConfig, self).__init__(**kwargs) class Poner1_0Conll(datasets.GeneratorBasedBuilder): """PONER 1.0 CoNNL dataset.""" BUILDER_CONFIGS = [ Poner1_0ConllConfig(name="poner1_0conll", version=datasets.Version("1.0.0"), description="PONER 1.0 CoNNL dataset"), ] def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "id": datasets.Value("string"), "tokens": datasets.Sequence(datasets.Value("string")), "ner_tags": datasets.Sequence( datasets.features.ClassLabel( names=[ "O", "B-p", "I-p", "B-i", "I-i", "B-g", "I-g", "B-t", "I-t", "B-o", "I-o" ] ) ), } ), supervised_keys=None, homepage="https://pero-ocr.fit.vutbr.cz", citation=_CITATION, ) def _split_generators(self, dl_manager, dataset_path="../../../datasets/poner1.0"): """Returns SplitGenerators.""" data_files = { "train": os.path.join(dataset_path, _TRAINING_FILE), "dev": os.path.join(dataset_path, _DEV_FILE), "test": os.path.join(dataset_path, _TEST_FILE), } return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": data_files["train"]}), datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": data_files["dev"]}), datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": data_files["test"]}), ] def _generate_examples(self, filepath): logger.info("⏳ Generating examples from = %s", filepath) with open(filepath, encoding="utf-8") as f: guid = 0 tokens = [] ner_tags = [] for line in f: if line.startswith("-DOCSTART-") or line == "" or line == "\n": if tokens: yield guid, { "id": str(guid), "tokens": tokens, "ner_tags": ner_tags, } guid += 1 tokens = [] ner_tags = [] else: # conll2003 tokens are space separated splits = line.split(" ") tokens.append(splits[0]) ner_tags.append(splits[1].rstrip()) # last example if tokens: yield guid, { "id": str(guid), "tokens": tokens, "ner_tags": ner_tags, }